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Abstract—A common strategy to assign keywords to documents
is to select the most appropriate words from the document text.
One of the most important criteria for a word to be selected
as keyword is its relevance for the text. The tf.idf score of a
term is a widely used relevance measure. While easy to compute
and giving quite satisfactory results, this measure does not take
(semantic) relations between words into account. In this paper we
study some alternative relevance measures that do use relations
between words. They are computed by defining co-occurrence
distributions for words and comparing these distributions with
the document and the corpus distribution. We then evaluate
keyword extraction algorithms defined by selecting different
relevance measures. For two corpora of abstracts with manually
assigned keywords, we compare manually extracted keywords
with different automatically extracted ones. The results show that
using word co-occurrence information can improve precision and
recall over tf.idf.

I. INTRODUCTION

Keywords provide a concise and precise high-level summa-
rization of a document. They therefore constitute an important
feature for document retrieval, classification, topic search and
other tasks even if full text search is available.

Both the importance and cost of manual annotations have
led to considerable interest in automatic keyword extraction.
The basic idea is to select words from a text that gives a good
impression of its content. Many keyword selection criteria
have been formulated using either properties of the word in
the text and collections of texts or using external resources
like thesauri. In most approaches however, the main feature
is the relevance of the word in the text as expressed by the
classic tf.idf –value.

The tf.idf -measure combines two aspects of a word: the im-
portance of a word for a document and its discriminative power
within the whole collection. These two aspects match well with
the general intuition for suitability of words as good keywords.
However, the tf.idf measure heuristics assume that words are
completely independent. We will show in the following that
there is room for improvement if we also take correlations
between words into account. For the discriminative power of
a keyword, tf.idf uses the number of documents in which a
word is used. The smaller the number, the more distinguishing
the word is. However, we can be more precise. A word that
occurs in a number of documents on the same topic has
more discriminative power than a word occurring in the same
number of documents but scattered over different topics. In
the following we will introduce co-occurrence distributions
of words that encodes information about related words. We

then show that these distributions can be used to measure the
importance and discriminative power of a term.

The paper is organized as follows: In section II we give
an overview of the state of the art in keyword extraction.
In section III we introduce co-occurrence distributions and
show how these distributions can help to include co-occurrence
information in the definition of relevance of a (key)word for
a text. Section IV shortly presents the preprocessing that is
done to extract candidate terms from the texts. In section V
we evaluate three possible relevance measures for keyword
extraction on two datasets.

II. RELATED WORK

Extracting keywords from a text is closely related to rank-
ing words in the text by their relevance for the text. To
first approximation, the best keywords are the most relevant
words in the text. Determining the right weight structure
for words in a text is a central area of research since the
late 1960’s ([1]). In 1972 Spärck Jones (reprinted as [2])
proposed a weighting for specificity of a term based on
1 + log(#documents/#term occurrences). This term weight-
ing, which has become known as tf.idf, is subsequently refined
in [3], studied in the light of latent semantic analysis by [4],
given a detailed statistical analysis by [5], and a probabilistic
interpretation by [6]. An information theoretic explanation of
tf.idf is given by [7].

Keywords are not simply the most specific or most distin-
guishing words of a text, as keywords are (at least partially)
intended for human readers with their own. Other features
besides frequencies counted in a corpus of text may therefore
also play a role in keyword selection. If keyword extraction
is treated as a supervised machine learning problem the inte-
gration of different types of features is straightforward. This
approach to keyword extraction was proposed by [8] and [9]
and subsequently followed by many others. In [8] 4 different
features are used: term frequency, collection frequency, relative
position of the (first occurrence of) the word in the text, and
number of times a term is used as keyword. In subsequent
work the value of other features is studied. In [10] and [11]
the average tf.idf value of surrounding words and the number
of phrases modifying and modified by the given key phrase is
used as an additional feature.

Mihalcea and Tarau [12] use the sentence structure of the
text in a way somewhat similar to the co-occurrence methods
of this paper. For each document a graph of terms is build in



which the link strength is determined by the probability that
the terms occurs in the same sentence. In the same spirit [13]
compute for each word the distribution of words co-occurring
in the same sentences and compare this distribution with the
general term distribution to detect terms with special behavior.
The last two techniques are designed to work with relatively
long texts. In the following we will however concentrate
mainly on (very) short abstracts.

In this paper we will not follow the machine learning ap-
proach, but concentrate on a single measure for the suitability
of a keyword for a document. The reason for this is twofold.
In the first place there are many situation in which keyword
extraction could be useful but in which no training data are
available. In the second place, the measures we propose in
this paper can be used in a machine learning approach and
can potentially improve results in this setting as well.

