|
Part. Introduction |
|
Unit. Organization, Literature |
15.05.22 |
|
|
Unit. Learning Tasks |
15.05.22 |
|
|
Unit. Elements of Machine Learning |
15.05.22 |
|
|
Unit. Syntax and Models Overview |
15.05.22 |
|
|
Part. Machine Learning Basics |
|
Unit. Concept Learning |
11.04.22 |
|
|
Unit. From Regression to Classification |
11.04.22 |
|
|
Unit. Evaluating Effectiveness |
11.04.22 |
|
|
Part. Linear Models |
|
Unit. Logistic Regression |
15.05.22 |
|
|
Unit. Overfitting and Regularization |
15.05.22 |
|
|
Unit. Gradient Descent in Detail |
15.05.22 |
|
|
Part. Neural Networks |
|
Unit. Perceptron Learning |
25.06.22 |
|
|
Unit. Multilayer Perceptron |
25.06.22 |
|
|
Unit. Advanced MLPs |
25.06.22 |
|
|
Part. Support Vector Machines |
|
Unit. Linear SVM |
|
|
|
Unit. Kernel Methods |
|
|
|
Part. Decision Trees |
|
Unit. Decision Trees Basics |
11.04.22 |
|
|
Unit. Impurity Functions |
11.04.22 |
|
|
Unit. Decision Trees Algorithms |
11.04.22 |
|
|
Unit. Decision Trees Pruning |
11.04.22 |
|
|
Part. Bayesian Learning |
|
Unit. Probability Basics |
19.06.22 |
|
|
Unit. Bayes Classifier |
23.05.22 |
|
|
Unit. Frequentist versus Subjectivist |
23.05.22 |
|
|
Unit. Bayesian Belief Networks |
|
|
|
Part. Learning Theory |
|
Unit. Error Decomposition and Model Selection |
|
|
|
Unit. VC Dimension |
|
|
|
Unit. PAC Learning |
|
|
|
Part. Deep Learning |
|
Unit. Introduction to Deep Learning |
27.06.22 |
|
|
Unit. Recurrent Neural Networks |
27.06.22 |
|
|
Unit. Long-Term Dependencies |
27.06.22 |
|
|
Unit. RNNs for Machine Translation |
27.06.22 |
|
|
Unit. Attention Mechanism |
27.06.22 |
|
|
Unit. Self Attention and Transformers |
|
|
|
Unit. Transformer Language Models |
|
|
|
Part. Ensemble Methods and Meta Learning |
|
Unit. Ensemble Methods Basics |
11.04.22 |
|
|
Unit. Evolutionary Strategies |
|
|
|
Unit. Swarm Strategies |
|
|
|
Part. Reinforcement Learning |