|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Uses of Vector in de.aitools.aq.algebra.vector |
---|
Methods in de.aitools.aq.algebra.vector that return Vector | |
---|---|
static Vector |
Vector.centroid(java.lang.Iterable<Vector> vectors)
|
static Vector |
Vector.multiply(Vector vector,
double[] values)
|
static Vector |
Vector.multiply(Vector v1,
Vector v2)
|
Methods in de.aitools.aq.algebra.vector with parameters of type Vector | |
---|---|
void |
Vector.add(Vector vector)
|
double |
Vector.dot(Vector vector)
|
void |
Vector.multiply(Vector vector)
|
static Vector |
Vector.multiply(Vector vector,
double[] values)
|
static Vector |
Vector.multiply(Vector v1,
Vector v2)
|
static int[] |
VectorSort.sortedIndices(Vector input)
Return the indices of the input vector, sorted in descending order. |
Method parameters in de.aitools.aq.algebra.vector with type arguments of type Vector | |
---|---|
static Vector |
Vector.centroid(java.lang.Iterable<Vector> vectors)
|
Constructors in de.aitools.aq.algebra.vector with parameters of type Vector | |
---|---|
Vector(Vector vector)
|
|
VectorSort(Vector nodeValues,
boolean copyVector)
Create a new VectorSort . |
|
VectorSort(Vector nodeValues,
boolean copyVector,
int numNodes)
Create a new VectorSort . |
Uses of Vector in de.aitools.aq.algebra.vector.functions |
---|
Fields in de.aitools.aq.algebra.vector.functions with type parameters of type Vector | |
---|---|
Proximity<Vector> |
TestVectorProximityCommon.proximity
|
Methods in de.aitools.aq.algebra.vector.functions with parameters of type Vector | |
---|---|
double |
ManhattanDistance.computeDistance(Vector v1,
Vector v2)
|
double |
EuclideanDistance.computeDistance(Vector v1,
Vector v2)
|
double |
ManhattanDistance.computeNormalizedProximity(Vector v1,
Vector v2)
|
double |
CosineSimilarity.computeNormalizedProximity(Vector v1,
Vector v2)
|
double |
DotProduct.computeNormalizedProximity(Vector v1,
Vector v2)
|
double |
EuclideanDistance.computeNormalizedProximity(Vector v1,
Vector v2)
|
double |
ManhattanDistance.computeProximity(Vector v1,
Vector v2)
|
double |
CosineSimilarity.computeProximity(Vector v1,
Vector v2)
|
double |
DotProduct.computeProximity(Vector v1,
Vector v2)
|
double |
EuclideanDistance.computeProximity(Vector v1,
Vector v2)
|
double |
CosineSimilarity.computeSimilarity(Vector v1,
Vector v2)
|
double |
EuclideanDistance.computeSquaredDistance(Vector v1,
Vector v2)
|
Constructor parameters in de.aitools.aq.algebra.vector.functions with type arguments of type Vector | |
---|---|
TestVectorProximityCommon(Proximity<Vector> proximityMeasure)
|
Uses of Vector in de.aitools.aq.graph |
---|
Methods in de.aitools.aq.graph that return Vector | |
---|---|
Vector |
UndirectedGraph.getAdjacentNodes(int node)
|
Vector |
Graph.getAdjacentNodes(int nodeId)
|
Constructors in de.aitools.aq.graph with parameters of type Vector | |
---|---|
UndirectedGraph(Vector[] adjacencyMatrix)
|
Uses of Vector in de.aitools.aq.graph.util |
---|
Methods in de.aitools.aq.graph.util with parameters of type Vector | |
---|---|
void |
Sparsification.init(Vector[] data,
Proximity<Vector> proximity)
|
void |
Threshold.init(Vector[] data,
Proximity<Vector> proximity)
|
void |
NoSparsification.init(Vector[] data,
Proximity<Vector> proximity)
|
Method parameters in de.aitools.aq.graph.util with type arguments of type Vector | |
---|---|
void |
Sparsification.init(Vector[] data,
Proximity<Vector> proximity)
|
void |
