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Abstract— The current amount of text data in relational 

databases is massive and is growing fast. This increases the 

importance and need for non-technical users to be able to 

search for such information using a simple keyword search. 

Researchers have studied and addressed some of the issues 

with the efficiency and effectiveness of answering keyword 

queries in relational databases. In this paper we have 

summarized different factors affecting the effectiveness of the 

keyword search in relational databases which were studied in 

the early works. We have also identified two other important 

factors, namely keywords proximity and keywords N-grams 

that can further improve the search effectiveness when 

incorporated in the existing state-of-the-art information 

retrieval relevance ranking strategies for relational databases. 

Our experiments show that applying these two factors to the 

current ranking functions will improve the effectiveness of 

keyword search in relational databases.  

I. INTRODUCTION 

The current amount of text data in relational databases is 
massive and is growing fast. This increases the importance 
and need for non-technical users to be able to search for 
information using a simple keyword search just as they 
would search for text documents on the web. Keyword 
search over relational databases (KSRDBs) enables ordinary 
users to query relational databases by simply submitting 
keywords without having to know any SQL or having any 
knowledge of the underlying structure of the data. Finding 
answers to keyword search over relational databases is a 
very challenging task, since good answers should be 
assembled by joining tuples from multiple relations across 
the database. Now, the effectiveness of keyword search over 
relational databases is even more of a challenge since unlike 
the text databases, relational databases have a much richer 
structure.  In relational databases the search keywords are 
usually not just simply found in a single text attribute but 
they can be found in different text attributes of different 
relations, each of which having different degree of  
relevance to the search keyword(s).  

The first couple of works in this area try to capture all 
the inter-connected tuples (i.e records from different 
relations joined on their primary-foreign keys) containing 
the exact Keywords and then rank the results purely based 
on the distance of the keyword-containing tuples from one 
another. This kind of approach is not very efficient, since 
most users are only interested in the first top-k search 
results. This approach is also not very effective because 

besides only the distances of the keyword-containing tuples 
from one another, other factors should be taken into account 
when ranking the answers. Modern relational databases 
have incorporated the state-of-the-art information retrieval 
(IR) relevance ranking techniques at the attribute level. 
Recent works in KSRDBs have exploited this functionality 
to answer keyword queries by identifying all database tuples 
that have a non-zero score for a given keyword search. Once 
these tuples are found, the first top-k tuples containing the 
keywords from each relation, if joinable, are joined via their 
primary-foreign key relationships and the ones which 
collectively contain the search keywords are presented to 
the users as the search results. Taking advantage of IR 
relevance ranking strategies employed by modern relational 
database management systems (RDBMSs) has improved 
both the efficiency and effectiveness of keyword search in 
relational databases. In this paper we have studied and 
summarized the IR style techniques used in recent research. 
Our key contribution is identifying two other important 
factors that can further improve the search effectiveness 
when incorporated into the IR relevance ranking strategies. 
These two factors are 1) the query keywords proximity, 
which is the overall distance of the keywords from one 
another in the value of the target text attribute and 2) the N-
grams and in particular the quadgrams, of the query 
keywords in both the query itself and in the text attributes’ 
values. Our experiments show that incorporating these two 
factors into the existing state-of-the-art ranking function will 
improve the effectiveness of KSRDBs. The remainder of 
this paper is organized as follows: Section II gives a brief 
overview of query result generation and describes basic 
concepts and definitions used in other literature for 
KSRDBs. Section III discusses related work and 
background of ranking used in KSRDBs. Section IV 
describes the keywords proximity and N-grams and how to 
incorporate them into the existing ranking function. Section 
V presents our experimental results. Section VI concludes 
our paper and gives direction for future work. 

II. OVERVIEW OF QUERY RESULT GENERATION 

In this section we describe how the results of a keyword 
query in relational databases are generated. Section A gives 
basic concepts and definitions used in the KSRDBs 
literature. Section B gives an algorithm to generate the 
results. The definitions and the algorithm given in sections 
A and B are adopted from previous works [2,4].  



 

 

A. BASIC CONCEPTS AND FRAMEWORK 

Below there are a few terms and notations defined in the 
KSRDBs literature [2,4] that we will use in next section and 
for that purpose we restate them below. 

Definition 1 A tuple tree T also referred to as inter-
connected tuples is a tree of tuples where for a tuple       
adjacents to a tuple       where ti is a tuple in Ri and tj is a 

tuple in Rj , there is an edge from Ri to Rj in G, the schema 
graph of the relational database.      