III. DISTRIBUTIONS OF WORDS
CO-OCCURRING WITH (KEY)WORDS

We will use co-occurrence of words as the primary way of
quantifying semantic relations between words. According to
the distributional hypothesis ([14], [15]) semantically similar
words occur in similar contexts, i.e. they co-occur with the
same other words. Therefore rather than using the immediate
co-occurrence of two terms as a measure for their semantic
similarity we will compare the co-occurrences of the terms
with all other terms. We formalize this intuition by defining
a so called co-occurrence distribution of each word which is
simply the weighted average of the word distributions of all
documents in which the word occurs. We then operationalize
the “semantic similarity” of two terms by computing similar-
ity measure(s) for their co-occurrence distributions. The co-
occurrence distribution of a word can also be compared with
the word distribution of a text. This gives us a measure to
determine how typical a word is for a text.

A. Basic Distributions

We simplify a document to a bag of words. Thus, consider a
set of n term occurrencesW each being an instance of a term t
in T = {t1, . . . tm}, and each occurring in a source document
d in a collection C = {d1, . . . dM}. Let n(d, t) be the number
of occurrences of term t in d, n(t) =

∑
d n(d, t) the number

of occurrences t, and N(d) =
∑

t n(d, t) the number of term
occurrences in d. We define probability distributions

Q(d) = N(d)/n on C
q(t) = n(t)/n on T

that measure the probability to randomly select a term or
a source document. In addition we have the conditional
probability distributions

Q(d|t) = Qt(d) = n(d, t)/n(t) on C
q(t|d) = qd(t) = n(d, t)/N(d) on T

The notation Qt or Qt(d) for the source distribution of t
emphasizes that it is the distribution of source documents

of a fixed term t, whereas the notation Q(d|t) emphasizes
the interpretation as the conditional probability that a term
occurrence has source d given that the term is t. Likewise the
notations qd and qd(t) for the term distribution of d emphasize
that it is the distribution of terms in a fixed document d,
whereas q(t|d) emphasizes the interpretation as the probability
of an occurrence of term t given that the source is d. Other
probability distributions on C and T will be denoted by P and
p with various sub and superscripts .

B. Distribution of Co-occurring Terms

Consider a Markov chain on T ∪ C having only transitions
C → T with transition probabilities Q(d|t) and transitions
T → C with transition probabilities q(t|d). It allows us to
propagate probability distributions from terms to document
and vice versa.

Given a term distribution p(t), the one step Markov chain
evolution gives us a document distribution Pp(d). This is the
probability to find a term occurrence in a particular document
given that the term distribution of the occurrences is p

Pp(d) =
∑
t

Q(d|t)p(t).

Likewise, the one step Markov evolution of a document distri-
bution P (d) is the term distribution pP (t) =

∑
d q(t|d)P (d).

Since P (d) is the probability to find a term occurrence
in document d, pP is the P-weighted average of the term
distributions in the documents. Combining these, i.e. running
the Markov chain twice, every term distribution gives rise to
a new term distribution

p̄(t) = pPp(t) =
∑
d

q(t|d)Pp(d) =
∑
t′,d

q(t|d)Q(d|t′)p(t′)

In particular, starting from the degenerate “known to be z”
term distribution pz(t) = p(t|z) = δtz (1 if t = z and 0
otherwise), we get the distribution of co-occurring terms or
co-occurrence distribution p̄z

p̄z(t) =
∑
d,t′

q(t|d)Q(d|t′)pz(t′) =
∑
d

q(t|d)Q(d|z).

This distribution is the weighted average of the term distribu-
tions of documents containing z with weight the probability
Q(d|z) that an instance of term z has source d.

If we run the Markov chain twice on the document distri-
bution qd(t) we get the weighted sum of the co-occurrence
distributions by linearity:

q̄d(t) =
∑
d′,t′

q(t|d′)Q(d′|t′)q(t′|d) =
∑
z

q(z|d)p̄z(t).

The distribution q̄d can be seen as a smoothed version of qd.
If two terms have similar co-occurrence distributions, i.e. if

they occur in the same contexts, words are arguable closely
related, usually semantically. The probability measure p̄z is
similar to the setup in [16, section 3] to detect semantic
similarity. However it is more refined because we keep track
of the density of a keyword in a document rather than the mere
occurrence or non occurrence of a keyword in a document.



C. Finding Keywords by Comparing Word Distributions

We follow the common idea that good keywords have two
properties: they have importance for the document and they
have discriminative power in the whole collection. These are
exactly the two components of the tf.idf measure. For both
criteria we aim to find an alternative measure that takes the
relations between words into account, and it is for this purpose
that we introduced the co-occurrence distribution.

