

Effective Keyword Search over Relational Databases Considering keywords

proximity and keywords N-grams

Sina Fakhraee

Dept. of Computer Science

Wayne State University

Detroit, MI 48202, USA

Fakhraee@wayne.edu

Farshad Fotouhi

Dept. of Computer Science

Wayne State University

Detroit, MI 48202, USA

Fotouhi@wayne.edu

Abstract— The current amount of text data in relational

databases is massive and is growing fast. This increases the

importance and need for non-technical users to be able to

search for such information using a simple keyword search.

Researchers have studied and addressed some of the issues

with the efficiency and effectiveness of answering keyword

queries in relational databases. In this paper we have

summarized different factors affecting the effectiveness of the

keyword search in relational databases which were studied in

the early works. We have also identified two other important

factors, namely keywords proximity and keywords N-grams

that can further improve the search effectiveness when

incorporated in the existing state-of-the-art information

retrieval relevance ranking strategies for relational databases.

Our experiments show that applying these two factors to the

current ranking functions will improve the effectiveness of

keyword search in relational databases.

I. INTRODUCTION

The current amount of text data in relational databases is
massive and is growing fast. This increases the importance
and need for non-technical users to be able to search for
information using a simple keyword search just as they
would search for text documents on the web. Keyword
search over relational databases (KSRDBs) enables ordinary
users to query relational databases by simply submitting
keywords without having to know any SQL or having any
knowledge of the underlying structure of the data. Finding
answers to keyword search over relational databases is a
very challenging task, since good answers should be
assembled by joining tuples from multiple relations across
the database. Now, the effectiveness of keyword search over
relational databases is even more of a challenge since unlike
the text databases, relational databases have a much richer
structure. In relational databases the search keywords are
usually not just simply found in a single text attribute but
they can be found in different text attributes of different
relations, each of which having different degree of
relevance to the search keyword(s).

The first couple of works in this area try to capture all
the inter-connected tuples (i.e records from different
relations joined on their primary-foreign keys) containing
the exact Keywords and then rank the results purely based
on the distance of the keyword-containing tuples from one
another. This kind of approach is not very efficient, since
most users are only interested in the first top-k search
results. This approach is also not very effective because

besides only the distances of the keyword-containing tuples
from one another, other factors should be taken into account
when ranking the answers. Modern relational databases
have incorporated the state-of-the-art information retrieval
(IR) relevance ranking techniques at the attribute level.
Recent works in KSRDBs have exploited this functionality
to answer keyword queries by identifying all database tuples
that have a non-zero score for a given keyword search. Once
these tuples are found, the first top-k tuples containing the
keywords from each relation, if joinable, are joined via their
primary-foreign key relationships and the ones which
collectively contain the search keywords are presented to
the users as the search results. Taking advantage of IR
relevance ranking strategies employed by modern relational
database management systems (RDBMSs) has improved
both the efficiency and effectiveness of keyword search in
relational databases. In this paper we have studied and
summarized the IR style techniques used in recent research.
Our key contribution is identifying two other important
factors that can further improve the search effectiveness
when incorporated into the IR relevance ranking strategies.
These two factors are 1) the query keywords proximity,
which is the overall distance of the keywords from one
another in the value of the target text attribute and 2) the N-
grams and in particular the quadgrams, of the query
keywords in both the query itself and in the text attributes’
values. Our experiments show that incorporating these two
factors into the existing state-of-the-art ranking function will
improve the effectiveness of KSRDBs. The remainder of
this paper is organized as follows: Section II gives a brief
overview of query result generation and describes basic
concepts and definitions used in other literature for
KSRDBs. Section III discusses related work and
background of ranking used in KSRDBs. Section IV
describes the keywords proximity and N-grams and how to
incorporate them into the existing ranking function. Section
V presents our experimental results. Section VI concludes
our paper and gives direction for future work.

II. OVERVIEW OF QUERY RESULT GENERATION

In this section we describe how the results of a keyword
query in relational databases are generated. Section A gives
basic concepts and definitions used in the KSRDBs
literature. Section B gives an algorithm to generate the
results. The definitions and the algorithm given in sections
A and B are adopted from previous works [2,4].

A. BASIC CONCEPTS AND FRAMEWORK

Below there are a few terms and notations defined in the
KSRDBs literature [2,4] that we will use in next section and
for that purpose we restate them below.