Definition 2 A keyword query Q is a set of keywords K1, 
K2,…, Kn  entered by the user. 

Definition 3 A Query result R is a set of tuple trees 
where for each tuple tree T each keyword ki must appear in 
at least one tuple ti of T.  

Definition 4 A Master index is an inverted list that 
relates each keyword that appears in the database with a list 
of locations in the database which are recorded as row-
column pairs. 

Definition 5 A tuple set of relation Ri with respect to a 

keyword kj denoted by  
 

  
 is a set of tuples in Ri that 

contain kj in at least one of their text attributes. 
Definition 6 A free tuple set of relation Ri denoted by 

  
   is a set of all the tuples of relation Ri. 

Definition 7 A joining network of tuple sets J is a tree of 

tuple sets where for a tuple set   
     adjacents to a tuple 

set   
     , there is a corresponding edge (Ri, Rj) in G. 

Definition 8 A Candidate network also referred to as 
join tree is a joining network of tuple sets that is used to 
generate answers to a keyword query.  

B. QUERY RESULT GENERATION ALGORITHM 

To generate answers for a keyword query Q given by the 
user three modules are involved. The first module in the 
pipeline is the master index which inputs the keyword query 
Q and returns a set of tuple sets for each relation with 
respect to each keyword. The second module in the pipeline 
is the candidate network generator which inputs the 
keyword query Q, set of tuple sets, free tuple sets and the 
schema graph of the relational database and outputs the set 
of candidate networks. The last module in the pipeline is the 
execution engine which inputs the set of candidate networks 
and outputs the set of answers to the keyword query by 
executing the actual SQL statements corresponding to each 
candidate network.  

III. RELATED WORK AND BACKGROUND IN 

RANKING 

Ranking of the query results has been addressed by 
previous works in keyword search over relational databases. 
The approaches taken by the early works [2,4] in this area 
were mostly based on the size of the answer tuple trees 
which is, given a query Q the score assigned to an answer 
tuple tree T is: 

 
           

 

       
 

 

(1) 

where size(T)is the number of tuples in tuple tree T. In 
recent years the IR community has developed state-of-the-
art ranking techniques that can be leveraged when ranking 
results for keyword search in relational databases. Luckily, 
modern relational databases have already incorporated the 
state-of-the-art IR relevance ranking functionality for 
individual text attributes. [1] exploited this feature to define 
their ranking function which has two sub-functions, namely 
Score and Combine as defined below: 

 
 

            
              

       
  

    

 

     

  
 

  
 

(2) 

 
where, Score(d,Q) is the relevance score with respect to the 
keyword query Q determined by an IR engine for a single 
text attribute d which is viewed as a text document. k is a 
single keyword in Q, tf is the term frequency of k in the 
value of text attribute d, df is the document frequency for 
keyword k which is the number of tuples in d’s relation with 
k appearing in d’s value, dl is the document length which is 
the number of characters of the value of d, avdl is the 
average length of the value of text attribute d, N is the 
number of tuples in d’s relation and s is a constant number 
of value usually 0.2. Now, let D be the set of all the text 
attributes of an answer tuple tree T. The score assigned to T 
with respect to the query Q is calculated using the aggregate 
function combine as follows: 
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[3] identified four important normalization factors that 

can improve the keyword search effectiveness:  
1) In Formula 3, using the raw size(T) can be sub-

optimal and might not rank the relevant answers accurately. 
[3] proposed a normalized size(T) denoted by Nsize(T) as 
defined below: 
 

                 
       

       
 

(4) 

 
where avgsize is the average T size across all the answer 
tuple trees.  

2) The second issue addressed by [3] is the average 
document length avdl in Formula 2. As discussed in that 
paper, the current definition of avdl only considers average 
text attribute length within the local text attributes. 
However, each text attribute has its own avdl which could 
be very different from another text attribute, consequently 
this could affect the relevance ranking of the answer tuple 
trees from different candidate networks. To resolve this 
issue, [3] proposed a normalized avdl denoted by Navdl 
which considers average text attribute’s length within both 
local and global document collection as defined below: 
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3) The third issue addressed by [3] is with the document 
frequency df and total number of tuples N in Formula 2. As 
discussed in [3], the same keyword term might have very 
different document frequencies in different document 
collections. Also N for different relations could be very 
different. To resolve these issues, [3] proposed global 
document frequency df 

g
 and global document count N 

g
. df 

g
 

is the total number of text attributes’ values containing the 
keyword and N 

g
 is the total number of all text attributes’ 

values in the entire database. 
Due to the lack of space we refer the user to [3] for the 

fourth normalization factor. The final scoring function for 
tuple tree T with respect to query Q is obtained by replacing 
size(T) with Nsize(T), avdl with Navdl, df with df 

g 
and N 

with N 
g
. Comparing to the early works of  [1,2], this ranking 

function has significantly improved the effectiveness of 
keyword search over relational databases.  

