Drug-Drug Interaction Detection: A New Approach Based on Maximal Frequent Sequences

Sandra García-Blasco Roxana Danger Paolo Rosso

Natural Language Engineering Lab. - ELiRF
DSIC - Univ. Politécnica Valencia
sangarbl@posgrado.upv.es
{rdanger,prosso}@dsic.upv.es

BioSEPLN, September 2010
Outline

1. Introduction
 - The problem: Drug-Drug Interaction Detection
 - Approximations

2. Out Proposal
 - Method Proposed
 - The Algorithm

3. Experimentation
 - Corpus and preprocessing
 - Results

4. Conclusions
Outline

1. Introduction
 - The problem: Drug-Drug Interaction Detection
 - Approximations

2. Out Proposal
 - Method Proposed
 - The Algorithm

3. Experimentation
 - Corpus and preprocessing
 - Results

4. Conclusions

The problem: Drug-Drug Interaction Detection
Approximations
A **drug-drug interaction (DDI)** occurs when the effects of a drug are modified by the presence of other drugs.

Its consequences may be very harmful for the patient’s health and could even cause his death.

This gives us an idea of how important is for health-care professionals to keep their databases up-to-date with new DDI.
What are Drug-Drug Interactions?

- A drug-drug interaction (DDI) occurs when the effects of a drug are modified by the presence of other drugs.
- Its consequences may be very harmful for the patient’s health and could even cause his death.
- This gives us an idea of how important is for health-care professionals to keep their databases up-to-date with new DDI.
What are Drug-Drug Interactions?

- Most of the new discoveries in DDI are published in bibliographic databases on health and biomedicine, like MEDLINE:
 - MEDLINE has over 18 million references to journal articles
 - In 2009, over 712,000 articles added.

- This growing amount of information leaves very clear how necessary is to find efficient methods that help health-care professionals to better deal with all this information.
What are Drug-Drug Interactions?

Most of the new discoveries in DDI are published in bibliographic databases on health and biomedicine, like MEDLINE:

- MEDLINE has over 18 million references to journal articles
- In 2009, over 712,000 articles added.

This growing amount of information leaves very clear how necessary is to find efficient methods that help health-care professionals to better deal with all this information.
Outline

1. Introduction
 - The problem: Drug-Drug Interaction Detection
 - Approximations

2. Out Proposal
 - Method Proposed
 - The Algorithm

3. Experimentation
 - Corpus and preprocessing
 - Results

4. Conclusions
In (Segura-Bedmar, 2010) two different techniques for DDI detection are presented:

- A hybrid approach, combining shallow parsing and pattern matching. The patterns used in this technique were described by a pharmacist, and they obtained 48.7% precision, and 25.7% recall.

- An approach based on a supervised machine learning approach, specifically kernel methods, obtaining 55% precision and 84% recall.
Our proposal

- **Objective:** Automatically determining the patterns that identify DDI from a set of documents.
- **Our hypothesis holds that** there must be patterns that we will find repeated if we look thought a large amount of biomedical texts, and those patterns will help to identify new drug drug interactions.
- **The method proposed in this paper** is language and domain independent.
1. Introduction
 - The problem: Drug-Drug Interaction Detection
 - Approximations

2. Out Proposal
 - Method Proposed
 - The Algorithm

3. Experimentation
 - Corpus and preprocessing
 - Results

4. Conclusions
Maximal Frequent Sequences

- A **sequence** is an ordered list of elements, i.e. words.
- The **frequency** of a sequence is the number of times that the sequence appears.
- A sequence will be **\(\beta \)-frequent** if it is included in \(\beta \) sentences.
- A sequence \(R \) is **subsequence** of a sequence \(T \) if all the elements of \(R \) appear in \(T \) in the same order. For example:
 - If \(R = \langle abcde \rangle \) and \(T = \langle bcd \rangle \) then, \(T \) is subsequence of \(R \).
- A **maximal sequence** is a sequence that is not a subsequence of any other.
DDI Detection: A New Approach Based on MFS

Introduction

Method Proposed

Out Proposal

Experimentation

Conclusions

The Algorithm

\[\text{Freq}_{abc} = 4 \]
Introduction
Out Proposal
Experimentation
Conclusions

Method Proposed
The Algorithm

García-Blasco, Danger, Rosso

DDI Detection: A New Approach Based on MFS
Sequences with Freq > 1

García-Blasco, Danger, Rosso

DDI Detection: A New Approach Based on MFS
Maximal Frequent Sequences

Definition

Maximal Frequent Sequences (MFS) will be all the sequences that are frequent and that are not subsequence of any other.
Maximal Sequences with \(\text{Freq} > 1 \)

- \(a \ b \ c \)
- \(a \ b \ c \ d \)
- \(z \ a \ b \ c \)
- \(a \ b \ c \ d \ e \)
In order to make this maximal frequent sequences more flexible, the concept of gap is introduced (Garcia-Hernandez, 2007).