Definition 1 A tuple tree T also referred to as inter-
connected tuples is a tree of tuples where for a tuple
adjacents to a tuple where ti is a tuple in Ri and tj is a

tuple in Rj , there is an edge from Ri to Rj in G, the schema
graph of the relational database.

Definition 2 A keyword query Q is a set of keywords K1,
K2,…, Kn entered by the user.

Definition 3 A Query result R is a set of tuple trees
where for each tuple tree T each keyword ki must appear in
at least one tuple ti of T.

Definition 4 A Master index is an inverted list that
relates each keyword that appears in the database with a list
of locations in the database which are recorded as row-
column pairs.

Definition 5 A tuple set of relation Ri with respect to a

keyword kj denoted by

 is a set of tuples in Ri that

contain kj in at least one of their text attributes.
Definition 6 A free tuple set of relation Ri denoted by

 is a set of all the tuples of relation Ri.

Definition 7 A joining network of tuple sets J is a tree of

tuple sets where for a tuple set
 adjacents to a tuple

set
 , there is a corresponding edge (Ri, Rj) in G.

Definition 8 A Candidate network also referred to as
join tree is a joining network of tuple sets that is used to
generate answers to a keyword query.

B. QUERY RESULT GENERATION ALGORITHM

To generate answers for a keyword query Q given by the
user three modules are involved. The first module in the
pipeline is the master index which inputs the keyword query
Q and returns a set of tuple sets for each relation with
respect to each keyword. The second module in the pipeline
is the candidate network generator which inputs the
keyword query Q, set of tuple sets, free tuple sets and the
schema graph of the relational database and outputs the set
of candidate networks. The last module in the pipeline is the
execution engine which inputs the set of candidate networks
and outputs the set of answers to the keyword query by
executing the actual SQL statements corresponding to each
candidate network.

III. RELATED WORK AND BACKGROUND IN

RANKING

Ranking of the query results has been addressed by
previous works in keyword search over relational databases.
The approaches taken by the early works [2,4] in this area
were mostly based on the size of the answer tuple trees
which is, given a query Q the score assigned to an answer
tuple tree T is:

(1)

where size(T)is the number of tuples in tuple tree T. In
recent years the IR community has developed state-of-the-
art ranking techniques that can be leveraged when ranking
results for keyword search in relational databases. Luckily,
modern relational databases have already incorporated the
state-of-the-art IR relevance ranking functionality for
individual text attributes. [1] exploited this feature to define
their ranking function which has two sub-functions, namely
Score and Combine as defined below:

(2)

where, Score(d,Q) is the relevance score with respect to the
keyword query Q determined by an IR engine for a single
text attribute d which is viewed as a text document. k is a
single keyword in Q, tf is the term frequency of k in the
value of text attribute d, df is the document frequency for
keyword k which is the number of tuples in d’s relation with
k appearing in d’s value, dl is the document length which is
the number of characters of the value of d, avdl is the
average length of the value of text attribute d, N is the
number of tuples in d’s relation and s is a constant number
of value usually 0.2. Now, let D be the set of all the text
attributes of an answer tuple tree T. The score assigned to T
with respect to the query Q is calculated using the aggregate
function combine as follows:

 (3)

[3] identified four important normalization factors that

can improve the keyword search effectiveness:
1) In Formula 3, using the raw size(T) can be sub-

optimal and might not rank the relevant answers accurately.
[3] proposed a normalized size(T) denoted by Nsize(T) as
defined below:

(4)

where avgsize is the average T size across all the answer
tuple trees.

2) The second issue addressed by [3] is the average
document length avdl in Formula 2. As discussed in that
paper, the current definition of avdl only considers average
text attribute length within the local text attributes.
However, each text attribute has its own avdl which could
be very different from another text attribute, consequently
this could affect the relevance ranking of the answer tuple
trees from different candidate networks. To resolve this
issue, [3] proposed a normalized avdl denoted by Navdl
which considers average text attribute’s length within both
local and global document collection as defined below:

(5)

3) The third issue addressed by [3] is with the document
frequency df and total number of tuples N in Formula 2. As
discussed in [3], the same keyword term might have very
different document frequencies in different document
collections. Also N for different relations could be very
different. To resolve these issues, [3] proposed global
document frequency df

g
 and global document count N

g
. df

g

is the total number of text attributes’ values containing the
keyword and N

g
 is the total number of all text attributes’

values in the entire database.
Due to the lack of space we refer the user to [3] for the

fourth normalization factor. The final scoring function for
tuple tree T with respect to query Q is obtained by replacing
size(T) with Nsize(T), avdl with Navdl, df with df

g
and N

with N
g
. Comparing to the early works of [1,2], this ranking

function has significantly improved the effectiveness of
keyword search over relational databases.