IV. TWO IMPORTANT FACTORS TO FURTHER 

IMPROVE THE RANKING FUNCTION 

The original IR-style relevance ranking for an individual 
text-attribute and all the proposed normalization factors, 
were primarily based on the different keywords’ statistics 
such as local and global text-attribute frequencies, inverse 
local and global text-attribute frequencies and text-attribute 
length. We have identified two other important factors, 
namely keywords proximity and keywords n-grams that once 
incorporated into the ranking function, can improve the 
search’s effectiveness. 

A. Query Keywords Proximity 

An important factor that should be incorporated into the 
existing relevance ranking function for relational databases 
is the keyword proximity which rewards a text attribute 
where the matched keywords are in the smallest proximity 
from one another. Previous works in KSRDBs [7, 8] have 
taken into account and introduced the notion of keyword 
proximity search mostly for inter-collection proximity (i.e. 
the distance between keywords found in different text 
attributes across the relational database). This has been done 
by assigning different weights to the nodes containing the 
keywords and the edges connecting them and searching for 
the minimum connected tree which collectively contain all 
the keywords. These approaches have significantly 
improved the search effectiveness. In this paper we consider 
IR-style keyword proximity search within a document and 
have adopted it for intra-collection keywords proximity 
search in relational databases (i.e. the distance between 
keywords found within a target text attribute). This is 
crucial when querying databases with long-string text 
attributes such as movie summaries, memos, product 
descriptions etc. We have used the definition for keyword 
proximity proposed in [5] as follows: 

Definition 9 [5] defines minimum pair distance 
proximity as the smallest distance of all the pairs of distinct 
matched query keywords. It is denoted by MinDist(Q,D) 
and read as minimum keyword pairs distance of document 
D with respect to query Q. The formal definition is as 
follows: 

                                        
 

(6) 

where       and            is the length of the shortest 
segment between k1 and k2 (i.e. k1-k2 segment).  

 
i. Incorporation of Keyword Proximity into Relevance 

Ranking Function 

As mentioned in the previous section, the small 
proximity of matched query keywords in a document should 
reward that document by promoting its relevance ranking 
score. We cannot simply add proximity measure values to 
the values of the ranking function since these two quantities 
are not comparable as explained in [5]. Therefore, the 
proximity function, MinDist, should be transformed to a 
function that produces values that are comparable with 
relevance ranking scores and would reasonably impact the 
relevance values. Let   be the transformation function and 
       be the new transformed function also referred to as 
adjustment factor by [5]. Therefore, we will have: 
                      . As proposed by [5] there are 
two criteria that must be met by the new transformed 
function      : 

1) As mentioned above        should positively 
impact the relevancy of the document to the query by 
promoting its relevance ranking score (i.e. the smaller the 

MinDist the larger       ). 

2) The effect of MinDist on    should drop quickly as 
the distance gets smaller past some point and its effect 
should become constant as the distance becomes larger 
beyond some point. These two constraints lead to the 

following definition for   defined by [5]: 
 
                                    

 
(7) 

We have adopted this definition for   as our adjustment 
factor to be added directly to the ranking function, Formula 
2. As we will see in the experiment section the new ranking 
function has improved the effectiveness of the keyword 
search over relational database. 

B. Keywords N-grams 

Many users searching for information using keyword 
search might misspell the query term or might only know 
the partial spelling of the keyword(s). More importantly 
these keywords might have been misspelled in the target 
text attributes’ values that the search is performed against. 
To demonstrate these two problems, consider the following 
three examples: 

1) Assume a user is searching for action movies 
featuring actor John Travolta and is not sure about the 
correct spelling of the name of the actor. Therefore, he 
might perform his search by typing for example keyword 
sequences such as “Actions Travelta” or “Actions 
Traveltha” instead of “Actions Travolta”. This could result 
in the failure of finding the intended inter-connected tuples 
depending on which SQL predicate (such as LIKE, 
CONTAINS or FREETEXT ) was used to implement the 
search system.  