To express the relevance of a term for a document we
have several possibilities. We can compare the co-occurrence
distribution of the term with either the term distribution qd or
with its smoothed variant q̄d. In addition we have various pos-
sibilities for expressing the similarity between distributions.

Discriminative power can also be expressed with help of
co-occurrence distributions: a term is likely to be less dis-
criminative if its co-occurrence distribution is more similar to
the background distribution q. Terms z, for which p̄z has a
large divergence from q, tend to be more specific and have
higher discriminative power.

Various divergences are natural (dis)similarity measures for
distributions. The Kullback-Leibler divergence of probability
distributions p and q is defined as

D(p||q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
if q(x) = 0 implies p(x) = 0 and ∞ otherwise. Note that
D(p||q) is asymmetrical. The Jenson-Shannon divergence of
p and q is defined as: JSD(p|q) = 1

2D(p||m) + 1
2D(q||m)

where m = 1
2p + 1

2q. It is symmetrical, always finite and
nonnegative. We refer to [19, sec. 2.3] for details. In previous
work ([17], [18]) the divergence of co-occurrence distributions
outperformed direct methods to measure the co-occurrence
like cosine similarity.

To compare the co-occurrence distribution p̄z of a term
z with the word distribution qd of a text d one cannot
use the Kullback-Leibler divergence D(p̄z||qd) since typically
D(p̄z||qd) =∞. In a first approach, we therefore rank words
from the text by minimizing

JSD(p̄z||qd). (1)

Though ranking words according to their Jenson-Shannon
divergence to the word distribution of a document gives
acceptable keywords, the results are worse than those obtained
by simply using tf.idf. To improve the results we also have to
take the discriminative power of the keywords into account.
The obvious way to do this is to compute the divergence
of the the co-occurrence distribution p̄z with the background
distribution q. If the term z occurs with equal probability in all
sorts of texts this divergence will tend to be small. However,
if z occurs only in documents on one topic, it will diverge
strongly from q. Thus, we have to balance minimizing the
divergence to qd and maximizing the divergence to q. We
therefore maximize the difference

∆z,d = D(p̄z||q)−D(p̄z||q̄d) =
∑
t

p̄z(t) log

(
q̄d(t)

q(t)

)
. (2)

This last formula can be computed very efficiently for ranking
words for a text, since the logarithm is independent of z and
only has to be computed once. In this case results using JS-
divergence and KL-divergence are similar. Results improved
significantly by using q̄d instead of qd. By comparing qz with
q̄d we do not test whether d is a typical context for z but
whether the words in d are related to z.

In (2) we effectively try to match peaks in q̄d with peaks in
p̄z , where peaks in the first case are relative to the background
distribution. This gives rise to an alternative in which we do
not try to match p̄z and q̄d/q, but the absolute differences
p̄z− q and p̄d− q. This idea can be expressed by a correlation
coefficient that can be understood in the following way. First
we move our co-coordinate system such that the back ground
distribution is in the origin. Then we compute the cosine
between the document and the keyword vectors.

r(z, d) =

∑
t(q̄d(t)− q(t))(p̄z(t)− q(t))√∑

t(q̄d(t)− q(t))2
√∑

t(p̄z(t)− q(t))2
. (3)

IV. PREPROCESSING

The quality of the keyword extraction procedure depends
highly on the ability to determine the right candidate terms.
We implemented both preprocessing and keyword ranking in
the UIMA framework [20], [21]. Lemmatization and part-of-
speech tagging were delegated to the Tree Tagger [22].

As discussed above, we treat a document as a probability
distribution over words. However, since we are interested in
the topics of the text rather than the linguistic or stylistic
properties, we restrict the distribution to the open class words,
i.e. nouns, adjectives, verbs (excluding auxiliary verbs), proper
names and adverbs. Moreover, words are reduced to their
lemma i.e. their canonical lexical form (not to their stem or
root) to compute the term distribution of the document. Finally,
to make computations more efficient, we reduce the set of
lemmas to those occurring at least 5 times in the corpus. In all
distributions used, these words will have very low probabilities
and will not contribute much to the divergences.

Our preprocessing also includes a multiword detection and
a detection of names of persons and companies. The latter is
is done using some lists of frequent names and heuristic rules.
Multiwords are detected roughly following the approach from
[23]. Though this might not be the optimal approach for our
purpose, the results seem to be good enough to generate a
candidate term set to compare different ranking algorithms.

