|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Distance | |
---|---|
de.aitools.aq.algebra.vector.functions | |
de.aitools.dm.clustering.validation | |
de.aitools.dm.clustering.validation.internal |
Uses of Distance in de.aitools.aq.algebra.vector.functions |
---|
Classes in de.aitools.aq.algebra.vector.functions that implement Distance | |
---|---|
class |
EuclideanDistance
A Distance measure for Vector s.The Euclidean Distance of two points is defined as the length of the segment between them. |
class |
ManhattanDistance
A Distance measure for Vector s.The Manhattan Distance of two points is defined as the sum of the lengths of the projections of the segment between them onto the coordinate system axis. |
Uses of Distance in de.aitools.dm.clustering.validation |
---|
Methods in de.aitools.dm.clustering.validation with parameters of type Distance | |
---|---|
java.util.Map<java.lang.String,java.lang.Double> |
InternalClusterValidator.validate(Distance<Vector> dm,
Vector[] points,
int[] clustering)
|
Uses of Distance in de.aitools.dm.clustering.validation.internal |
---|
Constructors in de.aitools.dm.clustering.validation.internal with parameters of type Distance | |
---|---|
DaviesBouldinIndex(Distance<Vector> dm,
Vector[] points,
int[] clusterResult)
|
|
DunnIndex(Distance<Vector> dm,
Vector[] points,
int[] clusterResult)
|
|
SilhouetteCoefficient(Distance<Vector> dm,
Vector[] points,
int[] clusterResult)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |