Back to the Roots of Genres: Text Classification by Language Function

Henning Wachsmuth and Kathrin Bujna
presented at IJCNLP on November 10, 2011
Motivation: Filter search results

• Imagine you search for opinions on a product, but only want to read personal views...

• ... Or you are interested in a brand, but do not want commercial texts on that brand...

• ... Such filtering could be approached with genre identification, but...
Unlike many renowned classification tasks, genre identification mixes different aspects of both texts and documents.

- There is a missing common understanding of genres
 - As a consequence, several genre classification schemes exist
 - Different approaches are badly comparable (see Sharoff et. al., 2010)
 - The task itself is unclear

- In contrast, we focus on one single aspect of genres: language functions
The functions of natural language

- In 1934, the psychologist **Karl Bühler** introduced one of the most influential attempts to categorize the functions of natural language.

- Later on (1971), the linguist **Katharina Reiß** carried the three language functions over to text.
We introduce the **new task** “Language Function Analysis” (LFA)

Given a text, decide whether its predominant language function is 1) expression, 2) appeal, or 3) representation.

Properties of LFA

- Very general
- Addresses one single aspect of genres
- Can be used for document filtering purposes

So, yet another classification scheme?

- LFA is not meant to solve genre identification, but might help to better understand genres
- **Question:** How can we identify the language function of a text?
For evaluation, we built a **German text corpus** in cooperation with industry
- Contains separated text collections of **two product domains**:

Music
2713 well-written promotional texts and reviews

Smartphones
2093 blog posts of varying quality and style

- Each text is **manually classified** by language function and sentiment polarity
 - Many details about the annotation process in the paper
 - We mapped the language functions to product-related classes:
A machine learning approach to LFA

- Our approach to LFA relies on **supervised machine learning** classification
 - Experiments with features from different research areas
 - Organization into 6 feature groups

(Simple) Genre

- part-of-speech distribution and text statistics

Text type

- frequency of entities and some parts-of-speech

Writing style

- most common words and trigrams

Sentiment

- sentiment polarity and emoticons

Core trigrams

- most discriminative trigrams

Core terms

- most discriminative terms
Evaluation

• We evaluated LFA for both corpus domains based on the 6 feature groups
 – We used linear multi-class support vector machines in all experiments
 – Text classification often suffers from domain dependency, so we also evaluated out-of-domain classification

• We splitted the corpus into training, validation, and test sets
 – Smartphone sets even more imbalanced

Source code and feature files at http://infexba.upb.de
Results: From music to smartphones

- We first trained a classifier on the music training set for each feature group as well as for all features.

Accuracy results:

<table>
<thead>
<tr>
<th>Feature Group</th>
<th>Personal F-score</th>
<th>Commercial F-score</th>
<th>Informational F-score</th>
<th>All Features F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genre</td>
<td>0.69</td>
<td>0.73</td>
<td>0.79</td>
<td>0.82</td>
</tr>
<tr>
<td>Text type</td>
<td>0.38</td>
<td>0.54</td>
<td>0.59</td>
<td>0.49</td>
</tr>
<tr>
<td>Writing style</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.69</td>
</tr>
<tr>
<td>Sentiment</td>
<td>0.27</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>Core trigrams</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Core terms</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
</tbody>
</table>

- applied to the music test set
- applied to the smartphone test set
Results: From smartphones to music

- Next, we retrained the classifiers on the smartphone training set

Accuracy results:

<table>
<thead>
<tr>
<th>Genre</th>
<th>Text type</th>
<th>Writing style</th>
<th>Sentiment</th>
<th>Core trigrams</th>
<th>Core terms</th>
<th>All features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.69</td>
</tr>
<tr>
<td>personal</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>commercial</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>informational</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F-score per class:
- personal: 0.75
- commercial: 0.31
- informational: 0.68
Key observations

• **Machine learning** appears to work well for LFA on homogeneous collections, such as the music texts

• Classification of very heterogeneous collections as well as of out-of-domain data remain **open problems**

• The **best-performing features** are common in authorship attribution

• **Writing style and text type features** appear to be only weakly domain-dependent in LFA

• Language functions and **sentiment polarities** seem to have few correlation
Take away messages

• In our view, we need to go back to the roots of genres in order to achieve progress in the field.

• We introduced **Language Function Analysis (LFA)**, a very general classification task that addresses one single aspect.

• It is possible to determine the predominant language function of a text using machine learning.

• There’s much room for doing better than us in LFA, so start working on it 😊.
Thank you for your attention.

s-lab – Software Quality Lab
University of Paderborn
Zukunftsmeile 1, 33102 Paderborn
Germany

http://is.upb.de/?id=wachsmuth
hwachsmuth@s-lab.upb.de