TraininG towards a society of data-saVvy inforMation prOfessionals to enable open leadership INnovation



www.moving-project.eu



# A Case Study of Closed-Domain Response Suggestion with Limited Training Data

Lukas Galke<sup>1</sup>, **Gunnar Gerstenkorn<sup>2</sup>** and Ansgar Scherp<sup>3</sup> ZBW – Leibniz Information Centre for Economics<sup>1 2 3</sup> Kiel University<sup>1</sup>, Potsdam University<sup>2</sup>, Sterling University<sup>3</sup>

September 4th, 2018, 15th International Workshop on Technologies for Information Retrieval, September 3rd - 6th, 29th International Conference on Database and Expert Systems Applications, Regensburg, Germany.

www.moving-project.eu

### • Problem:

- The Leibniz Information Center has a chat assistant for searching literature
- The staff and domain experts receive increasingly more requests
- Many of the questions are repeating

### • Solution:

• Suggest appropriate responses for a given request

#### • Patron Request:

"How can i buy an article."

### • Library Response:

- "Hello and welcome to the EconDesk chat."
- "Let me take a look at your question. One moment."
- "Which article do you mean ?"

### • Chances for response suggestion:

- Closed domain
- Looking for a full answer, not necessarily Natural Language Understanding

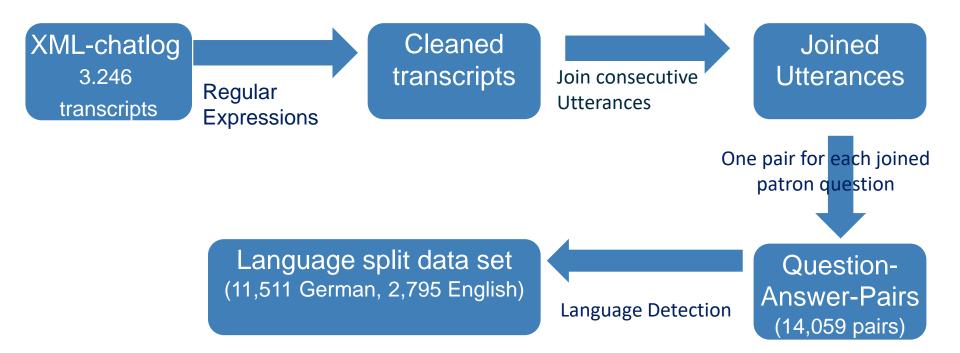
### • Limitations for response Suggestion:

- Very little data
- Non-labeled, non-enhanced data

### 1. Retrieval

- Baseline: TF-IDF variants
- KNN
- Word Centroid Distances

#### 2. Representation Learning


 Feedforward NN to learn scoring function for good responses

#### 3.Conditioned Generation

 Sequence to Sequence: neural word by word generation from input

### **Preprocessing Pipeline**

M S VING www.moving-project.eu



## **Joining Consecutive Utterances**

<PatronIncident>...

<LibraryIncident> ...

<PatronIncident> Am besten wäre eine Tabellarische Übersicht der Organisationen, ähnlich der John Hopkins Studie von 97.

<LibraryIncident> Wissen Sie welches die Quelle diese Studie war? Oder wurden die Zahlen von den Autoren selbst erhoben?

<LibraryIncident> Ich suche jetzt einmal mit Deutsch\* Nonprofit-Organisation\*, die Sterne kürzen die Begriffe ab, so dass alle möglichen Endungen gefunden werden können.

<PatronIncident>...

<PatronIncident> Am besten wäre eine Tabellarische Übersicht der Organisationen, ähnlich der John Hopkins Studie von 97.

<LibraryIncident> Wissen Sie welches die Quelle diese Studie war? Oder wurden die Zahlen von den Autoren selbst erhoben? Ich suche jetzt einmal mit Deutsch\* Nonprofit-Organisation\*, die Sterne kürzen die Begriffe ab, so dass alle möglichen Endungen gefunden werden können.

