Can we Quantify Domainhood?

Exploring Measures to Assess Domain-Specificity in Web Corpora

Marina Santini

marina.santini@ri.se

RISE Research Institutes of Sweden

Acknowledgement and Citation

Acknowledgement

This research was supported by **E-care@home**, a "SIDUS - Strong Distributed Research Environment" project, funded by the Swedish Knowledge Foundation. Project websit: <<<u>http://ecareathome.se/</u>>>.

Cite the paper as:

Santini M., Strandqvist W., Nyström M., Alirezai M., Jönsson A. (2018) Can We Quantify Domainhood? Exploring Measures to Assess Domain-Specificity in Web Corpora. In: Elloumi M. et al. (eds) Database and Expert Systems Applications. DEXA 2018. Communications in Computer and Information Science, vol 903. Springer, Cham

DOI https://doi.org/10.1007/978-3-319-99133-7_17

Presented at : TIR 2018: 15th International Workshop on Technologies for Information Retrieval. In conjunction with DEXA 2018. Regensburg, Germany, 4 Sept. 2018.

Outline

- 1. Research questions: evaluating specialized web corpora in terms of "domainhood"
- 2. Case study: a web corpus for eCare
- 3. Methodology: how to measure domainhood

4. Conclusion & Future work

1. Evaluating specialized web corpora in terms of "domainhood"

Introduction and Research Questions

TIR 2018, Regensburg, Germany, 4 Sept. 2018

RISE Research Institutes of Sweden, Division ICT - RISE SICS East, Sweden

Web Corpora

- Web corpora are important
- The evaluation of web corpora is important
- The evaluation of general-purpose web corpora is advanced
- The evaluation of specialized web corpora is less advanced

KI.	
ĈĒ	
JE	

Quantitative Corpus Evaluation

"When will a grammar based on one corpus be valid for another? How much will it cost to port a Natural Language Processing (NLP) application from one domain, with one corpus, to another, with another?"

Adam Kilgarriff (2001) Comparing corpora. Int. J. Corpus Linguist. 6(1), 97–133

Definition: domainhood

- **Domainhood is** the degree of domain representativeness or *domain specificity* of a web corpus.
 - Ex: a high frequency of medical terms is a sign that the corpus is a specialized medical corpus
- The importance of *domain granularity*
 - Coarse domains vs fine-grained domains
 - Lippincott et al. (2011) "while variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, there is a need to develop an awareness of subdomain variation when considering the practical use of language processing applications [...]".

Research Questions: Quantifying *domainhood*

• "is it possible to automatically quantify the *domainhood* of a web corpus regardless its *domain granularity*? If so, how?"

2. Case Study: a Web Corpus for eCare

TIR 2018, Regensburg, Germany, 4 Sept. 2018

RISE Research Institutes of Sweden, Division ICT - RISE SICS East, Sweden

eCare_sv_01

- eCare_sv_01*
 - <u>155 SNOMED CT terms</u> (chronic diseases)

ansiktstics	adhesiv mediaotit	hemicrania continua	kompensatoriskt emfysem
bukangina	aktinomykotiskt mycetom	hyperplastisk gingivit	kongenitalt emfysem
chalcosis	aktinomykotisk madurafot	intermittent dysfagi	kroniskt eksem
fluoros	anal furunkulos	intermittent esotropi	kroniskt stressyndrom
kromoblastomykos	atrofisk faryngit	intermittent exoftalmus	kronisk adenotonsillit
lipoidnefros	atrofisk gastrit	intermittent explosivitet	kronisk andningsinsufficien
lungemfysem	autonom svikt	intermittent strabism	kronisk anemi
mycetom	bronkoskopisk lungvolymreduktion	intermittent testistorsion	kronisk artrit
ozena	claudicatio intermittens	intermittent tortikollis	kronisk artropati
polyserosit	cyklisk esotropi	Jaccouds syndrom	kronisk ascites
postkardiotomisyndrom	cyklisk neutropeni	juvenil psoriasisartrit	kronisk atelektas
Swimmingpooldermatit	cystitis cystica	juvenil spondyloartropati	kronisk beryllios
trumhinneatelektas	Epsteins syndrom	Kartageners syndrom	[]

* Santini M., Jönsson A., Nystrom M. and Alirezai M. (2017) "A Web Corpus for eCare: Collection, Lay Annotation and Learning. First Results". Proceedings of LTA'17, FedCSIS 2017, Prague.

RISE Research Institutes of Sweden, Division ICT - RISE SICS East, Sweden

Slide: 10

3. Methodology: How to Measure Domainhood

Which measures?

TIR 2018, Regensburg, Germany, 4 Sept. 2018

RISE Research Institutes of Sweden, Division ICT - RISE SICS East, Sweden

SUC & eCare_sv_01

Stockholm-Umeå Corpus (SUC) -> reference corpus (1 million words)

eCare_sv_01: domain-specific corpus (approx. 700 000 words)

Metrics

Mann-Withney-Wilcoxon Test
Kendall correlation coefficient (τ)
Kullback–Leibler (KL) divergence
Log-likelihood
Burstiness

Gold Standard

Seeds (example): atrofisk faryngit atrofisk gastrit Gold Standard (example) atrofisk faryngit gastrit

Tokenized gold standard (<u>165 unigrams</u>)

adenotonsillit	atelektas	claudicatio	emfysem	giktartrit
adhesiv	atrofisk	clonorchiasis	endoftalmit	gingivit
aktinomykotisk	autonom	continua	epsteins	glomerulonefrit
aktinomykotiskt	bakterieinfektion	cyklisk	erysipelas	glossit
anal	basalcellscancer	cystica	esotropi	gonokockcervicit
andningsinsufficiens	beryllios	cystit	exoftalmus	gonokockendometrit
anemi	blefarit	cystitis	explosivitet	gonokockprostatit
ansiktstics	bronkiolit	dakryocystit	faryngit	gonokocksalpingit
artrit	bronkit	depression	fluoros	gonokockuretrit
artropati	bronkoskopisk	dermatit	furunkulos	hemicrania
ascites	bukangina	dysfagi	gallstenspankreatit	hepatit
aspirationspneumoni	chalcosis	eksem	gastrit	[]

Slide: 14

Word Frequency Lists

"A word frequency list is a "compact representation of a corpus, lacking much of the information in the corpus but small and easily tractable."

Adam Kilgarriff (2010). Comparable corpora within and across languages, word frequency lists and the KELLY project. In: Proceedings of the 3rd Workshop on Building and Using Comparable Corpora.

Rank	SUC	Freq	eCare	Freq
1	också (also)	2266.12	kronisk (chronic)	4224.16
2	andra (other)	1938.1	behandling (treatment)	4132.86
3	finns $(exist/be)$	1614.37	hos $(at (locative))$	3669.21
4	år (year)	1588.68	patienter (<i>patients</i>)	2741.92

Ranked Word Frequencies: Scatter Plot

SUC ranks with ties (top 1000 relative freq.)

Mann-Withney-Wilcoxon Test: Theory

Non-parametric test:

Using the Mann-Whitney-Wilcoxon Test, we can decide whether the population distributions are identical without assuming them to follow the normal distribution.

If the two distributions are dissimilar at .05 significance level, we can conclude that SUC and eCare come from different populations.

Mann-Withney-Wilcoxon Test: Results

- The null hypothesis is that SUC's word frequency list and eCare_sv_01 word frequency list come from identical populations.
- To test the hypothesis, we apply the *wilcox.test()* [*R* function] to compare the corpora.
- The p-value turns out to be **0.019**, and is less than the .05 significance level, we reject the null hypothesis.
- Conclusion: at .05 significance level, we conclude that SUC and eCare belong to non-identical populations.

Kendall correlation coefficient: Theory

Kendall correlation coefficient (tau) is a non-parametric measure of correlation between two rankings.

tau is a probability value which indicates the difference between 2 rankings.

(We used the R function "cor.test()" with method="kendall" to calculate the test).

Interpretation:

- -1 = strong negative correlation
- 0 = no association
- 1 strong positive correlation

Kendall correlation coefficient: Results

Null hypothesis: the two rankings are identical

(We used the "cor.test()" R function with method="kendall", "two.sided" a to calculate the test.

tau -0.1093077;

the p-value of the test is 0.00000003122 (p-value in R: 3.122e-09) which is less than the significance level p = .05.

We reject the null hypothesis: If the rankings of SUC and eCare's word frequency lists are dissimilar at .05 significance level, we can conclude that the content of eCare is different from SUC.

Kullback–Leibler (KL) Divergence: Theory

(a.k.a. relative entropy)

- KL quantifies how "distant" an estimation of a distribution may be from the true distribution.
- Interpretation: *KL divergence is non-negative and equal to zero if the two distributions are identical*.

Kullback–Leibler (KL) Divergence: Results

- (We do not need a null hypothesis)
- (We used the R function "*KL.empirical()*", (log2), package "entropy" to compute KL divergence).

The KL divergence between SUC and eCare_Sv_01 is **5.80**

RISE Research Institutes of Sweden, Division ICT - RISE SICS East, Sweden

Up to now...

• ... the gold standard was not involved

• It is confirmed that two corpora were largely different, but we do not know whether eCare is representative of the target domain.

Log-Likelihood (LL): Theory

(a.k.a. G2)

A reference corpus is needed.

It is a measure based on a contingency table and compares the expected values in two corpora under observation.

Interpretation: The larger the LL score of a word, the more different its distribution in the two corpora.

A LL score of 3.8415 or higher is significant at the level of <0.05 and a LL score of 10.8276 is significant at the level of <0.001 (Desagulier, 2017).

Log-Likelihood (LL): Results

The intersection between LL scores and the gold standard is 58, i.e. 35.15%.

					Log-Like	lihood valu	ies aga	inst Gold Standard
					Intesection	Jaccard	Dice	Precision@1514,1542
				eCare	58 (35.15%)	0.036	0.069	0.048
[1]	"anemi"	"artrit"	"atrofisk"	"bronkit"	"c	ystit"		"dakryocystit"
[7]	"depression"	"dermatit"	"dysfagi"	"eksem"	"e	mfysem"		"faryngit"
[13]	"fluoros"	"gastrit"	"gingivit"	"glomerul	onefrit" "	hepatit"		"hyperglykemi"
[19]	"hyponatremi"	"intermittent"	"juvenil"	"kolecyst	it" "	kolit"		"konjunktivit"
[25]	"kontaktdermatit"	"kronisk"	"kroniskt"	"kutan"	"	laryngit		"lungsjukdom"
[31]	"mastit"	"mastocytos"	"missfall"	"neutrope	eni" "	njursjuk	dom"	"njursvikt"
[37]	"orkit"	"osteomyelit"	"pankreatit"	"parodont	it" "	paronyki'		"perikardit"
[43]	"pneumoni"	"prostatit"	"recidiverande"	"rinit"	"	silikos"		"sjukdom"
[49]	"syndrom"	"synovit"	"tics"	"tonsilli	.t" "	trakeit"		"tuberkulos"
[55]	"tyreoidit"	"upprepade"	"urtikaria"	"vulvit"	P			

Burstiness: Theory

Burstiness helps identify words that are frequent in certain documents, but that are unevenly distributed in the corpus as a whole.

"Burstiness is like the mean but it ignores documents with no intances" (Church and Gale, 1995)

 $B_w = \frac{\sum_{d_i \in D} r f_{w_{d_i}}}{df_w}$

Irvine, A., & Callison-Burch, C. A (2017) Comprehensive Analysis of Bilingual Lexicon Induction. *Computational Linguistics*, *43*(2).

Implementation in R:

Burstiness: Results

Comparison between *bursty* words and the chronic diseases' gold standard

	Intersection	Jaccard	Dice	Precision@2105
SUC	1	0.000440	0.00088	0.00001
eCare	90	0.04128	0.07929	0.03590

RISE Research Institutes of Sweden, Division ICT	- RISE SICS East, Sweden
--	--------------------------

andningsinsufficiens	hemicrania	njursvikt
anemi	hepatit	obliterativ
artrit	hyperglykemi	orkit
artropati	hyperkapni	osteomyelit
atelektas	hypernatremi	ozena
atrofisk	hyponatremi	pankreatit
basalcellscancer	infektionssjukdom	paraplegi
beryllios	intermittent	parodontit
blefarit	jaccouds	paronyki
bronkiolit	juvenil,	perikardit
clonorchiasis	kammartakykardi	polyserosit
continua	kartageners	postkardiotomisyndrom
cystica	kolecystit	prostatit
cystit	kolit	psoriasisartrit
cystitis	konjunktivit	rhinitis
dakryocystit	kontaktdermatit	rinit
depression	kronisk	schizofreni
dermatit	krupp	schnitzlers
dysfagi	laryngotrakeit	sicca
eksem,	lipoidnefros	silikos
emfysem	lungembolism	spondyloartropati
exoftalmus	lungemfysem	syndrom
explosivitet	mastit	synovit
faryngit	mastocytos	testistorsion
fluoros	mastoidit	tics
gastrit	meningokockemi	trakeit
giktartrit	metrit	trakeobronkit
gingivit	missfall	tyreoidit
glomerulonefrit	mycetom	urtikaria
glossit	neutropeni	vulvit

Discussion

- Both statistical tests confirm that the two corpora are weakly correlated. No gold standard involved, but based on a Null Hypothesis
- KL divergence returns a large value that indicate that the two corpora are distant from each other. No gold standard involved.
- LL scores needs a reference corpus. They single out words with different distributions in two corpora, results are compared against a gold standard, but it is not clear to which corpus the the words that are singled out belong to.
- Burstiness can be computed without a reference corpus. Results can be measured against a gold standard. Provides promising results.

Profiling Bursty Words: Open Issues

- Less empirical cut-off points.
- Is burstiness affected by the size of corpus?
- Evaluation metrics (overlap coefficients and precision@) are not so indicative. Intersection gives a better idea of the quantification.
- The best way to test the design of gold standards (=target domains) for this kind of experiments.

4. Conclusion and Future Work

What next?

TIR 2018, Regensburg, Germany, 4 Sept. 2018

RISE Research Institutes of Sweden, Division ICT - RISE SICS East, Sweden

Conclusion

Mann-Withney-Wilcoxon Test: hypothesis testing on distributions

Kendall correlation coefficient: hypothesis testing on rank correlation

Kullback–Leibler (KL) divergence: requires a reference corpus, cannot be tested on a gold standard

Log-likelihood: requires a reference corpus, can be tested on a gold standard

Burstiness: does not require a reference corpus and can be tested on a gold standard

R	١.
S	Ë

Future Work

- Implementation of additional burstiness formulas
- Inclusion of multi-words in the frequency lists
- Application of burstiness for domainhood on larger corpora and other languages
- Investigating the ideal design of a gold standard for domainhood detection

Thanks for your attention !

