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Abstract—Word and document embeddings have gained a
lot of attention recently, because they tend to work well in
text mining tasks. Yet, they elude humans intuition. In this
paper we are making the attempt to explain the arithmetic
difference between two document embeddings by a series of
word embeddings. We present an algorithm that iteratively
picks words from a vocabulary that closes the topical gap
between the documents. Moreover, we present the Econstor16
corpus that was used for the experiments. Although not all
words that are found are great matches, the algorithm is
able to find sets of words that are reasonable to a human
that reads both documents. Remarkably, some of the well-
explaining words are mentioned in neither documents.

1. Introduction

Tasks that deal with text understanding problems have
to answer the question of how to represent text. This is,
how can the text be represented in a machine-understandable
way. A fixed length text representation is important, as most
text mining algorithms require fixed length inputs. Further-
more, the preservation of the hidden structure of a document
is crucial properties as well. For quite a long time bag
of words (BOW) and n-gram [1] where most established.
But BOW and n-gram fail to preseve the order of words
(the n-gram window is usually small, which leads to a
small context) and suffer from sparse and high dimensional
vectors.

Later, LDA [2] was introduced. LDA reveals the topics
that a document is made of, thereby yielding an improved
performance in most text mining tasks. Interestingly, it was
shown that topic models (like LDA) can be trained with the
goal of associating similar topics to documents as humans
do [3]. More recently, distributed word [4] and document [5]
embeddings gained attention as they outperformed previous
state-of-the-art systems in various classification tasks like
sentiment analysis ([5], [6]).

Although it was shown that distributed embeddings
capture semantics, the vectors themselves are hardly com-
prehensible by humans. However, the distances between
those representations exhibit interesting properties, that are
human-interpretable. Mikolov et. al. showed in [7] that

the nearest neighbor of X = wv(biggest) − wv(big) +
wv(small) is wv(”smallest”), where wv(”word”) refers
to the word vector of ”word”. Dai et. al. showed in [6]
that it is also possible to add word and document vectors
and obtain meaningful results. For example, they could
find the Japanese equivalent of Lady Gaga by computing
dv(”LadyGaga”)−wv(”American”) +wv(”Japanese”)
(where dv(”document”) refers to the document vector of
”document”). In this paper we use semantics properties of
vector embeddings for identifying a path (i.e. a set of words)
between two document, that explains their differences. The
contributions of this paper are the following:

• We will propose an algorithm that explains the dif-
ference between two documents by a adding and
subtracting multiple words. For example:

dv(”report2013”) ≈ dv(”report2012”)

− wv(”2012”) + wv(”2013”).

More formally, we are looking for a set of words W
that is a subset of the vocabulary V (W ⊆ V ) such
that D < ε (ε is a distance threshold), where D is
defined by:

D = dist(dv(Y ), dv(X) +

|W |∑
i=0

(−1)nwv(Wi)).

(1.1)
n determines whether a word vector is to be added
(n = 0) or subtracted (n = 1), whichever approxi-
mates better. More formally:

n =


1 if dv(Y )− dv(X) + wv(Wi) >

dv(Y )− dv(X)− wv(Wi)

0 otherwise.

Moreover, ε serves as a convergence criteria,
dist(A,B) measures the distance between A and B
and (as mentioned earlier), dv(doc) is the document
embedding representation of the document doc.
X and Y are arbitrary documents and V is a vocabu-
lary. This main idea will be explained in more detail
in section 3 followed by experiments in section 4.



• We also introduce the Econstor16 corpus, that con-
tains more than 90,000 documents from the eco-
nomics domain along with their meta data. Econ-
stor16 was used to conduct the experiments. The
corpus will be presented in section 6.

2. Motivation

In order to improve humans intuition of documents in
high dimensional vector spaces, we wanted to investigate the
question whether the distance between documents is human-
interpretable. More specifically, we explored options to con-
vert the space between documents into a representation that
allows humans to grasp the difference and to reason about
it. Taking this idea further, we considered summarizing the
difference between two documents, which, in contrast to
automatic summarization techniques [8], is applied to a pair
of documents rather than to a single document. Automatic
difference summarization may be a means to investigate
unknown documents that are similar to known documents.