 

 

 

2) Assume a user is searching for thriller movies 
featuring a German actress Martina Gedeck. If the targeted 
movie database has inconsistencies in how the actress name 
has been spelled (e.g. Gedack, Gedek, etc.), this could 
negatively impact the effectiveness of the keyword search as 
the tf and idf factors of Formula 2 will not be accurate due to 
possible mismatching between query keywords and the 
keywords in the text attributes’ values. 

3) Similar to the second problem above, if the values 
of a target text attribute contains different variations of the 
same verb or noun (e.g. verb category and its variations 
such as categories, categorization, etc.), this could also 
negatively impact the effectiveness of the keyword search as 
the tf and idf factors of Formula 2 will not be accurate due to 
possible mismatching between query keywords and the 
keywords in the text attributes’ values. 

To address these issues we have computed the N-grams 
of the keywords both in the values of the target text 
attributes and in the query itself and incorporated them to 
the ranking function as follow: 

We incorporated the N-grams (in particular the 
quadgrams) of the keywords to the Formula 2 by updating 
the tf and idf not only when we encounter the exact search 
terms, but also when we encounter the variations of the 
corresponding terms generated by the quadgrams. Our 
experiments show that the modified version of Formula 2 
will further enhance the keyword search effectiveness. The 
final ranking algorithm is shown in Figure 1. To decide 
which N-gram to use, one should consider the nature of the 
text, language in which the text is written and other factors. 
Even though shorter N-grams such as unigrams, bigrams 
and trigrams could perform very well on keyword matching, 
based on various experiments performed using our dataset 
and sample queries, we decided to only consider quadgrams 
because almost always a match between the first quadgram 
of a query keyword and the first quadgram of a term in the 
text attribute was a true match (i.e. the two terms were 
related or varied slightly due to misspellings).  
 
Algorithm2: Relevance Ranking Algorithm  
Input: Keyword query Q, a set of answer tuple trees T’s  
Output: A ranked set of answer tuple tree. 
1: T-Set //  set of answer tuple trees T’s 
2: T-Ranked-Set //  a priority queue to store the set of              
3:                        // ranked answer tuple trees T’s 
4:       // query keywords  
5:  k_Quadgrams  //a set of all the quadgrams for keyword k            
6:  For each ki in Q 
7:     computeQuadgrams(ki) 
8:     ki_Quadgrams.update    
9:   end for 
10:  For each ki in each text_attribute 
11:     computeQuadgrams(ki) 
12:     ki_Quadgrams.update    
13:  end for  
14:   For each T in T-Set          
15:      T-Ranked-Set .push(T, Score’(T,Q))  // Score’(T,Q) is 
16:      // the modified version of Formula 3 after applying   
17:     // Quadgrams and        to Formula 2.  
18:    end for  
19:   Return  T-Ranked-Set 

Figure 1.  Relavance Ranking Algorithm. 

V. EXPERIMENTS 

We used the IMDB [9] dataset to perform our 
experiments. We designed and implemented a relational 
database corresponding to the IMDB schema and populated 
the database with a small portion of raw text files 
downloaded from IMDB. In our schema we included plot_ 
summary text attribute which has long string values in order 
to be able to create queries for evaluating the effect of 
Keywords Quadrams and keywords proximity which are 
both more effective on text attributes containing long 
strings. The IMDB schema we used is shown in Table I. 

TABLE I.  IMDB DATASET 

IMDB Schema              # of Rows 

Actors(actorID, actor)                   2000 
Directors(directorID, director)                                                        1200 
Movies(movieID, title, directorID, summaryID)                              4000 
Cast(movieID, actorID)                                                                    8345 
MovieCategories(movieID, genre)                                        6126 
PlotSummary(movieID, summary)                   4000 
ActorPlay(actorID, character, movieID)                   7310                   

 

When populating our database we purposely misspelled the 

names of some of the actors/directors/characters/titles and in 

the plot summary of the movies, we changed some of the 

terms to different forms (but all generated from the original 

terms). We created two types of queries; 1) Type I queries, 

targeting both short and long text attributes. 2) Type II 

queries, only targeting short text attributes (Please see Table 

II below). We then formulated 50 queries, 25 per each type. 

