From ambiguous words to key-concept extraction

Márius Šajgalík, Michal Barla, Mária Bieliková

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

Our research focus

- •User modelling
- •Natural language processing
- •"Wild web"
- •BrUMo browser-based user modelling framework

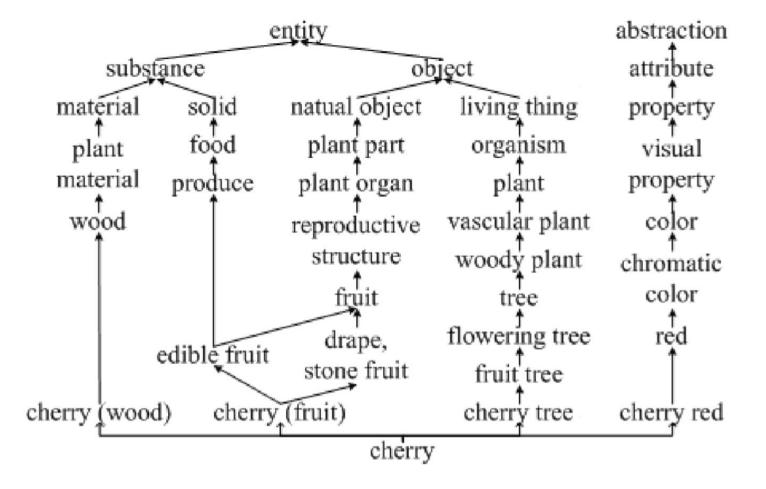
(Key)words vs. (key-)concepts

 It's easier to extract keywords than latent concepts

•Concepts are better defined and have higher information content*

* G. Ramakrishnanan and P. Bhattacharyya, "Text representation with wordnet synsets using soft sense disambiguation," in In Proc. of 8th International Conference on Applications of Natural Language to Information Systems (NLDB 2003), 2003, pp. 214–227

From words to concepts


- •We have only raw text
- •Filter out all words but nouns
- •Disambiguate the words
- Map the words to WordNet concepts
- •We utilise PageRank

Word sense disambiguation

- •We construct graph G=(V,E)
- •V are all concepts containing **nouns** in document plus those reachable by hypernym and holonym relations
- •E are the **hypernym** and **holonym** relations between V

•Run PageRank to infer the correct senses

Word sense disambiguation

Idea: TextRank over concepts?

TextRank links all co-occurring words
We link all potentially co-occurring concepts

•Add these co-occurrence relations to previous graph and run PageRank

But there is something wrong...

Top 10 key-concepts from Wikipedia article about data structure

- data, information
- union, labor union, trade union, trades union, brotherhood
- memory, computer memory, storage, computer storage, store, memory board
- phonograph record, phonograph recording, record, disk, disc, platter
- structure, construction
- type
- library
- order
- hashish, hasheesh, haschisch, hash
- phylum

...we do not consider the information content

- •Analogy between TF-IDF and our method
- •We did only the TF part
- It turns out that the IDF part is analogical to information content*

* P. Resnik, "Using information content to evaluate semantic similarity in a taxonomy," in Proceedings of the 14th international joint conference on Artificial intelligence - Volume 1, ser. IJCAI'95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, pp. 448–453. [Online]. Available: http://dl.acm.org/citation.cfm?id=1625855.1625914

What is the information content?

$$\begin{split} IC(c) &= -\log P(c) \\ P(c) &= \frac{freq(c)}{N} \\ freq(c) &= \sum_{n \in words(c)} count(n) \end{split}$$

What is the information content?

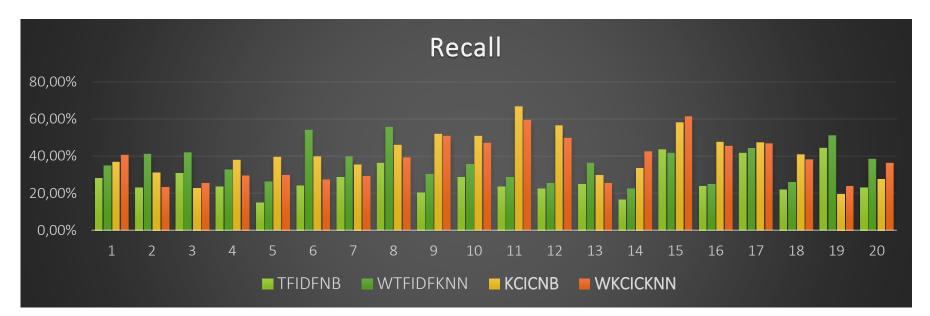
 $IC(c) = -\log P(c)$ $idf(w) = \log \frac{|D|}{|\forall d \in D: w \in d|} =$ $= -\log \frac{|\forall d \in D: w \in d|}{|D|} =$ $= -\log P(w)$

http://en.wikipedia.org/wiki/Data_structure

Not considering information content	Considering information content
 data, information 	 data, information
 union, labor union, trade union, 	– type
trades union, brotherhood	— array
 memory, computer memory, 	 structure, construction
storage, computer storage, store,	 computer memory unit
memory board	– record
 phonograph record, phonograph 	 memory, computer memory,
recording, record, disk, disc,	storage, computer storage, store,
platter	memory board
 structure, construction 	– class
– type	– model, example
– library	– queue
– order	
 hashish, hasheesh, haschisch, hash 	
– phylum	

Evaluation - text classification

We used 20 newsgroups dataset
20 categories of 1000 documents each
TF-IDF as a baseline


- We represent a document as
 Top K key-concepts
 TF-IDF vector
- •We use k-NN and Naïve Bayes

Evaluation - text classification

Method	Accuracy of classification
Top 10 key-concepts with Naïve Bayes	41.48
Top 20 weighted key-concepts with k-NN	38.74
Weighted TF-IDF vector with k-NN	36.95
TF-IDF vector with Naïve Bayes	27.55

Evaluation - text classification

Number of key-concepts	Accuracy of classification
20	40,77
15	40,73
10	41,48
5	40,49
3	38,74
1	29,47

Conclusion

•A new method of key-concept extraction

Key-concepts

- •Very **efficient**, **concise** representation of document content
- Easily and **clearly interpretable**
- Can be used instead of keywords