Threshold.init(Vector[] data,
Proximity<Vector> proximity)
|
void |
NoSparsification.init(Vector[] data,
Proximity<Vector> proximity)
|
Uses of Vector in de.aitools.aq.graph.weighted.util |
---|
Methods in de.aitools.aq.graph.weighted.util with parameters of type Vector | ||
---|---|---|
static
|
KNNGraph.createUndirectedKNNGraph(Vector[] data,
V[] vertices,
java.util.Comparator<V> vertexComparator,
Proximity<Vector> proximity,
int k)
Deprecated. Create an undirected K-Nearest-Neighbor-Graph. |
|
static
|
KNNGraph.createUndirectedKNNGraph(Vector[] data,
V[] vertices,
java.util.Comparator<V> vertexComparator,
Proximity<Vector> proximity,
int k,
double noEdgeWeight)
Deprecated. Create an undirected K-Nearest-Neighbor-Graph. |
|
static UndirectedMutableIntGraph |
KNNGraph.createUndirectedKNNIntGraph(Vector[] data,
Proximity<Vector> proximity,
int k)
Deprecated. Create an undirected K-Nearest-Neighbor-Graph. |
|
static UndirectedMutableIntGraph |
KNNGraph.createUndirectedKNNIntGraph(Vector[] data,
Proximity<Vector> proximity,
int k,
double noEdgeWeight)
Deprecated. Create an undirected K-Nearest-Neighbor-Graph. |
Method parameters in de.aitools.aq.graph.weighted.util with type arguments of type Vector | ||
---|---|---|
static
|
KNNGraph.createUndirectedKNNGraph(Vector[] data,
V[] vertices,
java.util.Comparator<V> vertexComparator,
Proximity<Vector> proximity,
int k)
Deprecated. Create an undirected K-Nearest-Neighbor-Graph. |
|
static
|
KNNGraph.createUndirectedKNNGraph(Vector[] data,
V[] vertices,
java.util.Comparator<V> vertexComparator,
Proximity<Vector> proximity,
int k,
double noEdgeWeight)
Deprecated. Create an undirected K-Nearest-Neighbor-Graph. |
|
static UndirectedMutableIntGraph |
KNNGraph.createUndirectedKNNIntGraph(Vector[] data,
Proximity<Vector> proximity,
int k)
Deprecated. Create an undirected K-Nearest-Neighbor-Graph. |
|
static UndirectedMutableIntGraph |
KNNGraph.createUndirectedKNNIntGraph(Vector[] data,
Proximity<Vector> proximity,
int k,
double noEdgeWeight)
Deprecated. Create an undirected K-Nearest-Neighbor-Graph. |
Uses of Vector in de.aitools.dm.clustering |
---|
Methods in de.aitools.dm.clustering that return Vector | |
---|---|
static Vector[] |
ClusteringIO.read(java.io.InputStream in)
|
Methods in de.aitools.dm.clustering with parameters of type Vector | |
---|---|
int[] |
Clusterer.cluster(Vector[] data)
|
int[][] |
SoftClusterer.clusterSoft(Vector[] data)
|
Uses of Vector in de.aitools.dm.clustering.algorithms |
---|
Fields in de.aitools.dm.clustering.algorithms declared as Vector | |
---|---|
static Vector[] |
HACTests.data
Testdata to use. |
static Vector[] |
TestDBScan.DATA
|
Methods in de.aitools.dm.clustering.algorithms that return Vector | |
---|---|
Vector[] |
KMeans.getCentroids()
Returs the centroids of the clusters that were found during the last clustering process. |
Methods in de.aitools.dm.clustering.algorithms that return types with arguments of type Vector | |
---|---|
Proximity<Vector> |
KMeans.getProximity()
Get the proximity. |
Proximity<Vector> |
KNNHAC.getProximityMeasure()
|
Methods in de.aitools.dm.clustering.algorithms with parameters of type Vector | |
---|---|
int[] |
SLink.cluster(Vector[] data)
This method is used for clustering via the TIRA Framework. |
int[] |
DBScan.cluster(Vector[] data)
|
int[] |
DBScan.DBScanConfiguration.cluster(Vector[] data)
TODO |
int[] |
DBScan.DBScanAllParameters.cluster(Vector[] data)
|
int[] |