IV. TWO IMPORTANT FACTORS TO FURTHER

IMPROVE THE RANKING FUNCTION

The original IR-style relevance ranking for an individual
text-attribute and all the proposed normalization factors,
were primarily based on the different keywords’ statistics
such as local and global text-attribute frequencies, inverse
local and global text-attribute frequencies and text-attribute
length. We have identified two other important factors,
namely keywords proximity and keywords n-grams that once
incorporated into the ranking function, can improve the
search’s effectiveness.

A. Query Keywords Proximity

An important factor that should be incorporated into the
existing relevance ranking function for relational databases
is the keyword proximity which rewards a text attribute
where the matched keywords are in the smallest proximity
from one another. Previous works in KSRDBs [7, 8] have
taken into account and introduced the notion of keyword
proximity search mostly for inter-collection proximity (i.e.
the distance between keywords found in different text
attributes across the relational database). This has been done
by assigning different weights to the nodes containing the
keywords and the edges connecting them and searching for
the minimum connected tree which collectively contain all
the keywords. These approaches have significantly
improved the search effectiveness. In this paper we consider
IR-style keyword proximity search within a document and
have adopted it for intra-collection keywords proximity
search in relational databases (i.e. the distance between
keywords found within a target text attribute). This is
crucial when querying databases with long-string text
attributes such as movie summaries, memos, product
descriptions etc. We have used the definition for keyword
proximity proposed in [5] as follows:

Definition 9 [5] defines minimum pair distance
proximity as the smallest distance of all the pairs of distinct
matched query keywords. It is denoted by MinDist(Q,D)
and read as minimum keyword pairs distance of document
D with respect to query Q. The formal definition is as
follows:

(6)

where and is the length of the shortest
segment between k1 and k2 (i.e. k1-k2 segment).

i. Incorporation of Keyword Proximity into Relevance

Ranking Function

As mentioned in the previous section, the small
proximity of matched query keywords in a document should
reward that document by promoting its relevance ranking
score. We cannot simply add proximity measure values to
the values of the ranking function since these two quantities
are not comparable as explained in [5]. Therefore, the
proximity function, MinDist, should be transformed to a
function that produces values that are comparable with
relevance ranking scores and would reasonably impact the
relevance values. Let be the transformation function and
 be the new transformed function also referred to as
adjustment factor by [5]. Therefore, we will have:
 . As proposed by [5] there are
two criteria that must be met by the new transformed
function :

1) As mentioned above should positively
impact the relevancy of the document to the query by
promoting its relevance ranking score (i.e. the smaller the

MinDist the larger).

2) The effect of MinDist on should drop quickly as
the distance gets smaller past some point and its effect
should become constant as the distance becomes larger
beyond some point. These two constraints lead to the

following definition for defined by [5]:

(7)

We have adopted this definition for as our adjustment
factor to be added directly to the ranking function, Formula
2. As we will see in the experiment section the new ranking
function has improved the effectiveness of the keyword
search over relational database.

B. Keywords N-grams

Many users searching for information using keyword
search might misspell the query term or might only know
the partial spelling of the keyword(s). More importantly
these keywords might have been misspelled in the target
text attributes’ values that the search is performed against.
To demonstrate these two problems, consider the following
three examples:

1) Assume a user is searching for action movies
featuring actor John Travolta and is not sure about the
correct spelling of the name of the actor. Therefore, he
might perform his search by typing for example keyword
sequences such as “Actions Travelta” or “Actions
Traveltha” instead of “Actions Travolta”. This could result
in the failure of finding the intended inter-connected tuples
depending on which SQL predicate (such as LIKE,
CONTAINS or FREETEXT) was used to implement the
search system.

2) Assume a user is searching for thriller movies
featuring a German actress Martina Gedeck. If the targeted
movie database has inconsistencies in how the actress name
has been spelled (e.g. Gedack, Gedek, etc.), this could
negatively impact the effectiveness of the keyword search as
the tf and idf factors of Formula 2 will not be accurate due to
possible mismatching between query keywords and the
keywords in the text attributes’ values.

