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Supporting Keyword-based search over 
Relational Databases:

 Advantages:

– Easy to use

 No need to know SQL and DB schme

– discovering interesting/unexpected results

sid sname uid

6055 Sina Fakhraee 12

uid uname

12 WSU

Pid Pname

5 UWERG_WSU

pid sid

5 6055

University

Project

Student

Participation Q: “Fakhraee, WSU”

Expected

Surprise( discovered)

Is Fakhraee a student at WSU?



Supporting Keyword-based search 
over Relational Databases:

 Challenges (Research issues)

 Search effectiveness 

Why is it difficult to find the most relevant results?

 Keyword queries are ambiguous:

– Structural ambiguity 

– Keyword ambiguity

 Search efficiency 

 Complexity of data and its schema

- Millions of nodes/tuples

- Cyclic / complex schema



Problem Description

 Data

 Relational Databases (graph)

 Input

 Query Q = <k1, k2, ..., kl>

 Output

 A collection of nodes collectively relevant to Q

K1 K2 Kl
…………….



Basic Concepts and Definitions

 Schema graph: directed graph denoted by G(V,E)

– V represents the set of nodes (relations) 

– E are the edges (primary-foreign key relationships among the 

relations.

 Tuple: a single record in the database

 Tuple tree: denoted by T 

– Also called inter-connected tuples 

– tree of tuples joined on their primary-foreign relationship across 

DB 

 Keyword Query: denoted by Q

– set of keywords K1, K2,…, Kn entered by the user.



Basic Concepts and Definitions 
cont’d

 Query result: denoted by R

– set of tuple trees T’s

– each tuple tree T must contain each ki in at least one of its tuple 

ti. 

– Totality: all the keywords are contained in T.

– Minimality: no tuple can be removed from T and still be total. 

 Master Index: Master index is an inverted list that 

relates each keyword that appears in the database with 

a list of locations in the database which are recorded as 

row-column pairs.



Basic Concepts and Definitions 
cont’d

 Tuple set: denoted by      (tuple set of Ri with respect to k)

– Ri is a relation 

– K is a subset of keyword query Q

– is a set of tuples of Ri that only contain keywords in K and not 

any other keywords. 

 Candidate Network: denoted by j(v,e)

– also called join tree

– where          and          

– It is a sub-tree of G such that each individual leaf node (relation) 

contains at least one of the keywords from Q and all the leaf 

nodes together contain all the keywords
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Example to illustrate the basic 
concepts

aID actor

1 J.Travolta

2 M. Ryan

3 L. Bai

4 …………

dID director

1 J.Woo

2 J. Cameron

3 B. Bay

4 …………..

mID aID dID title

1 1 1 Face/Off

2 3 3 Face

3 ………… …… ……

4 ……… …. …..

Schema graph G Tuple Tuple treeTuple set : M Face

Table: Actor(A)

Table: Movie(M)

Table: Director(D)Join tree with respect to Q=“Travolta Woo”

N N

N N

N N

N N.…....... …..

More tables More tables



Query Result Generation’s 
Algorithm

 Three modules involved:

1. Master index:

 Inputs: keyword query Q 

 Outputs: a set of tuple sets for each relation with respect to 

each keyword. 

2. Candidate network (join tree) generator :

 Inputs: keyword query Q, set of tuple sets, schema graph G

 Outputs: the set of candidate networks (join tress). 

3. Execution engine: 

 Inputs : the set of candidate networks 

 Outputs: the set of answers to Q by executing the actual SQL 

statements corresponding to each candidate network.



Query Result Generation’s 
Algorithm cont’d

 The key component in the pipeline is the candidate 

network generator

 candidate network generator must generate join trees 

satisfying  2 criteria:

1) Totality: (condition 1)

2) Minimality:                                                 (condition 2)

∀ 𝑘 ∈ 𝑄 , ∃ 𝑅𝑖
𝐾 ∈ 𝐽 | 𝑘 ∈ 𝐾 

 ∄ 𝑅𝑖
𝐹 ∈ 𝐽 | 𝑅𝑖

𝐹  𝑖𝑠 𝑎 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒 



Query Result Generation’s 
Algorithm cont’d

Join-Tree Generation Algorithm.

