Networks, Crowds, and Markets

Outline

I. Graph Theory and Social Networks

II. Game Theory

III. Markets and Strategic Interaction in Networks

IV. Information Networks and the World Wide Web

V. Network Dynamics: Population Models

VI. Network Dynamics: Structural Models

VII. Institutions and Aggregate Behavior
Networks, Crowds, and Markets

Outline

I. Graph Theory and Social Networks
 - Graphs
 - Strong and Weak Ties
 - Networks in Their Surrounding Contexts
 - Positive and Negative Relationships

II. Game Theory

III. Markets and Strategic Interaction in Networks

IV. Information Networks and the World Wide Web

V. Network Dynamics: Population Models

VI. Network Dynamics: Structural Models

VII. Institutions and Aggregate Behavior
Networks, Crowds, and Markets

Graph Representation of a Network
Networks, Crowds, and Markets

Small World Phenomenon: The Watts-Strogatz model
The years of first awareness and first adoption for hybrid seed corn in the Ryan-Gross study.
I. Graph Theory and Social Networks

II. Game Theory
 - Games
 - Evolutionary Game Theory
 - Modeling Network Traffic using Game Theory
 - Auctions

III. Markets and Strategic Interaction in Networks

IV. Information Networks and the World Wide Web

V. Network Dynamics: Population Models

VI. Network Dynamics: Structural Models

VII. Institutions and Aggregate Behavior
Networks, Crowds, and Markets

The Prisoners’ Dilemma

Game:

Should I use performance-enhancing drugs in professional sports or not?

Payoff matrix:
Networks, Crowds, and Markets

Outline

I. Graph Theory and Social Networks
II. Game Theory
III. Markets and Strategic Interaction in Networks
 ❑ Matching Markets
 ❑ Network Models of Markets with Intermediaries
 ❑ Bargaining and Power in Networks
IV. Information Networks and the World Wide Web
V. Network Dynamics: Population Models
VI. Network Dynamics: Structural Models
VII. Institutions and Aggregate Behavior
Networks, Crowds, and Markets

Markets and Trading
Networks, Crowds, and Markets

Outline

I. Graph Theory and Social Networks
II. Game Theory
III. Markets and Strategic Interaction in Networks
IV. Information Networks and the World Wide Web
 - The Structure of the Web
 - Link Analysis and Web Search
 - Sponsored Search Markets
V. Network Dynamics: Population Models
VI. Network Dynamics: Structural Models
VII. Institutions and Aggregate Behavior
Equilibrium PageRank values for a network of eight web pages.
Networks, Crowds, and Markets

Outline

I. Graph Theory and Social Networks
II. Game Theory
III. Markets and Strategic Interaction in Networks
IV. Information Networks and the World Wide Web
V. Network Dynamics: Population Models
 - Information Cascades
 - Network Effects
 - Power Laws and Rich-Get-Richer Phenomena
VI. Network Dynamics: Structural Models
VII. Institutions and Aggregate Behavior
Networks, Crowds, and Markets
Information Cascades and the Wisdom of the Crowd

Urns and Balls ...
To maximize the chance of guessing correctly, you should guess \textit{majority-blue} if

$$Pr[\text{majority-blue} \mid \text{what you have seen}] > \frac{1}{2}$$

and guess \textit{majority-red} otherwise.

Probabilities according to Bayes’ Rule in the „Wisdom of the Crowd“ szenario:

$$Pr[\text{majority-blue} \mid \text{blue}] = Pr[\text{majority-red} \mid \text{red}] = \frac{1/2 \times 2/3}{1/2} = \frac{2}{3}$$
To maximize the chance of guessing correctly, you should guess *majority-blue* if
\[Pr[\text{majority-blue} | \text{what you have seen}] > \frac{1}{2} \]
and guess *majority-red* otherwise. If the probability is exactly 0.5, it doesn’t matter what you choose. Let’s suppose you choose the color of your private signal, then.

Probabilities according to Bayes’ Rule in the „Information Cascade“ szenario:
- **Person 1** \(Pr[\text{majority-blue} | \text{blue}] = Pr[\text{majority-red} | \text{red}] = \frac{1/2 \times 2/3}{1/2} = \frac{2}{3} \)
- **Person 2** \(Pr[\text{majority-blue} | \text{blue,blue}] > \frac{2}{3} \)
- **Person 3** \(Pr[\text{majority-blue} | \text{blue,blue,red}] = \frac{4/27 \times 1/2}{1/9} = \frac{2}{3} \)

All upcoming persons will reason just like Person 3.
Networks, Crowds, and Markets

Outline

I. Graph Theory and Social Networks
II. Game Theory
III. Markets and Strategic Interaction in Networks
IV. Information Networks and the World Wide Web
V. Network Dynamics: Population Models

VI. Network Dynamics: Structural Models
 - Cascading Behavior in Networks
 - The Small-World Phenomenon
 - Epidemics

VII. Institutions and Aggregate Behavior
Networks, Crowds, and Markets

The Power of Strong Ties
Networks, Crowds, and Markets

The Power of Strong Ties

(a) Two nodes are the initial adopters
Networks, Crowds, and Markets
The Power of Strong Ties

(b) *The process ends after three steps*
Networks, Crowds, and Markets

The Power of Strong Ties
Networks, Crowds, and Markets

Outline

I. Graph Theory and Social Networks
II. Game Theory
III. Markets and Strategic Interaction in Networks
IV. Information Networks and the World Wide Web
V. Network Dynamics: Population Models
VI. Network Dynamics: Structural Models
VII. Institutions and Aggregate Behavior
 - Markets and Information
 - Voting
 - Property Rights
Networks, Crowds, and Markets

Covered Phenomena

- The Market for Lemons
- Arrows Impossibility Theorem
- The Tragedy of the Commons
Networks, Crowds, and Markets

Book freely available online!

END.