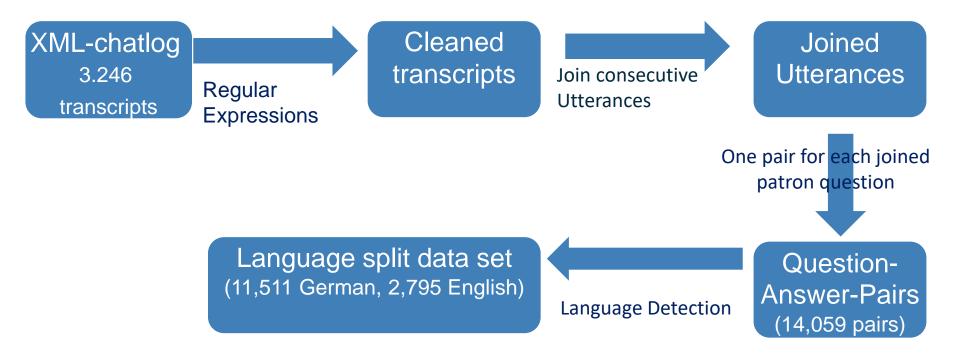
### **Forming Question-Answer-Pair**

<PatronIncident>...

<LibraryIncident> ...

<PatronIncident> Am besten wäre eine Tabellarische Übersicht der Organisationen, ähnlich der John Hopkins Studie von 97.

<LibraryIncident> Wissen Sie welches die Quelle diese Studie war? Oder wurden die Zahlen von den Autoren selbst erhoben?


<LibraryIncident> Ich suche jetzt einmal mit Deutsch\* Nonprofit-Organisation\*, die Sterne kürzen die Begriffe ab, so dass alle möglichen Endungen gefunden werden können.

<PatronIncident>...

<PatronIncident> Am besten wäre eine Tabellarische Übersicht der Organisationen, ähnlich der John Hopkins Studie von 97.

<LibraryIncident> Wissen Sie welches die Quelle diese Studie war? Oder wurden die Zahlen von den Autoren selbst erhoben? Ich suche jetzt einmal mit Deutsch\* Nonprofit-Organisation\*, die Sterne kürzen die Begriffe ab, so dass alle möglichen Endungen gefunden werden können.

### **Preprocessing Pipeline**



| Data                               | Min    | Q25 | Q50 | Q75 | Max | Mean                                         | SD |
|------------------------------------|--------|-----|-----|-----|-----|----------------------------------------------|----|
| English sources<br>English targets | 1<br>1 |     |     |     |     | $\begin{array}{c} 14.19\\ 31.34 \end{array}$ |    |
| German sources<br>German targets   |        |     |     |     |     | $13.99 \\ 24.53$                             |    |

Number of word tokens per utterance after joining

- **TF-IDF (term frequency inverse document frequency)**
- WCD (word centroid distance)
  - German word vectors from *fastText* trained on *Common Crawl* and *Wikipedia*
  - English word vectors from Word2Vec trained on Google News
- Similarity Function: cosine similarity