 Algorithm1: Candidate Network (Join-Tree) Generation Algorithm 
Input: Keyword query Q, set of free and non-free tuple sets  
with respect to Q and the schema graph of the relational database 
Output: Set of candidate networks, J-Set 
1: J-Set = ∅ // set of candidate networks 
2: 𝑞𝑢𝑒𝑢𝑒 𝑞 // enqueue all the free and non-free tuple sets            
3: For each 𝑅𝑖

𝐾𝑜𝑟𝐹  𝑖𝑛 𝑞 ; 𝑞 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 ; J = deque q 

4: For each 𝑅𝑗
𝐾𝑜𝑟𝐹  𝑖𝑛 𝑞 ; Rj is adjacent to Ri ;Nod e= deque q 

5:        If (𝐽 is not Total && addition of Node to J does not   
 violate conditions 3) 
6:   J = J + Node  
7:            If ( J is Total) // (condition 1) 
8:       J-Set = J-Set ∪ J 
9:   endif 
10:      endif 
11:    end for 
12:  end for 



Background in Ranking Search 
results

 Early works ranked answer tuple tree T based on the size 

of T:

 Reasoning behind this approach:

– the closer the keywords are to each other the more relevant the 

answer tuple tree is to the keyword query Q.

 Shortcoming:

– This is only effective if each tuple contains only one distinct 

keyword. 

𝑠𝑐𝑜𝑟𝑒 𝑇, 𝑄 =
1

𝑠𝑖𝑧𝑒 𝑇 
 



 Modern relational databases have incorporated the state-

of-the-art Information Retrieval (IR)relevance ranking 

functionality for individual text attributes. 

 This feature is exploited by later works to define their 

ranking function:

𝑆𝑐𝑜𝑟𝑒 𝑑, 𝑄 =  
1 + ln 1 + ln 𝑡𝑓  

 1 − 𝑠 + 𝑠
𝑑𝑙

𝑎𝑣𝑑𝑙

.

𝑘∈𝑄∩𝑑

𝑙𝑛
𝑁

𝑑𝑓
 

Background in Ranking cont’d



Background in Ranking cont’d

– d is a single text attribute , 

– k is a single keyword in Q, 

– tf is the term frequency of k in the value of text attribute d, 

– df is the document frequency for keyword k which is the number 

of tuples in d’s relation with k appearing in d’s value, 

– dl is the document length which is the number of characters of 

the value of d, 

– avdl is the average length of the value of text attribute d, 

– N is the number of tuples in d’s relation and 

– s is a constant number of value 0.2 usually

𝑆𝑐𝑜𝑟𝑒 𝑑, 𝑄 =  
1 + ln 1 + ln 𝑡𝑓  

 1 − 𝑠 + 𝑠
𝑑𝑙

𝑎𝑣𝑑𝑙

.

𝑘∈𝑄∩𝑑

𝑙𝑛
𝑁

𝑑𝑓
 



Background in Ranking cont’d

 Final ranking function:

– D is set of all the text attributes of T (search result). 

𝑆𝑐𝑜𝑟𝑒 𝑇, 𝑄 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 𝑆𝑐𝑜𝑟𝑒 𝐷, 𝑄 , 𝑠𝑖𝑧𝑒 𝑇   

=
 𝑆𝑐𝑜𝑟𝑒(𝑑𝑖 , 𝑄)𝑑𝑖∈𝐷

𝑠𝑖𝑧𝑒(𝑇)
 



Our contribution

 In this work we have identified two other important 

factors that can further improve the search effectiveness 

when incorporated to the IR relevance ranking 

strategy.(Final ranking function shown)

 Keyword proximity: which is the overall distance of the 

keywords from one another in the value of the target text 

attribute

 keyword Quadgrams: We computed keyword Quadgrams

of the keywords in both the query itself and in the text 

attributes.

E.g. Fakhraee, -fakh, akhr, raee, hraee



 Minimum pair distance proximity: is the smallest 

distance of all the pairs of distinct matched query 

keywords in the target document

– denoted by MinDist(Q,D) 

– D is the target document 

– Q is the query.