The gap is the maximum distance that is allowed between two words of a MFS. With a gap = 0, the words in the MFS will be adjacent words in the original text.
GAP

a b c

a b c d

z a b c

a b c d e
GAP

a i r b c
a b n o c
z a g b c
a z b g c d e
GAP

a i r b c

a b n o c

z a g b c

a z b g c d e
DDI Detection: A New Approach Based on MFS

Method Proposed
The Algorithm

García-Blasco, Danger, Rosso
Outline

1 Introduction
 - The problem: Drug-Drug Interaction Detection
 - Approximations

2 Out Proposal
 - Method Proposed
 - The Algorithm

3 Experimentation
 - Corpus and preprocessing
 - Results

4 Conclusions
The algorithm presented is based on the *Apriori Algorithm* (Agrawal and Srikant, 1994), but with the difference that our algorithm takes into account the sequentiality of the elements, i.e. words, allowing gaps between them.

The algorithm can be divided into 3 stages:

1. Getting bag of words
2. Finding candidates
3. Merging Patterns
The algorithm has three parameters:

- **minFreq**: minimum number of sentences where the MFS should appear.
- **minLength**: minimum length of the MFS.
- **gap**: maximum distance allowed between two words of the MFS.
The Algorithm - An overview

Input: minFreq, minLength, gap

1. Build a Bag of Words with the frequent words
2. Combinations of length 3 of frequent words
3. For each combination:
 - If size(intersection) < minFreq, discard
4. Permute combinations
5. For each permutation:
 - If #sent with perm in right order < minFreq, discard
6. Grow Patterns to make them Maximal
7. Remove patterns with length < minLength
Outline

1. Introduction
 - The problem: Drug-Drug Interaction Detection
 - Approximations

2. Out Proposal
 - Method Proposed
 - The Algorithm

3. Experimentation
 - Corpus and preprocessing
 - Results

4. Conclusions
The **DrugDDI** corpus (Segura-Bedmar, 2010) is a drug-drug interaction corpus annotated with linguistic information, named entities and drug interactions.

Drugs are tagged in the corpus, according to their type. There are 6 types:

- Clinical drug (clnd)
- Pharmacological Substance (phsu)
- Antibiotic (antb)
- Biologically Active Substance (bacs)
- Chemical viewed structurally (chvs)
- Amino acid, Peptide or Protein (aapp)
The corpus consists of 579 documents from the DrugBank database, with an average of 10.3 sentences and 5.46 interactions per document.

The corpus has been divided into two sets:

- **Training** with 446 documents.
- **Test** with 133 documents.
Three different versions of the corpus were obtained

Normal Original Text

- Acetazolamida may increase the effects of other folic acid antagonists

6Drug Each drug name was substituted by its type

- phsu may increase the effects of other phsu

#Drug# Each drug name was substituted by #drug#

- #drug# may increase the effects of other #drug#
Objective Identify drug drug interactions in biomedical texts using *maximal frequent sequences*.

- **Training Corpus** → **Apply Algorithm** → **MFS extracted**
 - **MFS likelihood > threshold?**
 - no → **MFS that do not define DDI**
 - yes → **MFS that define DDI**
 - **Does the sentence contain at least one of the MFS?**
 - no → **The sentence does not define a DDI**
 - yes → **The sentence defines a DDI**

García-Blasco, Danger, Rosso

DDI Detection: A New Approach Based on MFS
First, the algorithm is used to extract MFS from the training set using the following configurations:

- minLength 4
- minFreq 10, 15, 20
- gap 0, 1, 2

Each experiment was repeated for each one of the 3 versions of the corpus: norm, 6drugs, #drug#.
Next, the **MFS** detected where rated using a new function that we define, **likeliness**, that is the probability of the MFS to describe a DDI. Likeliness is defined as:

\[
likeliness(MFS_i) = \frac{\text{times } MFS_i \text{ identifies DDI}}{\text{times } MFS_i \text{ appears}}
\]
Experiments

Objective Identify drug drug interactions in biomedical texts using *maximal frequent sequences*.