3) Similar to the second problem above, if the values
of a target text attribute contains different variations of the
same verb or noun (e.g. verb category and its variations
such as categories, categorization, etc.), this could also
negatively impact the effectiveness of the keyword search as
the tf and idf factors of Formula 2 will not be accurate due to
possible mismatching between query keywords and the
keywords in the text attributes’ values.

To address these issues we have computed the N-grams
of the keywords both in the values of the target text
attributes and in the query itself and incorporated them to
the ranking function as follow:

We incorporated the N-grams (in particular the
quadgrams) of the keywords to the Formula 2 by updating
the tf and idf not only when we encounter the exact search
terms, but also when we encounter the variations of the
corresponding terms generated by the quadgrams. Our
experiments show that the modified version of Formula 2
will further enhance the keyword search effectiveness. The
final ranking algorithm is shown in Figure 1. To decide
which N-gram to use, one should consider the nature of the
text, language in which the text is written and other factors.
Even though shorter N-grams such as unigrams, bigrams
and trigrams could perform very well on keyword matching,
based on various experiments performed using our dataset
and sample queries, we decided to only consider quadgrams
because almost always a match between the first quadgram
of a query keyword and the first quadgram of a term in the
text attribute was a true match (i.e. the two terms were
related or varied slightly due to misspellings).

Algorithm2: Relevance Ranking Algorithm
Input: Keyword query Q, a set of answer tuple trees T’s
Output: A ranked set of answer tuple tree.
1: T-Set // set of answer tuple trees T’s
2: T-Ranked-Set // a priority queue to store the set of
3: // ranked answer tuple trees T’s
4: // query keywords
5: k_Quadgrams //a set of all the quadgrams for keyword k
6: For each ki in Q
7: computeQuadgrams(ki)
8: ki_Quadgrams.update
9: end for
10: For each ki in each text_attribute
11: computeQuadgrams(ki)
12: ki_Quadgrams.update
13: end for
14: For each T in T-Set
15: T-Ranked-Set .push(T, Score’(T,Q)) // Score’(T,Q) is
16: // the modified version of Formula 3 after applying
17: // Quadgrams and to Formula 2.
18: end for
19: Return T-Ranked-Set

Figure 1. Relavance Ranking Algorithm.

V. EXPERIMENTS

We used the IMDB [9] dataset to perform our
experiments. We designed and implemented a relational
database corresponding to the IMDB schema and populated
the database with a small portion of raw text files
downloaded from IMDB. In our schema we included plot_
summary text attribute which has long string values in order
to be able to create queries for evaluating the effect of
Keywords Quadrams and keywords proximity which are
both more effective on text attributes containing long
strings. The IMDB schema we used is shown in Table I.

TABLE I. IMDB DATASET

IMDB Schema # of Rows

Actors(actorID, actor) 2000
Directors(directorID, director) 1200
Movies(movieID, title, directorID, summaryID) 4000
Cast(movieID, actorID) 8345
MovieCategories(movieID, genre) 6126
PlotSummary(movieID, summary) 4000
ActorPlay(actorID, character, movieID) 7310

When populating our database we purposely misspelled the

names of some of the actors/directors/characters/titles and in

the plot summary of the movies, we changed some of the

terms to different forms (but all generated from the original

terms). We created two types of queries; 1) Type I queries,

targeting both short and long text attributes. 2) Type II

queries, only targeting short text attributes (Please see Table

II below). We then formulated 50 queries, 25 per each type.

To assess the effectiveness of our approach with comparison

with the previous works we used two measures: 1) Number

of top-1 search results that are relevant denoted by #Rel in

Table III. It shows how well the system retrieves one

relevant answer. This metric is used for ranking tasks in

which the user is looking for a single or a very small set of

relevant answers in a large collection [6]. We chose this

metric to evaluate type I queries since the user’s primarily

intention is to find a single movie. For example a user

searching for a particular movie which has forgotten the

name for, but remembers the genre of the movie and knows

what the movie is about, would perform the search by

entering the genre of the movie and few keywords

describing the movie (e.g. query 4 in table2). 2) 11-point

precision/recall (i.e. precision at recall level of 0.1). This

measure shows the effectiveness of our system in retrieving

top10 answers. We chose this metric to evaluate type II

queries since the user’s primarily intention is to find a set of

relevant movies. For example a user searching for a set of

movies in a certain category in which a particular actor has

played, would perform the search by entering the genre of

the movie and the name of the actor (e.g. query 7 in table2).