 The formal definition is:

– Where,                    is the length of the shortest segment between 

k1 and k2 in D

Keyword Proximity

𝑀𝑖𝑛𝐷𝑖𝑠𝑡 𝑄, 𝐷 = 𝑚𝑖𝑛𝑘1,𝑘2∈𝑄∩𝐷 𝐷𝑖𝑠𝑡 𝑘1, 𝑘2   

𝐷𝑖𝑠𝑡 𝑘1, 𝑘2  



Incorporation of Keyword Proximity into 
the Relevance Ranking Function

 Proximity values cannot simply be added to ranking 

function since these two quantities are not comparable. 

 Proximity function, MinDist, should be transformed to a 

function that produces values that are comparable with 

ranking function. (       = Tau)

 Where   is the transformation function and          is the 

new transformed function. (   = gamma)

𝜏 𝑄, 𝐷 = 𝛾(𝑀𝑖𝑛𝐷𝑖𝑠𝑡(𝑄, 𝐷)) 

𝛾 𝜏(𝑄, 𝐷) 

𝜏 

𝛾 



 Two criteria must be met by the new transformed function:

1. should positively impact the relevancy of the document to 

the query. (i.e. the smaller the MinDist the larger              ).

2. The effect of MinDist on     should drop quickly as the distance 

gets smaller past some point (to not to keep compensating that 

document) and its effect should become constant as the distance 

becomes larger beyond some point (to not to keep penalizing the 

document with larger distance between keywords). 

Incorporation of Keyword Proximity into 
the Relevance Ranking Function cont’s

𝜏 𝑄, 𝐷  

𝜏 𝑄, 𝐷  

𝜏 



 These two constraints lead to the following definition:

 We have adopted this definition for    as our adjustment 

factor to be added directly to the final ranking function 

shown before. (D is replaced by the target text attribute in 

the DB)

𝜏 𝑄, 𝐷 = log(𝛼 + exp(−𝑀𝑖𝑛𝐷𝑖𝑠𝑡(𝑄, 𝐷))) 

Incorporation of Keyword Proximity into 
the Relevance Ranking Function cont’s

𝜏 



Keyword N-Grams

 Some users might misspell query keywords

 Some users might only know the partial spellings of the 

keyword(s)

 More importantly keywords might have been misspelled 

in the target text attributes’ values. 

To demonstrate these problems, consider the following 

three examples:



 Example 1) Assume a user is searching for action movies 

featuring actor John Travolta and is not sure about the 

correct spelling of the name of the actor. Therefore, he 

might perform his search by typing for example keyword 

sequences such as “Actions Travelta” or “Actions 

Traveltha” instead of “Actions Travolta”. 

Keyword N-Grams cont’d

How does this impact the search?

This could result in the failure of finding the intended 

inter-connected tuples depending on which SQL 

predicate (such as LIKE, CONTAINS or FREETEXT ) 

was used to implement the search system.



 Example 2) Assume a user is searching for thriller movies 

featuring a German actress Martina Gedeck. Also assume 

that the targeted movie database has inconsistencies in 

how the actress name has been spelled (e.g. Gedack, 

Gedek , etc.), 

Keyword N-Grams cont’d

How does this impact the search effectiveness?

this could negatively impact the effectiveness of the 

keyword search because the tf and idf will not be 

accurate.



 Example 3) Similar to the second example, if the values of 

a target text attribute contains different variations of the 

same verb or noun (e.g. verb “category” and its variations 

such as “categories”, “categorization” , etc).

Keyword N-Grams cont’d

How does this impact the search effectiveness?

this could also negatively impact the effectiveness of 

the keyword search because the tf and idf factors of the 

ranking function will not be accurate due to possible 

mismatching between query keywords and the keywords 

in the text attributes’ values.  



 To address these issues we have computed the keyword 

Quadgrams in both:

– the values of the target text attributes and

– In the query itself

 We incorporate the Quadgrams to ranking function by 

– updating the tf and idf not only when we encounter the exact 

search terms but also when we encounter the Quadgrams. 