3. Approach

The spatial distance between document embeddings en-
codes the topical difference of those documents, which is
illustrated by Figure 1. The green cluster, that is dominated
by the author M. Hashem Pesaran, deals with theoretical
economics and statistics. In contrast, documents in the pink
cluster on the bottom right are about fiscal policy and finan-
cial risks. Likewise, most other cluster represent a certain
topic.

In order to explore this property deeper, we performed
nearest neighbor searches in the following setting:

1) For each run, pick 1,000 documents (to limit com-
putation time).

2) Compute the cosine distances between all docu-
ments.

3) Select the document pair with the maximum dis-
tance.

4) For one of the documents from the previous step
(random choice), find the nearest neighbor.

This yields document triples (Dx, Dy, Da) where Dx and
Dy are close to each other and Da is far away from either
of the other documents. Table 1 shows one example. Merely
from the title and the author-supplied keywords list it can
be seen that Dx and Dy examine related topics whereas Da

has no obvious commonalities with Dx and Dy. Reading
the abstracts makes the situation even clearer: Dx and Dy

investigate the influence of an economic crisis (Dx: Great
Depression, Dy: Real Estate Crisis beginning in 2007) on
wealth and unemployment. Whereas Da analyzes the impact
of a norm on the international trade. The cosine similarities
in table 2 confirms the results.

Similar results where found for most repetitions of the
process.

Based on this intuition, we will introduce an iterative
algorithm, which approximates a document vector through

Figure 1. Visualization of a 600 dimensional document embedding of
15,000 documents randomly picked from the Econstor16 corpus. The
dimensionality reduction was done using t-SNE [9]. The colors highlight
documents from the top 8 US authors in the field of economics according
to RePEc.

TABLE 1. AUTHOR SELECTED KEYWORDS OF THREE DOCUMENTS

Variable Title Key phrases
Dx Wealth shocks, unemployment Marginal Propensity to

shocks and consumption in Consume, Wealth
the wake of the Great Shocks, Unemployment
Recession

Dy Household debt and saving Household Debt and Saving,
during the 2007 recession 2007 Recession, Credit

Access, Mortgage debt
Da The Impact of ISO 9000 FDI, Trade, Transaction

Diffusion on Trade and Costs, Institutions
FDI: A New Institutional
Analysis

TABLE 2. COSINE SIMILARITIES OF THE EXAMPLE DOCUMENTS ON
100 DIMENSIONAL VECTORS

Variables Similarity
dv(Dx), dv(Dy) 0.5394
dv(Dx), dv(Da) -0.4052
dv(Dy), dv(Da) -0.1745

a additive combination of another document vector and
multiple word vectors.

Given two documents (say, D1 and D2), how can we
obtain words that, when added to one of the vectors, reduce
the distance to the other? Or, reformulated in the regime of
document embeddings: given two document vectors (Ddv

1 =
dv(D1) and Ddv

2 = dv(D2)) how can we find word vectors



that, when added to one of the document vectors, reduce the
distance to the other document vector? The optimal solution
to this problem is simply to choose the difference (∆ =
Ddv

1 −Ddv
2 ) of the vectors. But, since ∆ most likely is not

a word vector (with a corresponding word), we can’t infer
any semantic information from that fact. But instead we can
search the vocabulary for the word vector that approximates
∆ best. This will give us a vector ∆approx (say, we want to
approximate Ddv

2 through Ddv
1 ) that has a smaller distance to

Ddv
2 than Ddv

1 . This is explained more formally in Algorithm
1, where Wc contains the closest (i.e. the most similar) word
whereas Wf contains the farthest word. In case −Wf >
Wc, Wf will be subtracted, otherwise Wc will be added.
Especially in very high dimensional space it is difficult to