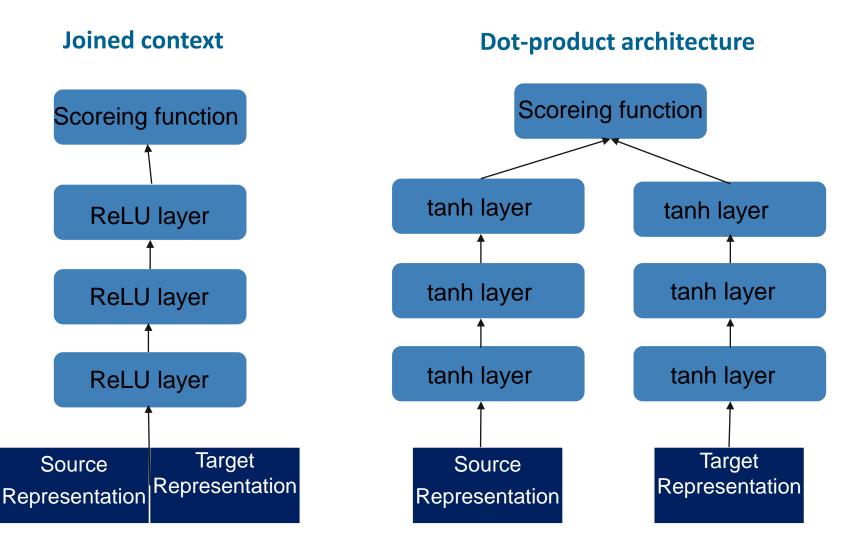


- **TF-IDF (term frequency inverse document frequency)**
- WCD (word centroid distance)
  - German word vectors from *fastText* trained on *Common Crawl* and *Wikipedia*
  - English word vectors from Word2Vec trained on Google News
- Apply prefiltering (M-): allowing only suggestions with min 1 word from query improves
  - performance
  - metric



- Retrieve k nearest requests with cosine similarity
- Let the respective responses cast a vote, weighted by similarity of the requests
- Return voted response
- k = {1,3,5,7}

- Produce a score, given word n-grams of the question and the response
- Idea:
  - Learn from word embeddings of question and either positive or negative examples the score they produce
  - Optimize for a correct ranking


### **Feature representations**

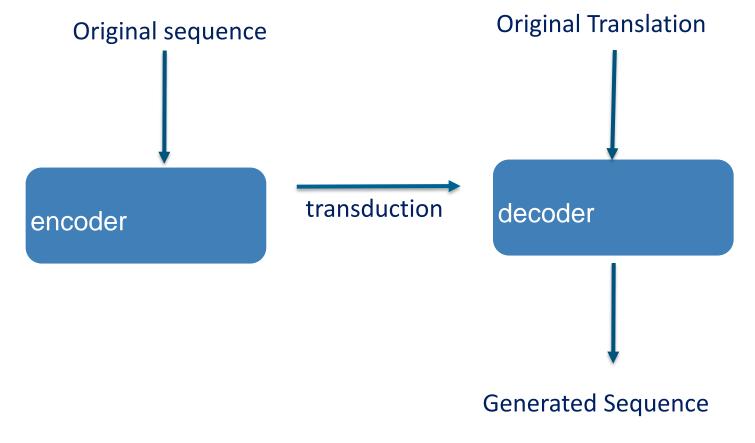
- Joint
  - bag-of-ngram representations of the question and the response are concatenated
  - fed to three hidden layers with Rectified Linear Unit (ReLU) activations and a final layer outputs the score

### Dotproduct

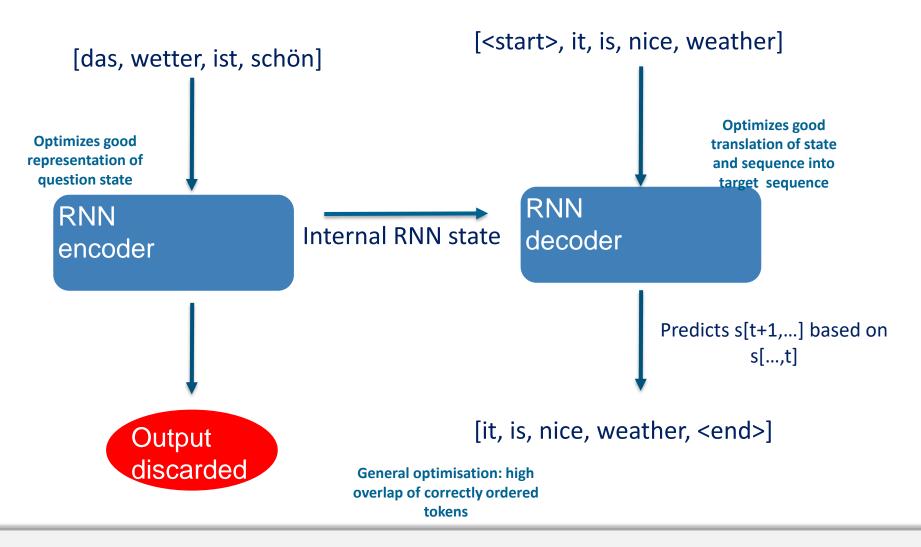
- the questions and responses are separately encoded into vector representations
- using cosine similarity for scoring
- three hidden layers with Tanh activations

