Global and Local Feature Learning for Ego-Network Analysis

Fatemeh Salehi Rizi Michael Granitzer and Konstantin Ziegler

TIR Workshop

29 August 2017

- Graph Embedding
- Ego-Network Analysis
- 2 Contributions
- State-of-the-art
 - Approach
- 5 Experimental Results
- 6 Future Work

Introduction

- Graph Embedding
- Ego-Network Analysis
- 2 Contributions
- 3 State-of-the-art
- 4 Approach
- 5 Experimental Results
- 6 Future Work
- 7 References

Graph Embedding

Given graph G with a set of nodes $V=\{v_1,\ldots,v_n\}$ $f:v_i\mapsto y_i\in\mathbb{R}^d\text{, }d\ll |V|$

- Methods based on eigen-decomposition of the Adjacency Matrix
- Methods inspired by NLP and Deep Learning

Graph Embedding

Given graph G with a set of nodes $V = \{v_1, \dots, v_n\}$ $f: v_i \mapsto y_i \in \mathbb{R}^d$, $d \ll |V|$

- Methods based on eigen-decomposition of the Adjacency Matrix
- Methods inspired by NLP and Deep Learning

What is an Ego Network?

• Social graphs have been divided to several subgraphs (ego-networks) [1]

- extracting features for nodes
- detecting distinct neighborhood patterns
- study social relationships
- Ego-network [1]
 - ego
 - alters
 - social circles

An ego-network with four social circles

(Т	IR	W	orks	ho	o)
<u>ر</u>					_ /

University of Passau

Local Neighborhood Analysis

• Neighborhood around each ego has a different pattern [2]

Local Neighborhood Analysis

• Neighborhood around each ego has a different pattern [2]

- Finding a vector representation for each ego-network
- Social circle detection and prediction

(TIR Workshop)

Social Circle Prediction

• Predicting the social circle for a new added alter to the ego-network

- Graph Embedding
- Ego-Network Analysis

2 Contributions

- 3 State-of-the-art
- 4) Approach
- 5 Experimental Results
- 6 Future Work

- We introduce local vector representations for egos to capture neighborhood structures
- We apply local vectors to the circle prediction problem
- We replace global representations by local to improve the performance

- Graph Embedding
- Ego-Network Analysis
- 2 Contributions

3 State-of-the-art

- Approach
- 5 Experimental Results
- 6 Future Work

- DeepWalk [3]
 - walks globally over the graph and samples sequences of nodes
 - treats all these sequences as an artificial corpus
 - feeds the corpus to a Skip-Gram based Word2Vec [5]

$v_{71} \rightarrow$	$v_{24} \rightarrow$	$v_5 \rightarrow$	$v_1 ightarrow$	$v_{17} \rightarrow$	$v_{80} \rightarrow$
$v_{92} \rightarrow$	$v_2 \rightarrow$	$v_3 \rightarrow$	$v_1 ightarrow$	$v_{12} \rightarrow$	$v_{73} \rightarrow$
$v_{37} \rightarrow$	$v_{34} \rightarrow$	$v_9 \rightarrow$	$v_1 ightarrow$	$v_{10} \rightarrow$	$v_{94} \rightarrow$
$v_{73} \rightarrow$	$v_{64} \rightarrow$	$v_5 \rightarrow$	$v_1 ightarrow$	$v_{12} \rightarrow$	$v_1 \rightarrow$
$v_{75} \rightarrow$	$v_{14} \rightarrow$	$v_6 \rightarrow$	$v_1 ightarrow$	$v_{13} \rightarrow$	$v_{61} \rightarrow$

- DeepWalk [3]
 - walks globally over the graph and samples sequences of nodes
 - treats all these sequences as an artificial corpus
 - feeds the corpus to a Skip-Gram based Word2Vec [5]
 - Word2Vec: Having the sequence of words $\{w_1, w_2, \ldots, w_{t-1}, w_t, \ldots, w_{t-1}, w_{t-1}, w_t, \ldots, w_{t-1}, \dots, w_{t-1}, \dots,$

 $w_{t+1}\ldots,w_n$ }, language models aims to maximize $P(w_t|w_1,\ldots,w_{t-1})$.