Algorithm 1 Document Vector Approximation
function DOCVECAPPROX(model,D1, D2)

path← list()
Ddv

1 ← dv(D1)
Ddv

2 ← dv(D2)
Dapprox ← Ddv

1

while not converged do
∆← Ddv

2 −Dapprox

Wc ← findClosestWord(∆,model)
Wf ← findFarthestWord(∆,model)
if Wc > −Wf then

Dapprox ← Dapprox + wv(Wc)
append(Wc, path)

else
Dapprox ← Dapprox − wv(Wf )
append(Wf , path)

return path

find an exact solution to this problem. Hence, a convergence
criterion is needed, that, once it is met, stops the algorithm.
We make three suggestions:

1) Threshold: The approximation is terminated once
abs(Dapprox − Ddv

2 ) ≤ ε (see equation 1.1). This
limits the runtime, but requires the user to define
a threshold. An optimal threshold depends on the
expected outcome and the dimensionality of the
document space.

2) K-nearest neighbors: After each iteration the k-
nearest neighbors of Dapprox are determined. The
approximation stops as soon as D2 appears in
that list. Likewise, the threshold criteria, a hyper
parameters needs to be specified (i.e. the size of
the list). But in contrast, this criteria guarantees
certain quality (i.e. the result is among the k nearest
neighbors of D2).

3) Local optimum found: The distance stopped de-
creasing. This yields the best results on the cost of
the longest execution time.

TABLE 3. OVERVIEW DOCUMENT X, EXAMPLE 1

Variable X
Author Hendrik Hagedorn
Title In search of the marginal entrepreneur: Benchmarking

regulatory frameworks in their effect on entrepreneurship
Keywords Benchmarking method, entrepreneurship, incentives,

dataset, regulation

TABLE 4. OVERVIEW DOCUMENT Y, EXAMPLE 1

Variable Y
Author John Hartwick
Title Mining Gold for the Currency during the Pax Romana
Keywords Gold coinage, Roman money supply, roman empire

TABLE 5. APPROXIMATION PROCESS OF TWO DISTANT DOCUMENTS.
THE SIMILARITY COLUMNS INDICATE THE COSINE SIMILARITY

BETWEEN Y AND THE CURRENT APPROXIMATION. NOTE THAT THE
APPROXIMATION WAS CONDUCTED IN 100 DIMENSIONAL SPACE AND

THEN REPLICATED IN 600 DIMENSIONAL SPACE.

Iteration Vector Similarity Similarity
@100 @600

initial diff := Y - X -0.44 -0.03
1 diff := diff - ”job” -0.14 0.01
2 diff := diff - ”carbon” 0.12 0.03
3 diff := diff + ”empire” 0.22 0.10
4 diff := diff + ”goldsmith” 0.36 0.07
5 diff := diff - ”country” 0.52 0.07
6 diff := diff - ”interest” 0.61 0.07

4. Experiment

We conducted experiments in a semi-automatic fashion.
The reason for this is, that the corpus (that will be presented
in section 6) contained too many non-sense words. That was
caused by flaws during the extraction of the plain text from
the PDF files, which led to non-sense words in the vocabu-
lary. The short term solution was to hand-pick the words that
where added to the approximation path, rather than letting
an algorithm decide. More precisely, the algorithm came
up with a list of candidates and the first meaningful word
was selected by hand. This effectively limited the amount
of repetitions that could be undertaken. Nevertheless, during
the semi-automatic testing, observations were made that will
be exemplified using two examples. For the first example we
selected two distant documents. The tables 3 and 4 give a
brief overview over the content of the documents.

Table 5 presents the results of the approximation algo-
rithm. There are some notable aspects:

1) Although the initial similarity is low (-1 is the
maximum value here which denotes a diametrically
opposed vector) it takes only a few iterations to
achieve a high similarity.

2) Most of the words are actually meaningful to ex-
plain the difference between the two documents:



TABLE 6. OVERVIEW DOCUMENT X, EXAMPLE 2

Variable X
Author Hans-Werner Sinn
Title Pareto Optimality int the Extraction

of Fossile Fuels and the Greenhouse Effect
Keywords global warming, resource extraction,

Pareto optimality

TABLE 7. OVERVIEW DOCUMENT Y, EXAMPLE 2

Variable Y
Author Hans-Werner Sinn
Title EU Enlargement and the Future of the

Welfare State
Keywords EU expansion, migration, labour

market, welfare state

”empire” and ”goldsmith” account for the docu-
ment Y and ”jobs” and ”interest” are specific to
document X.