DBScan.DBScanSearchProximity.cluster(Vector[] data)
|
int[] |
AGraphClusterer.cluster(Vector[] data)
|
int[] |
KNNHAC.cluster(Vector[] data)
This method is used for clustering via the TIRA Framework. |
int[] |
KMeans.cluster(Vector[] data)
|
abstract int[] |
AClusterer.cluster(Vector[] data)
|
int[] |
HighRecallClusterer.cluster(Vector[] data)
|
int[] |
SLink.cluster(Vector[] data,
double threshold)
Cluster given data hierarchically until the proximities between all clusters is less or equal to threshold. |
int[] |
KNNHAC.cluster(Vector[] data,
double threshold)
Cluster given data hierarchically until the proximities between all clusters is less or equal to threshold. |
int[] |
SLink.cluster(Vector[] data,
int numClusters)
Cluster given data hierarchically until only numClusters are left. |
int[] |
DBScan.cluster(Vector[] data,
int coreMinNeighbors)
TODO |
int[] |
KNNHAC.cluster(Vector[] data,
int numClusters)
Cluster given data hierarchically until only numClusters are left. |
int[] |
DBScan.cluster(Vector[] data,
int coreMinNeighbors,
DBScan.DBScanGraphKneeDetector neighborhoodProximityDetector)
TODO |
int[] |
DBScan.cluster(Vector[] data,
int coreMinNeighbors,
double neighborhoodProximity)
TODO |
Dendrogram<DoubleMerge> |
SLink.clusterDendrogram(Vector[] data)
Cluster given data hierarchically. |
Dendrogram<DoubleMerge> |
KNNHAC.clusterDendrogram(Vector[] data)
Cluster given data hierarchically. |
int[][] |
AClusterer.clusterSoft(Vector[] data)
|
abstract int[][] |
ASoftClusterer.clusterSoft(Vector[] data)
|
static Graph |
AGraphClusterer.createGraph(Vector[] data,
Proximity<Vector> proximity,
double threshold)
|
static int |
ASoftClusterer.getBiggestRange(Vector[] data)
|
Method parameters in de.aitools.dm.clustering.algorithms with type arguments of type Vector | |
---|---|
static Graph |
AGraphClusterer.createGraph(Vector[] data,
Proximity<Vector> proximity,
double threshold)
|
void |
AGraphClusterer.setProximity(Proximity<Vector> proximityMeasure)
|
void |
SLink.setProximityMeasure(Proximity<Vector> proximityMeasure)
Sets the proximity measure to be used for the clustering steps. |
void |
DBScan.setProximityMeasure(Proximity<Vector> proximityMeasure)
Sets the proximity measure to be used for clustering. |
void |
KNNHAC.setProximityMeasure(Proximity<Vector> proximityMeasure)
Sets the proximity measure to be used for the clustering steps. |
void |
KMeans.setProximityMeasure(Proximity<Vector> proximityMeasure)
Sets a proximity measure. |
Constructor parameters in de.aitools.dm.clustering.algorithms with type arguments of type Vector | |
---|---|
AGraphClusterer(Proximity<Vector> proximityMeasure,
Sparsification sparsificationMethod)
|
|
DBScan(Proximity<Vector> proximityMeasure)
TODO |
|
KMeans(int k,
Proximity<Vector> proximityMeasure,
boolean updateIncremental)
The constructor to use in most cases. The default seed for randomization is used. |
|
KMeans(int k,
Proximity<Vector> proximityMeasure,
boolean updateIncremental,
long seed)
If one does not want to try out another seed value, use the constructor with the default seed value (without the randomSeed parameter) instead. |
|
KNNHAC(HACClusterMethod clusterMethod,
Proximity<Vector> proximityMeasure)
Create a new K-Nearest-Neighbor-Hierarchical-Agglomerative-Clusterer ( KNNHAC ) using the default value for the number of neighbors
(see KNNHAC.setNumberOfNeighbors(int) ). |
|
KNNHAC(HACClusterMethod clusterMethod,
Proximity<Vector> proximityMeasure,
int numNeighbors)