- **Training Corpus** → **Apply Algorithm** → **MFS extracted**
 - **MFS likelihood > threshold?**
 - **no** → **MFS that do not define DDI**
 - **yes** → **MFS that define DDI**
 - **Does the sentence contain at least one of the MFS?**
 - **no** → **The sentence does not define a DDI**
 - **yes** → **The sentence defines a DDI**
Outline

1. Introduction
 - The problem: Drug-Drug Interaction Detection
 - Approximations

2. Out Proposal
 - Method Proposed
 - The Algorithm

3. Experimentation
 - Corpus and preprocessing
 - Results

4. Conclusions
The algorithm has detected maximal frequent sequences that describe drug-drug interaction.
Example (MFS)

(`#drug#`, `may`, `the`, `effects`, `of`, `#drug#`)
Extracted from sentences like:

- Acetazolamide *may increase the effects of* other folic acid antagonists
- Alcohol *may potentiate the side effects of* bromocriptine mesylate
- Dopamine D2 receptor antagonists (e.g., phenothiazines, butyrophenones, risperidone) and isoniazid *may reduce the therapeutic effects of* levodopa
- Concomitant administration of other sympathomimetic agents *may potentiate the undesirable effects of* FORADIL

Using `#drug#`, `minFreq = 10` and `gap = 1`
Examples of the MFS extracted

<table>
<thead>
<tr>
<th>MFS description</th>
<th>Sample</th>
<th>freq</th>
<th>likeliness</th>
</tr>
</thead>
<tbody>
<tr>
<td>With verbs denoting effects</td>
<td>('#{drug#}', 'may', 'increase', 'of')</td>
<td>30</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>('may', 'decrease', 'the', 'of')</td>
<td>21</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>('#{drug#}', 'may', 'enhance', 'the', 'of')</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>('#{drug#}', 'is', 'administered', 'with')</td>
<td>21</td>
<td>0.81</td>
</tr>
<tr>
<td>With 2 or more drugs</td>
<td>('#{drug#}', 'may', 'the', 'effects', '#{drug#}')</td>
<td>13</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>('#{drug#}', 'should', 'not', 'be', 'with', '#{drug#}')</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>('#{drug#}', 'reduce', 'the', 'of', '#{drug#}')</td>
<td>15</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Results

To calculate the performance of the method the measures of precision, recall and F_1-measure are used.

Precision is defined as the number of sentences describing DDI retrieved divided by the total number of sentences retrieved.

Recall is defined as the number of sentences describing DDI retrieved divided by the total number of existing sentences describing DDI.

F_1-measure is the harmonic mean of precision and recall.
The baseline is the one given by tagging all the sentences as DDI.

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>0.40</td>
<td>1</td>
<td>0.28</td>
</tr>
<tr>
<td>norm</td>
<td>0.68</td>
<td>0.41</td>
<td>0.51</td>
</tr>
<tr>
<td>6drugs</td>
<td>0.48</td>
<td>0.93</td>
<td>0.63</td>
</tr>
<tr>
<td>#drug#</td>
<td>0.46</td>
<td>0.95</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Table: Comparison of Results

As the table shows, some of the parameters give a very high recall value (95%).
Conclusions I

- DDIs are described by the researchers using a reduced vocabulary and similar sentences structures are used to describe drug-drug interactions.

- Maximal Frequent Sequences are able to extract repeated patterns and has been proved to be a good method for drug-drug interaction detection.

- The method proposed is domain and language independent, and can be applied in many other tasks, like Protein-Protein or Protein-Drug Interaction detection.

- This method does not require any domain specific knowledge, extracting the patterns directly from a sample corpus.
Thank you.

References III

Sandra García-Blasco.
Extracción de secuencias maximales de una colección de textos.
Final degree project, ETSInf, Universidad Politécnica de Valencia, Spain, December 2009.

Isabel Segura-Bedmar.
Application of Information Extraction techniques to pharmacological domain: Extracting drug-drug interactions.