3) There are also words that are not obviously suitable,
like ”carbon” and ”country”

4) It’s worth noting that, although it makes intuitively
sense, the word ”goldsmith” is not used in either
documents.

5) When the results of the approximation in 100
dimensions are replicated in 600 dimensions, we
find, that iteration 3 produces the best result, and
afterwards the process is stuck in a local optimum.

The setting for the second example differs in two aspects:
(1) we used a 600 dimensional embedding rather than a
100 dimensional one to drive the approximation and (2) we
selected documents that were written by the same author,
but on different topics. An overview over these documents
is given in table 6 and 7. The respective approximation
process is depicted in table 8. Again, we find suitable
words that explain the difference well (”fuel”, ”diesel”,
”debt”, ”stock”) and we find words that are less suitable
(”non-statistical”, ”industrial”). But in contrast to the first
example, the approximation converges much slower. This is
due to additional dimensions of the document embedding.
Likewise, the first example, we find a word that is suitable
despite the fact that it’s not mentioned in either documents
(”diesel”). Moreover, the convergence in 100 dimensions is
comparatively slow and does not increase monotonically.

5. Discussion

Throughout the paper cosine similarity was used to
compare vectors. At the beginning euclidean distance was
used, but we found that nearby documents rarely had topical
commonalities. Hence, we decided to use cosine similarity
only. Cosine similarity was also used by Dai et al. [6].

Another observation made during the semi-automatic
approximation was that author names were often among
the candidates. This is presumably caused by the reference

TABLE 8. APPROXIMATION PROCESS OF TWO DOCUMENTS BY THE
SAME AUTHOR BUT ON DIFFERENT TOPICS. THE SIMILARITY COLUMN
INDICATES THE COSINE SIMILARITY BETWEEN Y AND THE CURRENT
APPROXIMATION. NOTE THAT THE APPROXIMATION WAS CONDUCTED

IN 600 DIMENSIONAL SPACE AND THEN REPLICATED IN 100
DIMENSIONAL SPACE.

Iteration Vector Similarity Similarity
@600 @100

initial diff := Y - X -0.01 -0.44
1 diff := diff - ”stock” 0.04 -0.30
2 diff := diff + ”industrial” 0.11 -0.22
3 diff := diff - ”employee” 0.12 -0.24
4 diff := diff - ”fuel” 0.15 -0.20
5 diff := diff - ”diesel” 0.19 -0.22
6 diff := diff - ”non-statistical” 0.20 -0.18
7 diff := diff + ”debt” 0.21 -0.19

section at the end of papers that make up the corpus.
We decided to exclude author names for this experiment,
because domain knowledge is required to benefit from this
information. However, author names may be useful in a
different context. What we also found was, that words that
were already on the path often reappeared in the candidate
lists. Though, using them always led to an increased dis-
tance. Henceforth, words were never added twice to the path.
Concerning the dimensionality of the document/word space
two main conclusion can be drawn. (1) Fewer dimensions
lead to faster convergence, which limits the length of the
path describing the difference between two documents and
(2) a path that was created using some dimensionality
is not necessarily a suitable path in another dimensional-
ity. Which raises the question, whether higher dimensional
spaces produce better (i.e. topical more suitable) approxima-
tions, which will be subject to future work. One last aspect,
although already mentioned, should be brought to attention
again: occasionally, words that are in neither document can
explain the differences well. This property is remarkable.
It was inherited from word embeddings, where for exam-
ple ”Monday” and ”Wednesday” are closely related, which
makes them interchangeable (at least as far as the document
embedding is concerned). Hence, a document that comprises
”Monday” may also be well explained by ”Wednesday”.
Also, we want to make suggestions for potential applications
that use the approximation algorithm in recommendation
scenarios:

• Alongside a recommended document, a list of words
can be provided, that illustrates how the recom-
mended document differs to the document at hand.