Create a new K-Nearest-Neighbor-Hierarchical-Agglomerative-Clusterer ( KNNHAC ). |
|
MajorClust(Proximity<Vector> proximityMeasure,
Sparsification sparsificationMethod,
double minimumProximity)
Creates a new MajorClust-Clusterer using random ordering of instances. |
|
MajorClust(Proximity<Vector> proximityMeasure,
Sparsification sparsificationMethod,
long randomNumberSeed,
double minimumProximity)
Creates a new MajorClust-Clusterer. |
|
SLink(Proximity<Vector> proximityMeasure)
Create a new Single Link Clusterer. This allows only to use SLink.cluster(Vector[], int) ,
SLink.cluster(Vector[], double) and
SLink.clusterDendrogram(Vector[]) . |
Uses of Vector in de.aitools.dm.clustering.algorithms.dbscan |
---|
Methods in de.aitools.dm.clustering.algorithms.dbscan with parameters of type Vector | |
---|---|
static void |
ProximitySorter.gnuplot(Vector[] data,
Proximity<Vector> proximityMeasure,
int minNeighbor,
int stepWidth,
int numSteps,
java.lang.String filepath)
|
static UndirectedMutableGraph<Point> |
ProximitySorter.neighborGraph(Vector[] data,
Proximity<Vector> proximityMeasure,
int numNeighbors)
|
Method parameters in de.aitools.dm.clustering.algorithms.dbscan with type arguments of type Vector | |
---|---|
static void |
ProximitySorter.gnuplot(Vector[] data,
Proximity<Vector> proximityMeasure,
int minNeighbor,
int stepWidth,
int numSteps,
java.lang.String filepath)
|
static UndirectedMutableGraph<Point> |
ProximitySorter.neighborGraph(Vector[] data,
Proximity<Vector> proximityMeasure,
int numNeighbors)
|
Uses of Vector in de.aitools.dm.clustering.validation |
---|
Methods in de.aitools.dm.clustering.validation with parameters of type Vector | |
---|---|
java.util.Map<java.lang.String,java.lang.Double> |
InternalClusterValidator.validate(Distance<Vector> dm,
Vector[] points,
int[] clustering)
|
Method parameters in de.aitools.dm.clustering.validation with type arguments of type Vector | |
---|---|
java.util.Map<java.lang.String,java.lang.Double> |
InternalClusterValidator.validate(Distance<Vector> dm,
Vector[] points,
int[] clustering)
|
Uses of Vector in de.aitools.dm.clustering.validation.internal |
---|
Constructors in de.aitools.dm.clustering.validation.internal with parameters of type Vector | |
---|---|
DaviesBouldinIndex(Distance<Vector> dm,
Vector[] points,
int[] clusterResult)
|
|
DunnIndex(Distance<Vector> dm,
Vector[] points,
int[] clusterResult)
|
|
SilhouetteCoefficient(Distance<Vector> dm,
Vector[] points,
int[] clusterResult)
|
Constructor parameters in de.aitools.dm.clustering.validation.internal with type arguments of type Vector | |
---|---|
DaviesBouldinIndex(Distance<Vector> dm,
Vector[] points,
int[] clusterResult)
|
|
DunnIndex(Distance<Vector> dm,
Vector[] points,
int[] clusterResult)
|
|
SilhouetteCoefficient(Distance<Vector> dm,
Vector[] points,
int[] clusterResult)
|
Uses of Vector in de.aitools.dm.clusterlabeling.algorithms |
---|
Methods in de.aitools.dm.clusterlabeling.algorithms with parameters of type Vector | |
---|---|
int[] |
TopicIdentifier.cluster(Vector[] data)
|
int[][] |
ACarrot2ClusterLabeler.clusterSoft(Vector[] data)
|
Uses of Vector in de.aitools.ir.fingerprinting.hashfunction |
---|
Methods in de.aitools.ir.fingerprinting.hashfunction with parameters of type Vector | |
---|---|
java.math.BigInteger |
FuzzyFingerprintingEncoding.hash(Vector document)
|
java.math.BigInteger |
LocalitySensitiveEncoding.hash(Vector document)
|