M SVING www.moving-project.eu

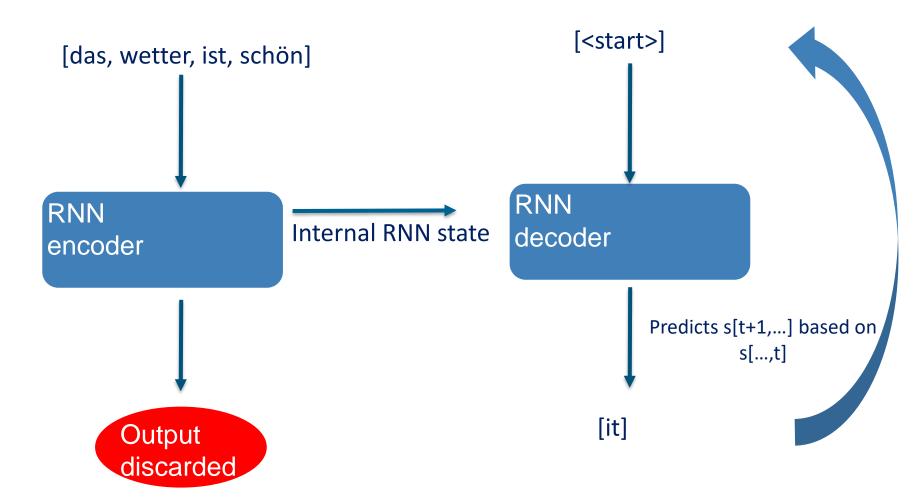



Simplified from Henderson etal. 2017

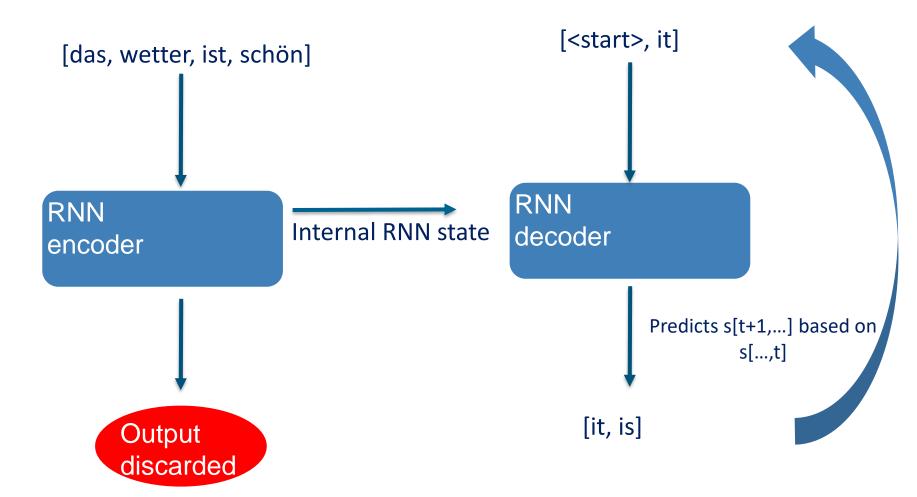
### Neural Network


- Soft-margin loss as objective function to rank against negative samples
- Unigrams and bigrams as initial representation
- Hidden layers size of 100, dropout of 0.2 on each
- Trained for 50 epochs with Adam optimizer using an initial learning rate of 0.001
- One to five negative samples

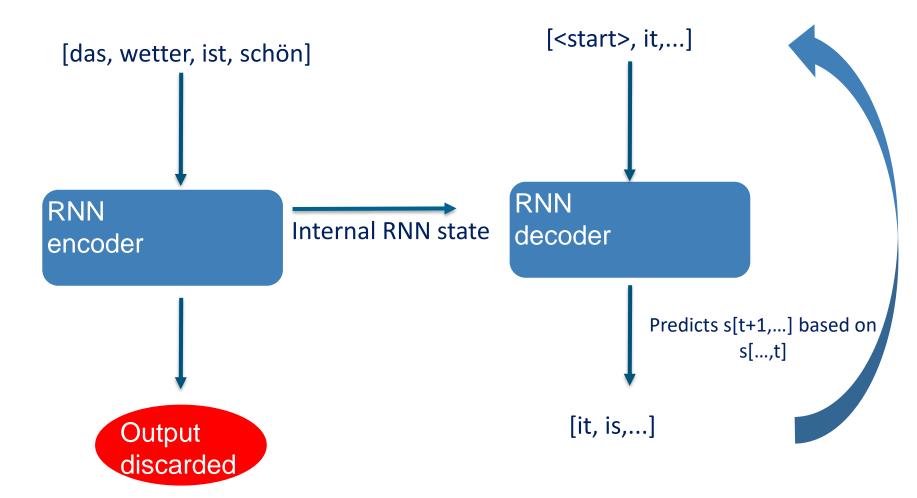
• Negative sampling


- M S VING www.moving-project.eu
- Idea: for a specific sequence of word generate a respective sequence
- Also called: encoder-decoder sequence to sequence models

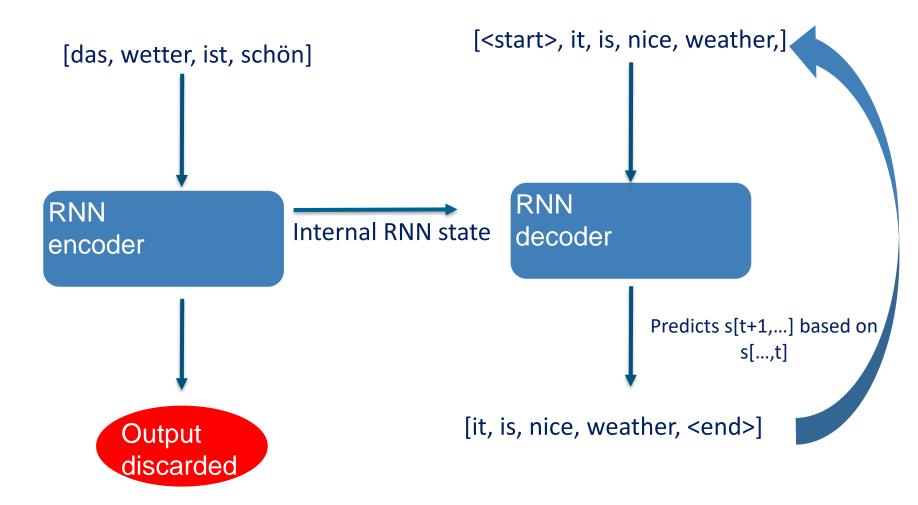



• Training:




• Prediction:




• Prediction:

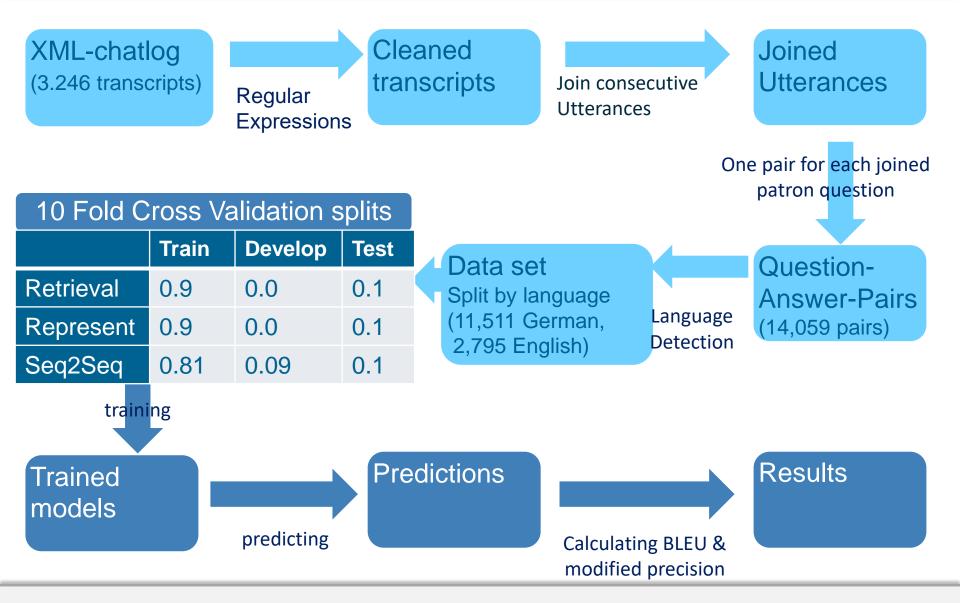


• Prediction:



• Prediction:




### Hyperparameters from tensorflow tutorial

- 2 hidden layers, 128 hidden units each
- All had a dropout probability of 0.2
- Learning rate: 1
- Vocabulary generated from training data

### **Training Process**

MOVING

www.moving-project.eu



# **Evaluation Metrics: BLEU**

- Modified n-gram precision:
  - Counting the shared n-grams between predicted and actual response with the upper bound of counts in the actual response
  - Then dividing by ne number of n-grams
- Bilingual evaluation understudy (BLEU)
  - Uses modified n-gram precision against several references
  - Weights modified precision
  - Applies length penalties
- We use a NLTK implementation with neighbour averageing smoothing

#### • Patron Request:

• "How can i buy an article."

#### • Library Response:

"Hello and welcome to the EconDesk chat . Let me take a look at your question .
 One moment . Which article do you mean ?"

#### • Joint Representation Suggestion:

 "Hello and welcome to the chat. Let me take a look at your question. One moment . Which article to you like to reed?"

#### • Seq2Seq Suggestion:

• Hello and welcome to the chat . Let me take a look at your question. One moment.

#### • **TF-IDF Suggestion:**

• "Yes"

- Patron Request:
  - "what exactly do I have to type in ? I there a filter just for articles or a filter only for J`s ?"
- Library Response:
  - "I think it is easier , if i forward both questions to a subject librarian ."
- Joint Representation Suggestion:
  - "Thank you for your translation . When you can search in our database EconBiz for your topic please click `` Open Access material only '' When you get the results please click at the left side under `` Type of Publication '' the button `` article '' Is that helping you ?"
- Seq2Seq Suggestion:
  - "Yes , your library can do that . Payment is by IFLA vouchers ."
- TF-IDF Suggestion:
  - "Do you mean the book with the bookshelf B 391758, published 2009? Is the ``
    ZBW view '' on at EconBiz ? You find it under the blue line at the top of the EconBiz
    side. There have to stand `` Leave ZBW view ''. Than you can see the `` reserve '' Button."

### Results

| German Data (1.151 test set pairs) |         |       |       |       |  |  |  |  |
|------------------------------------|---------|-------|-------|-------|--|--|--|--|
| Model                              | p1      | p2    | p3    | BLEU  |  |  |  |  |
| Traditional retrieval              |         |       |       |       |  |  |  |  |
| M-TF-IDF                           | 26.73   | 17.45 | 15.82 | 23.02 |  |  |  |  |
| M-TF                               | 27.19   | 17.79 | 16.09 | 23.24 |  |  |  |  |
| TF-IDF                             | 26.77   | 17.51 | 15.89 | 23.04 |  |  |  |  |
| $\mathrm{TF}$                      | 27.05   | 17.64 | 15.98 | 23.12 |  |  |  |  |
| Retrieval with KNN                 |         |       |       |       |  |  |  |  |
| M-WCD-IDF                          | 26.95   | 17.41 | 15.78 | 23.44 |  |  |  |  |
| M-WCD                              | 27.05   | 17.53 | 15.89 | 23.42 |  |  |  |  |
| WCD-IDF                            | 27.15   | 17.49 | 15.79 | 23.34 |  |  |  |  |
| WCD                                | 27.04   | 17.36 | 15.73 | 23.25 |  |  |  |  |
| Retrieval with word vectors        |         |       |       |       |  |  |  |  |
| 1NN                                | 26.84   | 17.38 | 15.78 | 23.46 |  |  |  |  |
| 3NN                                | 26.86   | 17.56 | 15.93 | 23.19 |  |  |  |  |
| 5NN                                | 26.72   | 17.54 | 15.93 | 23.21 |  |  |  |  |
| 7NN                                | 26.83   | 17.58 | 15.96 | 23.09 |  |  |  |  |
| Representatio                      | n learn | ing   |       |       |  |  |  |  |
| dotproduct                         | 12.35   | 01.32 | 00.44 | 7.59  |  |  |  |  |
| joint                              | 25.84   | 14.46 | 12.66 | 18.26 |  |  |  |  |
| Conditioned-generation             |         |       |       |       |  |  |  |  |
| seq2seq                            | 14.80   | 06.23 | 03.93 | 4.10  |  |  |  |  |

#### English Data (279 test set pairs)

| model                       | p1           | p2    | p3    | BLEU  |  |  |  |  |
|-----------------------------|--------------|-------|-------|-------|--|--|--|--|
| Traditional retrieval       |              |       |       |       |  |  |  |  |
| $\mathrm{TF}$               | 26.61        | 14.62 | 12.68 | 18.01 |  |  |  |  |
| TF-IDF                      | 26.02        | 14.35 | 12.60 | 17.59 |  |  |  |  |
| M-TF                        | 26.84        | 14.79 | 12.77 | 17.90 |  |  |  |  |
| M-TF-IDF                    | 26.06        | 14.29 | 12.48 | 17.53 |  |  |  |  |
| Retrieval with KNN          |              |       |       |       |  |  |  |  |
| 1-NN                        | 26.00        | 14.30 | 12.52 | 17.63 |  |  |  |  |
| 3-NN                        | 25.97        | 14.37 | 12.63 | 17.52 |  |  |  |  |
| 5-NN                        | 25.76        | 14.20 | 12.54 | 17.54 |  |  |  |  |
| 7-NN                        | 25.51        | 14.21 | 12.56 | 17.78 |  |  |  |  |
| Retrieval with word vectors |              |       |       |       |  |  |  |  |
| WCD                         | 26.01        | 13.96 | 12.12 | 17.35 |  |  |  |  |
| WCD-IDF                     | 26.35        | 14.31 | 12.44 | 17.54 |  |  |  |  |
| M-WCD                       | 25.68        | 13.94 | 12.15 | 17.32 |  |  |  |  |
| M-WCD-IDF                   | 26.16        | 14.24 | 12.38 | 17.62 |  |  |  |  |
| Representation learning     |              |       |       |       |  |  |  |  |
| Dotproduct-n5               | 12.95        | 00.76 | 00.17 | 6.61  |  |  |  |  |
| Joint-n5                    | <b>29.86</b> | 11.83 | 09.78 | 10.71 |  |  |  |  |
| Conditioned-generation      |              |       |       |       |  |  |  |  |
| seq2seq                     | 17.78        | 08.69 | 06.92 | 4.67  |  |  |  |  |

#### Averaged over a 10 fold cross validation

- Retrieval >= tuned joint representational
- tuned joint representational >> conditioned generation
- conditioned generation >= dotproduct representational model
- Limited data set size
  - Parameter-learning approaches likely lack training data
  - Our RNN sequence-to-sequence architecture is underexplored
- Missing context information
  - Preexperiments showed that complete contexts resulted in loss of the immediate context and worse results
- BLEU Metric
  - targeted at translations with *several* human translations or responses

# **Project consortium and funding agency**

www.moving-project.eu



MOVING is funded by the EU Horizon 2020 Programme under the project number INSO-4-2015: 693092

Thank you for your attention!

Any questions?

### References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.: Tensorflow: Large-scalemachine learning on heterogeneous distributed systems. CoRR abs/1603.04467 (2016)

2. Al-Rfou, R., Pickett, M., Snaider, J., Sung, Y., Strope, B., Kurzweil, R.: Conversational contextual cues: The case of personalization and history for response ranking. CoRR abs/1606.00372 (2016)

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473 (2014)

4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. TACL 5, 135–146 (2017)

5. Chen, B., Cherry, C.: A systematic comparison of smoothing techniques for sentence-level BLEU. In: WMT@ACL. The Association for Computer Linguistics (2014)

6. Galke, L., Saleh, A., Scherp, A.: Word embeddings for practical information retrieval In: GI-Jahrestagung. LNI, vol. P-275. GI (2017)

7. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018) (2018)

8. Henderson, M., Al-Rfou, R., Strope, B., Sung, Y., Lukács, L., Guo, R., Kumar, S., Miklos, B., Kurzweil, R.: Efficient natural language response suggestion for smart reply. CoRR abs/1705.00652 (2017)

9. Huang, P., He, X., Gao, J., Deng, L., Acero, A., Heck, L.P.: Learning deep structured semantic models for web search using clickthrough data. In: CIKM. ACM (2013)

10. Kannan, A., Kurach, K., Ravi, S., Kaufmann, T., Tomkins, A., Miklos, B., Corrado, G., Lukács, L., Ganea, M., Young, P., Ramavajjala, V.: Smart reply: Automated response suggestion for email. In: KDD. ACM (2016)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014)

12. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to document distances. In: ICML. JMLR Workshop and Conference Proceedings, vol. 37. JMLR.org (2015)

## References

13. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval. Cambridge University Press (2008)

14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS (2013)

15. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. ACL-200: 40th Annual meeting of the Association for Computational Linguistics (2002)

16. Ritter, A., Cherry, C., Dolan, W.B.: Data-driven response generation in social media. In: EMNLP. ACL (2011)

- 17. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24(5) (1988)
- 18. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15(1) (2014)
- 19. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS (2014)
- 20. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: NIPS (2017)
- 21. Vinyals, O., Le, Q.V.: A neural conversational model. CoRR abs/1506.05869 (2015)
- 22. Wu, L., Fisch, A., Chopra, S., Adams, K., Bordes, A., Weston, J.: Starspace: Embed all the things! CoRR abs/1709.03856 (2017)
- 23. Wu, Y., Wu, W., Yang, D., Xu, C., Li, Z., Zhou, M.: Neural response generation with dynamic vocabularies. CoRR abs/1711.11191 (2017)
- 24. Xu, Z., Liu, B., Wang, B., Sun, C., Wang, X., Wang, Z., Qi, C.: Neural response generation via GAN with an approximate embedding layer. In: EMNLP. Association for Computational Linguistics (2017)

### • Patron Request:

• "Yes it is published in the journal of finance . I will be very thankful if u find a free version ."

### Librarian Response:

"I am sorry. It is available through JSTOR - a relatively cheap database that is available in many libraries. Is there really no single library in your area? There is no free version. However: This paper is from 1975. Maybe you want to search for other relevant literature that is more up to date? Or do you only need this one?"

# **Example Suggestions: Mid Conversation**

M 🚯 V I N G

- Patron Request:
- "Yes it is published in the journal of finance . I will be very thankful if u find a free version ."
- K(=7)NN Suggestion:
  - "Do you have access to a library ?"
- Joint Representation Suggestion:
  - "Ok . The only way I see is a ) international library loan , b ) document delivery service subito c ) pubilshers websites d ) Visit a big library in your area that has the articles . I 'm afraid copyright will allow us to send printed copies only in most of the cases . That depends on the single journal an their allowances ."
- TF-IDF Suggestion:
  - "Please be patient , I quickly check"
- Seq2Seq Suggestion:
  - "Ok . I think it helps . Happy to assist you . Do you have other questions ?"

## Example Seq2Seq generated Suggestions

www.moving-project.eu

MGVING

#### German:

- "Es ist ein Hinweis . Danke für den Hinweis . Dann können Sie den Chat erst einmal schließen . Vielen Dank für den Chat und auf Wiedersehen ."
- "Soll ich Ihnen sonst noch etwas für die Recherche helfen ?"
- "Recherchieren Sie , in welchem Zusammenhang Sie diese Zeitschrift haben ?"
- "Ich bin mir nicht sicher, ob ich das richtige Dokument nicht gefunden habe . Ich kann Ihnen aber nicht sagen, wie ich herausfinde."

### English:

- "Okay , that is an article in a book . Please ask in your local library for the journal youo need the journal in its stock . In which country are you interested in ?"
- "Here is a library near you has access to a library which has access to the journal , you could order the article for you from an other library."