- DeepWalk [3]
 - walks globally over the graph and samples sequences of nodes
 - treats all these sequences as an artificial corpus
 - feeds the corpus to a Skip-Gram based Word2Vec [5]
 - Word2Vec: Having the sequence of words $\{w_1, w_2, \ldots, w_{t-1}, w_t, \ldots, w_{t-1}, \dots, w_{$ w_{t+1}, \ldots, w_n , language models aims to maximize $P(w_t | w_1, \ldots, w_{t-1})$.
 - given sequence of nodes $\{v_1, v_2, \ldots, v_{t-1}, v_t, v_{t+1}, \ldots, v_n\}$ it maximizes: $\sum_{t=1}^{n} \log Pr(v_t | v_{t+c}, \dots, v_{t_1}, v_{t+1}, \dots, v_{t-c})$
 - glo: $V \to \mathbb{R}^d$

Zachary's karate club embedding [2]

	on i
(THE FORMATIC	<u> </u>

University of Passau

- node2vec [4]
 - similar to DeepWalk with two additional parameters
 - hyper-parameters $p \in \mathbb{R}^+$ and $q \in \mathbb{R}^+$ control random walks
 - q > 1 and $p < \min(q, 1)$ walk locally (BFS)
 - p > 1 and $q < \min(q, 1)$) walk explorative (DFS)

- node2vec [4]
 - similar to DeepWalk with two additional parameters
 - hyper-parameters $p \in \mathbb{R}^+$ and $q \in \mathbb{R}^+$ control random walks
 - q > 1 and $p < \min(q, 1)$ walk locally (BFS)
 - p > 1 and $q < \min(q, 1)$) walk explorative (DFS)

• Even the local walk can exceed the ego-network

Social Circle Prediction by McAuley et al. [1]

ALGORITHM 2: Update memberships node x and circle k.

Data: node x whose membership to circle C_k is to be updated Result: updated membership for node x initialize $\hat{\ell}_{*}^{k}(0) := 0, \, \ell_{*}^{k}(1) := \hat{0};$ construct a dummy node x_0 with the communities and features of x but with $x \notin C_k$; construct a dummy node x_1 with the communities and features of x but with $x \in C_h$: **for** $(c, f) \in dom(types)$ **do** // c = community string, f = feature string n := types(c, f): // n = number of nodes of this type if $S(x) = c \land Q(x) = f$ then // avoid including a self-loop on x n := n - 1: end construct a dummy node v with community memberships c and features f: // first compute probabilities assuming all pairs (x, y) are non-edges $\ell_{-}^{k}(0) := \ell_{-}^{k}(0) + n \log p((x_{0}, v) \notin E);$ $\ell_{-}^{k}(1) := \ell_{-}^{k}(1) + n \log p((x_{1}, v) \notin E);$ end for $(x, y) \in E$ do // correct for edges incident on x $\ell_{*}^{k}(0) := \ell_{*}^{k}(0) - \log p((x_{0}, y) \notin E) + \log p((x_{0}, y) \in E);$ $\ell_{x}^{\tilde{k}}(1) := \ell_{x}^{\tilde{k}}(1) - \log p((x_{1}, y) \notin E) + \log p((x_{1}, y) \in E);$ end // update membership to circle k tvpes(S(x), Q(x)) := tvpes(S(x), Q(x)) - 1; $z \leftarrow \mathcal{U}(0, 1)$: $1 - \sigma_{x,y} =$ if $z < \exp \{T(\ell_{*}^{k}(1) - \ell_{*}^{k}(0))\}$ then S(x)[k] := 1else |S(x)[k] := 0end types(S(x), Q(x)) := types(S(x), Q(x)) + 1;

A Probabilistic Classifier

Time Complexity
$$O(n^3)$$

- Graph Embedding
- Ego-Network Analysis
- 2 Contributions
- 3 State-of-the-art

- Experimental Results
- 6 Future Work

Local Representations using Paragraph Vector

- walking locally over an ego-network to generate sequence of nodes
- treating this sequence as an artificial paragraph
- applying Paragraph Vector [6] to learn vector representation

Local Representations using Paragraph Vector

- walking locally over an ego-network to generate sequence of nodes
- treating this sequence as an artificial paragraph
- applying Paragraph Vector [6] to learn vector representation
- given an artificial paragraph v₁, v₂, v₃, ..., v_t, ..., v_l for ego u_i, it maximizes the average log probability:

$$\sum_{t=1}^{l} \log Pr(v_t|u_i, v_{t+c}, \dots, v_{t-c})$$

• loc: $U \to \mathbb{R}^d$

(TIR Workshop)

Social Circle Prediction

- Setting
 - social network G=(V,E) with egos U and alters $V\setminus U$
 - profile information $(v. \text{feat}_1, \ldots, v. \text{feat}_f)$ for every $v \in V$

Ur

- Input/Output
 - predict social circles $c \colon V \setminus U \to \{C_1, \dots, C_k\}^*$ given several samples
- Approach
 - Feature selection (users' profile information, graph embeddings)
 - A Neural Network Classifier

Incorporating Profile Information

• Similarity of ego's and alter's profile as a feature

- ego's profile feature: $u. \text{ feat}_1, \ldots, u. \text{ feat}_f$
- alter's profile feature: $v. feat_1, \ldots, v. feat_f$
- $sim(u, v) = (b_1, ..., b_f)$, where

$$b_i = \begin{cases} 1 & \text{if } u. \text{ feat}_i = v. \text{ feat}_i, \\ 0 & \text{otherwise.} \end{cases}$$