Uses of Vector in de.aitools.ir.fingerprinting.representer |
---|
Methods in de.aitools.ir.fingerprinting.representer that return Vector | |
---|---|
Vector |
PrefixClassFunction.represent(java.lang.String document)
Returns the dimensional reduced deviation vector of the document's prefix classes. |
Vector |
RandomProjectionFunction.represent(java.lang.String text)
|
Methods in de.aitools.ir.fingerprinting.representer that return types with arguments of type Vector | |
---|---|
java.util.List<Vector> |
RandomProjectionFunction.createRandomVectors(int number)
|
Method parameters in de.aitools.ir.fingerprinting.representer with type arguments of type Vector | |
---|---|
void |
RandomProjectionFunction.setRandomVectors(java.util.List<Vector> randomVectors)
|
Uses of Vector in de.aitools.ir.retrievalmodels.relevance.algebraic |
---|
Methods in de.aitools.ir.retrievalmodels.relevance.algebraic with parameters of type Vector | |
---|---|
double |
CosineSimilarity.compute(Vector v1,
Vector v2)
Computes and returns the cosine similarity between two vectors. |
double |
DotProductSimilarity.compute(Vector v1,
Vector v2)
|
Uses of Vector in de.aitools.ir.retrievalmodels.relevance.probabilistic |
---|
Methods in de.aitools.ir.retrievalmodels.relevance.probabilistic with parameters of type Vector | |
---|---|
double |
JensenShannonDivergence.compute(Vector p1,
Vector p2)
|
double |
KullbackLeiblerDivergence.compute(Vector p1,
Vector p2)
|
Uses of Vector in de.aitools.ir.retrievalmodels.representer |
---|
Methods in de.aitools.ir.retrievalmodels.representer that return Vector | |
---|---|
Vector |
InverseDocumentFrequency.represent(java.lang.Iterable<java.lang.String> texts)
|
Vector |
LatentSemanticIndexing.represent(java.lang.String text)
|
Vector |
TermFrequency.represent(java.lang.String text)
|
Vector |
DivergenceFromRandomness.represent(java.lang.String text)
|
Vector |
SerializableTermFrequency.represent(java.lang.String text)
|
Vector |
TFIDF.represent(java.lang.String text)
|
Vector |
TFPDF.represent(java.lang.String text)
|
Vector |
OkapiBM25.represent(java.lang.String text)
|
Vector |
OkapiBM25.RepresentationState.represent(java.lang.String text)
|
Vector |
OkapiBM25.DocumentState.represent(java.lang.String text)
|
Vector |
OkapiBM25.QueryState.represent(java.lang.String text)
|
Methods in de.aitools.ir.retrievalmodels.representer that return types with arguments of type Vector | |
---|---|
Representer<java.lang.String,Vector> |
LatentSemanticIndexing.getRepresenter()
|
Constructor parameters in de.aitools.ir.retrievalmodels.representer with type arguments of type Vector | |
---|---|
LatentSemanticIndexing(Representer<java.lang.String,Vector> representer)
|
Uses of Vector in de.aitools.ir.retrievalmodels.retrievalmodel |
---|
Methods in de.aitools.ir.retrievalmodels.retrievalmodel that return Vector | |
---|---|
Vector |
ExplicitSemanticAnalysis.represent(java.lang.String text)
|
Vector |
VectorSpaceModel.represent(java.lang.String text)
|
Constructor parameters in de.aitools.ir.retrievalmodels.retrievalmodel with type arguments of type Vector | |
---|---|
VectorSpaceModel(Representer<java.lang.String,Vector> representer,
RelevanceFunction<Vector,Vector> rho)
|
|
VectorSpaceModel(Representer<java.lang.String,Vector> representer,
RelevanceFunction<Vector,Vector> rho)
|
|
VectorSpaceModel(Representer<java.lang.String,Vector> representer,
RelevanceFunction<Vector,Vector> rho)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |