Tim Gollub* Nedim Lipka[†] Eunyee Koh[†] Erdan Genc* Benno Stein*

TIR@DEXA 5. Sept. 2016

* Webis Group Bauhaus-Universität Weimar www.webis.de [†] Big Data Experience Lab Adobe Systems www.research.adobe.com

Resource

		Stream	Collection
	Query	Google Trends	Google Zeitgeist
ster	Social Media		
0	Articles, Papers		
С	Books		

Time range:	incomplete	complete
Analysis:	differential	covering

Resource

		Stream	Collection
Register	Query	Google Trends	Google Zeitgeist
	Social Media	Retweet statistics in Twitter	Wikipedia reverts analysis
	Articles, Papers	Provenance analytics	Topical Sequence Profiling
	Books	_	Discourse analysis
	Time range:	incomplete	complete
	Analysis:	differential	covering

_

Problem Statement

Given a sequence $\mathcal{D} = \{D_1, \ldots, D_n\}$ of text collections,

such as

- □ a series of the annual proceedings of a conference,
- □ a news feed of a certain period, or
- □ the social media mentions of an entity over time frames,

provide (statistical) insights about its content.

Problem Statement (continued)

A topic embedding \mathbf{T} of $\mathcal{D} = \{D_1, \dots, D_n\}$: $D_1 \quad \cdots \quad D_n$ $\mathbf{T} = \begin{array}{c} t_1 \\ \vdots \\ t_k \end{array} \begin{bmatrix} \mathbf{T}_{11} & \mathbf{T}_{1n} \\ \vdots \\ \mathbf{T}_{k1} & \mathbf{T}_{kn} \end{bmatrix}$

Coverage $c_1 \cdots c_n$

Problem Statement (continued)

Problem Statement (continued)

A topic embedding T of $\mathcal{D} = \{D_1, \ldots, D_n\}$:

A topic embedding T characterizes $\mathcal{D} = \{D_1, \ldots, D_n\}$ if:

- 1. T is *representative* for each of the text collections $D \in \mathcal{D}$.
- 2. T highlights informative topic developments within \mathcal{D} .
- 3. T is *small* enough to be surveyed quickly.

Problem Statement (continued)

1. Representativeness.

A topic embedding $\mathbf{T} = \{t_1, \ldots, t_k\}$ is representative if for every collection $D \in \mathcal{D}$ the percentage of documents that address at least one of the topics is above a predefined threshold $c \in [0; 1]$.

Problem Statement (continued)

A topic embedding \mathbf{T} of $\mathcal{D} = \{D_1, \dots, D_n\}$:

2. Informativeness.

The informativeness of a topic's development is assessed by the variance of the topic distribution. The higher the variance, the more informative is its development. The mean topic variance is used to assess the informativeness of the whole embedding T.

$$\frac{1}{k} \sum_{i=1}^{k} \operatorname{Var}(\mathbf{T}_{i:})$$

Problem Statement (continued)

A topic embedding T of $\mathcal{D} = \{D_1, \ldots, D_n\}$:

3. Minimality.

A topic embedding \mathbf{T} is minimal if no topic can be removed without losing representativeness.

Problem Statement (continued)

A topic embedding T of $\mathcal{D} = \{D_1, \ldots, D_n\}$:

3. Minimality.

A topic embedding \mathbf{T} is minimal if no topic can be removed without losing representativeness.

Sought is the minimum representative topic embedding T^* with the highest mean topic variance. T^* is called the topical sequence profile of D.

Topical Sequence Profiling Approach

Our approach comprises two steps:

(1) *Topic Acquisition.*

- Acquisition and assignment of topics to documents.
- □ Result: a representative but not minimal topic embedding **T**.
- □ We consider Wikipedia articles as topics with their titles as explicit labels.

Operationalization: ESA-inspired model with heuristic candidate search.

(2) *Topic Selection.*

 \Box Find \mathbf{T}^* given \mathbf{T} .

Operationalization: Greedy topic selection.

Approach: (1) Topic Acquisition

- 1. Represent each Wikipedia article (title ~ topic) as BM25 vector *t*. Represent each document in \mathcal{D} as BM25 vector *d*. Represent the topic domain of \mathcal{D} as centroid \overline{d} of all vectors, $\overline{d} = \sum_{i=1}^{|\mathcal{D}|} d_i$.
- 2. For each Wikipedia article:

Compute the similarity $\rho(t, \overline{d})$ of the <Wikipedia article, topic domain> pair. Remember the top similar Wikipedia articles as seed documents.

3. Explore (BFS) the Wikipedia link graph starting with the seed documents. For each unassigned document in \mathcal{D} :

Compute the similarity $\rho(t, d)$ of the <Wikipedia article, document> pair. If $\rho(t, d) > \rho(t, \bar{d})$ then assign topic t to document d.

Approach: (1) Topic Acquisition

- 1. Represent each Wikipedia article (title ~ topic) as BM25 vector *t*. Represent each document in \mathcal{D} as BM25 vector *d*. Represent the topic domain of \mathcal{D} as centroid \overline{d} of all vectors, $\overline{d} = \sum_{i=1}^{|\mathcal{D}|} d_i$.
- 2. For each Wikipedia article:

Compute the similarity $\rho(t, \bar{d})$ of the <Wikipedia article, topic domain> pair. Remember the top similar Wikipedia articles as seed documents.

3. Explore (BFS) the Wikipedia link graph starting with the seed documents. For each unassigned document in \mathcal{D} :

Compute the similarity $\rho(t, d)$ of the <Wikipedia article, document> pair. If $\rho(t, d) > \rho(t, \bar{d})$ then assign topic t to document d.

Approach: (1) Topic Acquisition

- 1. Represent each Wikipedia article (title ~ topic) as BM25 vector *t*. Represent each document in \mathcal{D} as BM25 vector *d*. Represent the topic domain of \mathcal{D} as centroid \overline{d} of all vectors, $\overline{d} = \sum_{i=1}^{|\mathcal{D}|} d_i$.
- 2. For each Wikipedia article:

Compute the similarity $\rho(t, \bar{d})$ of the <Wikipedia article, topic domain> pair. Remember the top similar Wikipedia articles as seed documents.

3. Explore (BFS) the Wikipedia link graph starting with the seed documents. For each unassigned document in \mathcal{D} :

Compute the similarity $\rho(t, d)$ of the <Wikipedia article, document> pair. If $\rho(t, d) > \rho(t, \bar{d})$ then assign topic *t* to document *d*.

Approach: (2) Topic Selection

Result of the topic acquisition step:

Greedy topic selection strategy:

- 1. Sort the topics of the embedding by ascending diversity $Var(\mathbf{T}_{i:})$.
- 2. For each topic t:

If the embedding T without t is representative, remove t from T.

Notes:

- □ The above greedy strategy returns a minimal topic embedding \widehat{T}^* —precisely, a topic embedding that can not be made smaller.
- $\hfill\square$ However, the topic embedding $\widehat{\mathbf{T}}^*$ may not be minimum, i.e., $|\widehat{\mathbf{T}}^*| < |\mathbf{T}^*|.$
- Computing T* is an NP-hard problem. For its decision variant (existence of a T for a *k*-bounded mean topic variance) the NP-completeness may be shown.
- □ Since the above strategy removes topics in ascending order of their diversity, the algorithm strives for maximizing the mean topic diversity.
- The heuristic is effective, if the topics are orthogonal (since the coverage percentages won't "add up" on few text collections).

Related Work

Existing approaches focus on (single) trend detection—not on coverage.*

- (a) Apply LDA topic detection to D, irrespective the topic distributions in the individual text collections. [Griffiths:2004, Hall:2008, Yeung:2011]
- (b) Apply LDA topic detection to each text collection $D \in D$ individually, then align the topics across the individual text collections. [Swan:2000, Wang:2005]
- (c) Model time explicitly as a parameter of the LDA topic model. [Blei:2006, Wang:2006]

*) To showcase results, topics are cherry-picked or the hottest/coldest topics are presented. The extend to which the presented topics cover (= characterize) the sequence as a whole is not examined.

Case Study

 $\mathcal{D} = SIGIR$ conference proceedings from 2007 to 2015.

	Year	# Papers
$\overline{D_1}$	2007	198
D_2	2008	193
D_3	2009	193
D_4	2010	214
D_5	2011	232
D_6	2012	216
D_7	2013	205
D_8	2014	226
D_9	2015	193

Case Study

 $\mathcal{D} = SIGIR$ conference proceedings from 2007 to 2015.

Year	# Papers
2007	198
2008	193
2009	193
2010	214
2011	232
2012	216
2013	205
2014	226
2015	193
	Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

Wikipedia articles (seed documents) determined in the acquisition phase, along with the averaged similarity $\rho(t, \bar{d})$:

- 1. Concept Search (0.678)
- 2. Information Retrieval (0.593)
- 3. Human-Computer Information Retrieval (0.588)
- 4. Web Query Classification (0.582)
- 5. Enterprise Search (0.549)
- 6. Search engine technology (0.540)
- 7. Document retrieval (0.539)
- 8. Cognitive models of information retrieval (0.524)
- 9. Federated search (0.524)
- 10. Web search query (0.518)

Case Study [Demo: local, web]

Summary and Outlook

- \Box Topical sequence profiling means to *cover* a set \mathcal{D} of text collections.
- Such a cover should be representative, informative, and minimal; a cover is called topic embedding T.
- \Box We determine a minimal $\widehat{\mathbf{T}}^*$ within two steps:
 - (1) topic acquisition with Wikipedia, and
 - (2) heuristic topic selection by variance maximization.
- $\hfill\square$ Determining the optimum cover \mathbf{T}^* is NP-hard.

What is missing + further steps:

- □ *Thorough* evaluation of our approach:
 - effectiveness of Wikipedia-based topic acquisition
 - comparison to LDA-based approaches
 - approximation quality of the greedy selection heuristic
- Tap the potential of user interaction

Topical Sequence Profiling Summary and Outlook

- \Box Topical sequence profiling means to *cover* a set \mathcal{D} of text collections.
- Such a cover should be representative, informative, and minimal; a cover is called topic embedding T.
- \Box We determine a minimal $\widehat{\mathbf{T}}^*$ within two steps:
 - (1) topic acquisition with Wikipedia, and
 - (2) heuristic topic selection by variance maximization.
- $\hfill\square$ Determining the optimum cover \mathbf{T}^* is NP-hard.

What is missing + further steps:

- □ *Thorough* evaluation of our approach:
 - effectiveness of Wikipedia-based topic acquisition
 - comparison to LDA-based approaches
 - approximation quality of the greedy selection heuristic
- Tap the potential of user interaction

Thank you for listening!

Related (1): Cluster Labeling

Topical sequence profiling is closely related to cluster labeling:

- (a) \mathcal{D} can be considered as a clustering of documents. Assign to each $D \in \mathcal{D}$ some topic t as label.
- (b) The categorization of a set $D \in D$ can be considered as non-exclusive clustering task. Assign the topics $t \in \mathbf{T}$ as labels to the clusters in D.

Property	View (a)	View (b)
Unique	*	\checkmark
Summarizing	\checkmark	\checkmark
Expressive	\checkmark	\checkmark
Discriminating	*	\checkmark
Contiguous	*	\checkmark
Irredundant	\checkmark	\checkmark
Representative	\checkmark	\checkmark
Diverse	\checkmark	×
Minimal	\checkmark	\checkmark

In topical sequence profiling the desired properties of cluster labels [Stein:2004b] depend on whether we consider view (a) or view (b).

Related (2): Cluster Analysis

Topic acquisition and assignment in topical sequence profiling is closely related to the principle of descriptive cluster analysis. [Hoppe:2010]