To assess the effectiveness of our approach with comparison 

with the previous works we used two measures: 1) Number 

of top-1 search results that are relevant denoted by #Rel in 

Table III. It shows how well the system retrieves one 

relevant answer. This metric is used for ranking tasks in 

which the user is looking for a single or a very small set of 

relevant answers in a large collection [6]. We chose this 

metric to evaluate type I queries since the user’s primarily 

intention is to find a single movie. For example a user 

searching for a particular movie which has forgotten the 

name for, but remembers the genre of the movie and knows 

what the movie is about, would perform the search by 

entering the genre of the movie and few keywords 

describing the movie (e.g. query 4 in table2). 2) 11-point 

precision/recall (i.e. precision at recall level of 0.1). This 

measure shows the effectiveness of our system in retrieving 

top10 answers. We chose this metric to evaluate type II 

queries since the user’s primarily intention is to find a set of 

relevant movies. For example a user searching for a set of 

movies in a certain category in which a particular actor has 

played, would perform the search by entering the genre of 

the movie and the name of the actor  (e.g. query 7 in table2).  

 

 

 

 

 



 

 

TABLE II.  QUERY TYPES 

 Type I queries  Type II queries 
1 Summary 7 actor, genre 

2 Summary, director 8 actor, director 

3 Summary, actor 9 director, genre 

4 Summary, genre 10 actor, director, genre                            

5 Summary, actor, 
genre 

11 actor, character 

6 Summary, 
character 

  

In order to identify the relevant answers in our database 
we use pooled relevance judgment used in [3] as follows; 
We ran all four algorithms for each query (BA: base 
algorithm Formula 3, BA+KP: base algorithm + keywords 
proximity, BA+KQ = base algorithm + keywords quadgrans 
and BA+KP+KQ = base algorithm + keywords proximity + 
keywords quadgrans) and merge their top20 results. We 
then manually judged and selected relevant results for each 
query out of the 80 candidate results. We chose pooled 
relevance judgment as our standard for evaluation because 
only the users can determine if a search result satisfies the 
query’s need or not. 

To evaluate the effectiveness and impact of keyword 
proximity and keyword quadgrams, we purposely submitted 
12 out of 25 queries containing misspellings for type II 
queries. For type I queries, we submitted 12 out of 25 
queries containing misspellings and phrases with different 
keywords’ variations. Table III shows the number of top-1 
search results for type I queries for each algorithm and 
Figure 2 shows the 11-point precision/recall graph for type 
II queries for BA and BA+KP+KQ algorithms.  

TABLE III.  IMPACT OF KEYWORDS PROXIMITY AND QUADGRAMS ON 

NUMBER OF TOP-1 RESULT 

 BA BA+KP BA+KQ BA+KP+KQ 

#Rel 8 12 13 16 

 

 

Figure 2.  11-point Precision/Recall. 

We can see from Table III that BA+KP+KQ algorithm 
outperformed the base algorithm BA for type I queries. We 
observed that many of the relevant answers to the queries 
targeting the plot summary, which contained misspelled 
keywords or keywords which were located apart from one 
another, were not in the top-1 search results for BA, and in 
fact they were not even in the top-10 results. We can also 
see from Figure 2 that BA+KP+KQ algorithm outperformed 
the base algorithm BA for type II queries as well.    

VI. CONCLUSIONS 

In this paper we discussed keyword search over relational 
databases, in particular the effectiveness aspect of it and 
how to enhance it. We gave an overview of how the answers 
to a keyword query are found in a relational database and 
how they are ranked in the order of their relevance to the 
query.  The first couple of works in this area only consider 
the size of the tuples when ranking the answers. The more 
recent works in the area have addressed the shortcomings of 
the earlier works in terms of effectiveness by leveraging the 
state-of-the-art IR-style ranking techniques already provided 
in modern relational database systems and further improved 
it by few proposed normalizations factors. We identified 
two other important factors: keyword proximity and 
keyword quadgrams that should be incorporated into the 
ranking function. Our experiments show that incorporation 
of each of these factors improves the effectiveness of the 
ranking function. We observed that the base algorithm was 
not able to rank the most relevant answers highest if the 
given query contained misspellings and especially if the 
target text attribute includes keyword terms apart from one 
another.  

In our future work we would like to employ more 
advanced state-of-the-art IR ranking strategies in ranking 
keyword search results returned from relational databases. 
Another area, which we are currently investigating and 
which requires additional research to be done, is the 
effectiveness of keyword search across heterogeneous 
relational database. 
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