

Keyword Extraction using Word Co-occurrence TIR 2010, Bilbao 31 August 2010

Christian Wartena (Novay) Rogier Brussee (Univ. of Applied Sciences Utrecht, presenter) Wout Slakhorst (Novay)

Problem description

- Keywords used for organising and retrieval of documents (including non textual ones)
- Problem:

Determine keywords automatically

- Operational problem:
 - Define relevance measure of terms
 - Select collection of terms based on relevance
 - Here, just rank

Keywords, world knowledge, informativity

- Relevance of term as keyword depends on:
 - Importance of term for the document
 - **Discriminative power** of term within *document collection*
 - A priori criteria
 - in a thesaurus
 - right word class,
 - non stopword,

World knowledge from statistics

- Problem: What can we do if we **do** have access to large document collection ?
 - assuming it is a natural document collection
- Importance in the doc collection is (hopefully) a proxy for the importance of terms in "the world".
 - Importance w.r.t. everything
- Statistics of the collection becomes a source of world knowledge
 - OK to use broad external world knowledge
 - E.g. word class of terms

Predicting the term distribution

- **keyword** is short summary of content of a document
- Use **term distribution** of the document as proxy for the content
 - Bag words model.
 - Distributional hypothesis (Harris 1954)
- Good keywords should predict the term distribution of the document

Everything is a distribution

• Term distribution of a document:

- $-q_d(t)$ is the term distribution of d
- "The fraction of term occurences found in *d*, matching *t*"

• Document distribution of a term

- $-Q_z(d)$ is the document distribution of z
- "The fraction of term occurences matching z, found in d"
- Background distribution of the corpus

-q(t) is the fraction of term occurences matching t

Co-occurrence distribution of a term

• Co-occurrence distribution of a term

$$\overline{p_z}(t) = \sum_d Q_z(d) q_d(t)$$

• Average distribution of terms co-occuring with *t*.

Co-occurrence of tags "average tag cloud"

Co-occurrence of tags "average tag cloud"

Co-occurrence of tags "average tag cloud"

Relevance measure for terms:

- Relevance measure for term z
- importance:
 - Closeness of P_z to document distribution q_d
- Specifity
 - Awayness of P_z from background q
- \rightarrow need to specify distance measure!

Different distance measures for distributions

- Kullback Leibler divergence D(p||q)
 - #bits per term saved by compression on a term stream using true distribution p instead of estimate q.
 - Infinite if p is not divisible by q!
- Jensen Shannon divergence JSD(p,q)
 - #bits per term saved by compression using streams distributed like p and q seperately instead of mixture
- Naive correlation coefficient r(p,p';q)
 - Cosine similarity of (p-q) and (p'-q)

Relevance measures for terms

• Only weigh closeness of term to document distribution

$$jsd(z,d) = JSD(\overline{p}_z,q_d)$$

• Weigh closeness of term to document and awayness to corpus

$$\Delta(z,d) = D(\overline{p}_z \| \overline{q}_d) - D(\overline{p}_z \| q) = \sum_t \overline{p}_z(t) \log(\frac{q_d(t)}{q(t)})$$

Correlate differences

$$r(z,d) = r(p_z,q_d;q)$$

Evaluation

- Use 11000 ACM abstracts with keywords.
 - #keywords = 1—10, av = 4.5
 - 27336 distinct keywords,
 - 21634 used only once,
 - 2 used more than 100 times.
 - 21642, consists of more than one word.
- UIMA and GATE based pipeline

Multiword detection

- Imperative to detect multiwords as candidate terms!
 - Algorithm: detect superabundant combinations taking word class into account using t-test (see Manning and Schütze)
 - detection algorithm identified 4817 multiwords.
 - Results sensitive to multiword extraction algorithm ⁽²⁾, but all methods evaluated suffer ⁽²⁾.
 - Only 52% of articles has a keyword that is selected as a candidate term after preprocessing. 52% is optimal!
 - Selected terms may be perfectly acceptable keywords

Evaluation BBC dataset

- 2879 BBC Program descriptions (Many very short)
 - #keywords = 1 -- 22 keywords, av = 2.9
 - 1748 distinct keywords,
 - 898 used once
 - 8 used more than a 100 times,
 - 792 keywords consist of multi word.
- Multiword detection algorithm found 168 multiwords.
- 57% of articles has a keyword selected as a candidate term

11000 ACM abstracts

2879 BBC abstracts

Conclusion

- Using co-occurence data improves on tf-idf
- Slightly naive correlation coefficient works best.
- There is room for improvement
 - Christian Wartena has recently gotten good results with recommendation by using some clustering, and with doc retrieval on keywords (CLEF).
 - Good multiword detection is really important.