• In a scenario where a user viewed several documents
in a row, the search history can be represented as a
graph where the nodes are documents and the ver-
tices are the paths that the approximation algorithm
produces. By comparing search histories only by the
vertices, similar histories can be found although the
documents that produced it may differ. Those foreign
histories may contain interesting documents for the
user.



Figure 2. A histogram depicting the length of the documents in Econstor16.
The red line marks the mean length of 6476 words per document.

• Given two documents, a user may get recommen-
dations of documents in between (referring to the
vector space). To do so, the approximation algorithm
is not required. But the algorithm can be used to
explain to users why they obtained that specific
recommendation, by providing a list of words that
explains the relation between both documents.

6. Corpus

This section will introduce the Econstor16 corpus. It
is based on ZBWs1 open access service Econstor2 which
is among the largest open access repositories in the field
economics.

Besides the plain text of the documents and along with
the usual meta information like author, title and publication
year there are several other useful information like the
number of citations the paper received, language, link to the
original PDF file, author assigned keyword and keywords as-
signed by domain experts based on a controlled vocabulary
(see STW3). Moreover, there are Econbiz4 identifiers as well
as RePEc5 identifiers that allow fetching further information
from other services.

To date, Econstor serves 108,000 documents to the users.
But not all of them allow plain text extraction, which reduces
the size of the corpus to 96,000. Since the repository is
rapidly growing, this number will keep increasing.

Figure 2 illustrates the length of the documents. The
bulk has less than 10,000 words. 77% of the documents
are written in English, 19% in German. The remaining
4% are composed out of over 20 languages. Due to legal
reasons the corpus can not be provided publicly, but the
code that created this corpus is available6. It consist of two

1. http://www.zbw.eu
2. http://econstor.eu/
3. http://zbw.eu/stw/version/latest/about
4. http://www.econbiz.de/
5. http://repec.org/
6. https://github.com/n-witt/EconstorCorpus

components that (1) download the documents and the meta
information and (2) extract the plain text.

7. Conclusion and Future Work

We have presented an algorithm that is able to explain
the topical difference between two documents by a list
of words that, when added or subtracted to one of the
documents, approximates the other. We also found that
some words are intuitively suitable whereas others are less
informative. Moreover, we introduced a new corpus that was
derived from a dataset that is used in production, which
makes the corpus relevant for practically orientated research.

Along at least two dimensions we make suggestions for
improvement:

1) Execution Speed: At every iteration the current
approximation is compared to all words in the
vocabulary. Although this can be done in parallel,
this is computationally-intensive task. In order to
mitigate this issue, the vocabulary should be kept
small only containing words that are useful for the
task at hand.
During the semi-automatic testing, it was noticed
that candidates from iteration n are likely to reap-
pear in iteration n + 1. Therefore, it might be
reasonable to pick more than one word on each
iteration. This reduces the computational effort on
the cost of accuracy.

2) Accuracy: Since the purpose of the approach de-
scribed in this paper is to find words that a human
would consider suitable, it’s crucial to achieve a
high topically accuracy (the word ”that” may be a
good approximator in terms of increasing the simi-
larity, but is poor in explaining the topical distance).
To overcome this issue the words that make up the
vocabulary must be well-chosen. It was also noted
that multiplying vectors (and thereby stretching or
squeezing them) on the path can increase the sim-
ilarity and hence accelerate the convergence. But
this leaves us with the question of how to interpret
these factors.

Furthermore, the impact of the dimensionality of the vector
space remains unclear. The impact of this variable on the
prior mentioned factors needs to be investigated.

We also introduced the Econstor16 corpus. It contains
the plain text of over 90,000 documents, accompanied by
several meta information such as author names, title, citation
count, STW-descriptors and more. That makes the corpus
appropriate for several text ming experiments. But since the
text extraction process that was used is error-prone, some
text representations are inaccurate or even faulty.
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