Keyword N-Grams cont’d



The final ranking algorithm
 Algorithm2: Relevance Ranking Algorithm  

Input: Keyword query Q, a set of answer tuple trees T’s 
Output: A ranked set of answer tuple tree. 
1: T-Set //  set of answer tuple trees T’s 
2: T-Ranked-Set //  a priority queue to store the set of             
3:                        // ranked answer tuple trees T’s 
4: 𝑄     // query keywords  
5:  k_Quadgrams  //a set of all the quadgrams for 
keyword k            
6:  For each ki in Q 
7:     computeQuadgrams(ki) 
8:     ki_Quadgrams.update    
9:   end for 
10:  For each ki in each text_attribute 
11:     computeQuadgrams(ki) 
12:     ki_Quadgrams.update    
13:  end for  
14:   For each T in T-Set          
15:      T-Ranked-Set .push(T, Score’(T,Q))  // 
Score’(T,Q) is 
16:      // the modified version of Formula 3 after applying   
17:     // Quadgrams and 𝜏 𝑄, 𝑑  to Formula 2.  
18:    end for  
18:   Return  T-Ranked-Set 



Experimental Results

 We used the IMDB dataset to perform our experiments.

– #Actors               2000

– #Directors           1200

– #Movies              4000

– #PlotSummary    4000

 Database contains misspellings 

for the name of some of the 

actors/directors/characters/titles

and in the plot summary of the 

movies.



 We created two types of queries:

1. Type I queries, targeting both short and long text attributes.

2. Type II queries, only targeting short text attributes 

Experimental Results cont’d

 Type I queries  Type II queries 
1 Summary 7 actor, genre 

2 Summary, director 8 actor, director 

3 Summary, actor 9 director, genre 

4 Summary, genre 10 actor, director, genre                            

5 Summary, actor, 
genre 

11 actor, character 

6 Summary, 
character 

  

 



 We formulated 50 queries, 25 per each type. 

 we used two measures: 

– 1) Number of top-1 search results that are relevant denoted by 

#Rel . 

 (We chose this metric to evaluate type I queries since the user’s 

primarily intention is to find a single movie.)

– 2)  precision/recall curve 

 We chose this metric to evaluate type II queries since the user’s 

primarily intention is to find a set of relevant movies.

Experimental Results cont’d



 We identified the relevant answers in our database as 

follows: (i.e. pooled relevance judgment)

– We ran all four algorithms for each query 

– 1) BA: base algorithm 

– 2) BA+KP: base algorithm + keywords proximity

– 3) BA+KQ = base algorithm + keywords quadgran

– 4) BA+KP+KQ = base algorithm + keywords proximity + keyword 

quadgrams

– we merged their top20 results. 

– We then manually judged and selected relevant results for each 

query out of the 80 candidate results. 

Experimental Results cont’d



 To evaluate the effectiveness and impact of keyword 

proximity and keyword quadgrams:

 for type II queries: 

– 12 out of 25 submitted queries contained misspellings. 

 for type I queries:

– 12 out of 25 submitted queries contained misspellings and 

phrases with different keywords’ variations.(e.g. category vs. 

categories)

Experimental Results cont’d



 Table below shows top-1 search results for type I queries for each 

algorithm

 Figure below shows the 11-point precision/recall graph for type II

queries for BA and BA+KP+KQ algorithms. (#Rel=# of top1 results 

that are relvevent) 

Experimental Results cont’d

 BA BA+KP BA+KQ BA+KP+KQ 

#Rel 8 12 13 16 

 



Conclusion

 We can see from Table III that BA+KP+KQ algorithm 

outperformed the base algorithm BA for type I queries. 

We observed that many of the relevant answers to the 

queries targeting the plot summary, which contained 

misspelled keywords or keywords which were located 

apart from one another, were not in the top-1 search 

results for BA, and in fact they were not even in the top-10 

results. We can also see from Figure 4 that BA+KP+KQ 

algorithm outperformed the base algorithm BA for type II 

queries as well. 



Thank you!