TABLE II. QUERY TYPES

 Type I queries Type II queries
1 Summary 7 actor, genre

2 Summary, director 8 actor, director

3 Summary, actor 9 director, genre

4 Summary, genre 10 actor, director, genre

5 Summary, actor,
genre

11 actor, character

6 Summary,
character

In order to identify the relevant answers in our database
we use pooled relevance judgment used in [3] as follows;
We ran all four algorithms for each query (BA: base
algorithm Formula 3, BA+KP: base algorithm + keywords
proximity, BA+KQ = base algorithm + keywords quadgrans
and BA+KP+KQ = base algorithm + keywords proximity +
keywords quadgrans) and merge their top20 results. We
then manually judged and selected relevant results for each
query out of the 80 candidate results. We chose pooled
relevance judgment as our standard for evaluation because
only the users can determine if a search result satisfies the
query’s need or not.

To evaluate the effectiveness and impact of keyword
proximity and keyword quadgrams, we purposely submitted
12 out of 25 queries containing misspellings for type II
queries. For type I queries, we submitted 12 out of 25
queries containing misspellings and phrases with different
keywords’ variations. Table III shows the number of top-1
search results for type I queries for each algorithm and
Figure 2 shows the 11-point precision/recall graph for type
II queries for BA and BA+KP+KQ algorithms.

TABLE III. IMPACT OF KEYWORDS PROXIMITY AND QUADGRAMS ON

NUMBER OF TOP-1 RESULT

 BA BA+KP BA+KQ BA+KP+KQ

#Rel 8 12 13 16

Figure 2. 11-point Precision/Recall.

We can see from Table III that BA+KP+KQ algorithm
outperformed the base algorithm BA for type I queries. We
observed that many of the relevant answers to the queries
targeting the plot summary, which contained misspelled
keywords or keywords which were located apart from one
another, were not in the top-1 search results for BA, and in
fact they were not even in the top-10 results. We can also
see from Figure 2 that BA+KP+KQ algorithm outperformed
the base algorithm BA for type II queries as well.

VI. CONCLUSIONS

In this paper we discussed keyword search over relational
databases, in particular the effectiveness aspect of it and
how to enhance it. We gave an overview of how the answers
to a keyword query are found in a relational database and
how they are ranked in the order of their relevance to the
query. The first couple of works in this area only consider
the size of the tuples when ranking the answers. The more
recent works in the area have addressed the shortcomings of
the earlier works in terms of effectiveness by leveraging the
state-of-the-art IR-style ranking techniques already provided
in modern relational database systems and further improved
it by few proposed normalizations factors. We identified
two other important factors: keyword proximity and
keyword quadgrams that should be incorporated into the
ranking function. Our experiments show that incorporation
of each of these factors improves the effectiveness of the
ranking function. We observed that the base algorithm was
not able to rank the most relevant answers highest if the
given query contained misspellings and especially if the
target text attribute includes keyword terms apart from one
another.

In our future work we would like to employ more
advanced state-of-the-art IR ranking strategies in ranking
keyword search results returned from relational databases.
Another area, which we are currently investigating and
which requires additional research to be done, is the
effectiveness of keyword search across heterogeneous
relational database.

REFERENCES

[1] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Effcient ir-style
keyword search over relational databases. In VLDB, pages 850-861,
2003.

[2] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in
relational databases. In VLDB, pages 670–681, 2002.

[3] Fang Liu, Clement Yu Weiyi Meng “Effective Keyword search in
RDBMS” SIGMOD 2006 Chicago, Illinois

[4] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, "DBXplorer: A
System for Keyword-Based Search over Relational Databases," icde,
pp.0005, 18th International Conference on Data Engineering
(ICDE'02), 2002

[5] T. Tao and C. Zhai. An exploration of proximity measures in
information retrieval. In SIGIR ’07, pages 295–302, 2007

[6] Luo, Y., Lin, X., Wang, W., and Zhou, X. Spark: top-k keyword
query in relational databases. In Proc. SIGMOD (New York, NY,
USA, 2007), ACM, pp. 115-126.

[7] R. Goldman, N. Shivakumar, S. Venkatasubramanian and H. Garcia-
Molina: Proximity Search in Databases. VLDB, 1998

[8] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.
Sudarshan.Keyword searching and browsing in databases using
BANKS. In Proc. of ICDE’02, 2002.

[9] IMDB datasets, http://www.imdb.com/interfaces

0
0.2
0.4
0.6
0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
o
n

Recall

BA+KP+KQ

BA

http://www.imdb.com/interfaces