(1)

Social Circle Prediction

- A feed-forward neural network classifier
- Predicting social circle for alter v which belongs to ego-network of ego u
- Input layer:
 - locglo: $loc(u) \oplus glo(v)$
 - gloglo: $glo(u) \oplus glo(v)$
 - locgloglo: $loc(u) \oplus glo(u) \oplus glo(v)$
 - locglosim: $loc(u) \oplus glo(v \oplus sim(u, v))$
 - gloglosim: $glo(u) \oplus glo(v) \oplus sim(u, v)$
 - locgloglosim: $loc(u) \oplus glo(u) \oplus glo(v) \oplus sim(u, v)$
- Hidden layer: a single dense layer with ReLU activation units
- Output layer: softmax units (same number as circles)
- Ground-truth
 - alter's circle label (family, colleagues, etc)

University of Passau

- Graph Embedding
- Ego-Network Analysis
- 2 Contributions
- 3 State-of-the-art
- Approach

5 Experimental Results

💿 Future Work

Table 1: Statistics of Social Network Datasets [7]

		Facebook	Twitter	Google+
nodes	V	4,039	81,306	107,614
edges	E	88,234	1,768,149	13,673,453
egos	U	10	973	132
circles	$ \mathcal{C} $	46	100	468
features	f	576	2,271	4,122

Table 2: Performance (F_1 -score) of different embeddings for circle prediction on three dataset. Standard deviation is less than 0.02 for all experiments.

Approach	Facebook	Twitter	Google+
gloglo	0.37	0.46	0.49
locglo	0.42	0.50	0.52
locgloglo	0.37	0.44	0.48
gloglosim	0.40	0.49	0.51
locglosim	0.45	0.53	0.55
locgloglosim	0.38	0.46	0.47
Φ^1 , McAuley & Leskovec [1]	0.38	0.54	0.59

- Graph Embedding
- Ego-Network Analysis
- 2 Contributions
- 3 State-of-the-art
- Approach
- Experimental Results
- 6 Future Work

- Using embeddings to approximate more complex measures (e.g. shortest-path distance)
- Using embedding to find similar egos
- Learning embedding for directed graphs

- Graph Embedding
- Ego-Network Analysis
- 2 Contributions
- 3 State-of-the-art
- 4) Approach
- 5 Experimental Results
- 6 Future Work

References

Muhammad, Syed Agha, and Kristof Van Laerhoven. "DUKE: A Solution for Discovering Neighborhood Patterns in Ego Networks." In ICWSM, pp. 268-277. 2015.

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "DeepWalk: Online learning of social representations." In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 701-710. ACM, 2014.

Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855-864. ACM, 2016.

Le, Quoc V., and Tomas Mikolov. "Distributed Representations of Sentences and Documents." In ICML, vol. 14, pp. 1188-1196. 2014.

https://snap.stanford.edu/data/

Word2vec [5]

- Language Modeling
 - Distributional Hypothesis in the natural languages: semantically similar words dispose to appear in similar word neighborhoods
- Having the sequence of words $\{w_1, w_2, ..., w_{t-1}, w_t, ..., w_n\}$, language models aims to maximize $P(w_t|w_1, ..., w_{t-1})$.
- In word2vec [2], they defined a fix context length surrounding each word
- with length context c and the sequence of words $\{w_1, w_2, ..., w_{t-1}, w_t, ..., w_n\}$ the goal is to word2vec is to maximize: $\sum_{t=1}^{n} \log P(w_t | w_{t+c}, ..., w_{t-c})$
- The neural network which learns word representations:
 - One hidden layer
 - The number of input layer entries is equal to the vocabulary size of the text
 - The number of units in the hidden layer determines dimensionality of the vectors

Word2vec [5]

- Having a sequence of words $\{w_1, w_2, ..., w_{t-1}, w_t, ..., w_n\}$ and context window with length one
- Predict one target word, given one context word $P(w_t|w_{t-1})$.

- Each input is a one-hot encoding vector
- The probability is computed using the softmax function: $h = W^T \times x, \quad u = W'^T \times h, \quad P(w_t|w_{t-1}) = y_t = \frac{e^{u_t}}{\sum_{i=1}^{V} e^{u_j}}$
- After several iterations matrix W will not change

Paragraph Vector

- Given a sequence of paragraphs $p_1, p_2, ..., p_q$ and training words $w_1, w_2, w_3, ..., w_t, ..., w_n$, the idea of Paragraph Vector [6] is to maximize $p(w_t|p_j, w_{t-c}..., w_{t+c}))$
- For example consider 2 paragraphs and window size of 3
 - P_1 : The cat sat on the mat
 - P_2 : I ate potato crisps for evening snack
 - $p(on|P_1, The, cat, sat)$