Not all words are suited as keyword. In particular, ad-
verbs and adjectives are not commonly used as keywords.
In addition, proper names that are important for a document
usually are added to the meta-data of the document, but not
as keyword. Thus we restrict the set of possible keywords to
the nouns and verbs occurring in the text. We stress that for
the distributions representing a document or term we do take
all open class words into account.

V. EVALUATION

We use two evaluation sets: a collection of publicly available
abstracts of computer science article published by the ACM



and a collection of synopses of BBC broadcasts.
The collection of ACM abstracts consists of 10934 texts1.

For each of the articles keywords are available. There are
27336 distinct keywords, 21634 of which are used in the
collection only once, 2 keywords (evaluation and security)
are used more than 100 times. The great majority of all key-
words, 21642, consists of more than one word. Our multiword
detection algorithm identified 4817 multiwords. Each article
has at least 1 and at most 10 keywords, with an average of
4.5 keywords. We consider this set of keyword annotations
as a golden standard and evaluate extracted keywords by
computing precision and recall for this set. Obviously, many
terms which are not selected by the authors or editors of an
article might be good keywords nevertheless. About 52% of
the articles has a keyword that is selected as a candidate term
after preprocessing. Thus the theoretically optimal precision if
only one keyword is selected is 0.52.

The collection of synopses from BBC television broadcasts
is not publicly available and was kindly provided by BBC
Research. The collection consists of the synopses of 2879
programs, and is quite different in nature from the ACM
collection. Many of the synopses are very short and say
virtually nothing about the actual content of the broadcast
(e.g. ”Dominic Arkwright chairs the discussion programme.”).
Moreover, for many broadcasts that are episodes from a series
the synopsis consists of a general part that is identical for all
episodes of the series with a small episode specific part. There
are 1748 distinct keywords, 898 of which are only used once
in the collection. There were 8 keywords used more than a 100
times, and 792 of the keywords consist of more than one word.
The multiword detection algorithm found 168 multiwords.
Each article has at least 1 and at most 22 keywords. 915
programs have only 1 keyword. On average, each article has
2, 9 keywords. About 57% of the articles has a keyword that
is selected as a candidate term after preprocessing.

Though these data sets are not very large, it has to be noted
that most data sets used for keyword evaluation are much
smaller. We observed that results can be completely different
when using subsets with less than 1000 documents.

A. Comparison procedure

Evaluation of keyword extraction algorithms is method-
ologically somewhat problematic ([24]): only about a half
of the keywords that are assigned to the documents can be
extracted from those texts. Moreover, it is known that the
inter documentalists agreement on keywords is usually not
very high. This means that keywords can be perfect keywords,
but that they are not actually assigned to the document.

Notwithstanding these general reservations we will use
precision and recall against manually assigned keywords as
no better possibilities are available to evaluate large volumes
of keyword assignments. Moreover, every algorithm that we
want to evaluate suffers largely from the same problems, which

1The URLs of the used abstracts can be downloaded from
https://doc.novay.nl/dsweb/Get/Document-115737/ACM-URLs.txt

Fig. 1. Precision and recall for 4 algorithms with the ACM data set

makes the comparison between different statistical extraction
methods possible to some degree.

We compare the following methods: tf.idf as the baseline,
and the methods described in equations (1), (2), and (3).
The tf.idf value for a term t in document d is computed
as: tf.idf(t, d) = n(d, t) N

log df(t) where df is the number of
documents d′ for which n(d′, t) > 0.

For each ranking method and for each abstract at most 34
keywords are generated. Precision and recall are computed for
the top n keywords, with 0 < n < 35. Since our candidate
terms are always lemmas and classical keywords are usually
plural nouns and gerunds, we consider singular forms of the
plural in the reference set as a true positive. The difference
between infinitives and gerunds is treated likewise.

B. Results

Figures 1 and Figure 2 give precision and recall for each of
the four algorithms for each cut-off value between 0 and 35.
Table I gives the exact numbers for precision and recall for the
top 5 and top 10 set of keywords for the baseline tf.idf and the
best of the proposed algorithms. Given the completely different
nature of both datasets the similarity of the picture for the
datasets is striking. For the ACM data we see that the proposed
correlation of the co-occurrence distributions is clearly better
than tf.idf. In the case of the BBC data the improvement is
only minor and for the first three keywords performance is
even worse than tf-idf.

A reason for the difference in behavior between the two
datasets could be that the BBC dataset is much smaller.
Therefore the co-occurrence statistics might not be as good
as for the larger ACM dataset. Another likely reason could
be the fact that the BBC keywords were assigned manually,
but that annotators received suggestions for keywords that
are automatically generated from the synopsis. The exact
algorithm used for those suggestions is unknown to us, but
given the popularity of tf.idf it is likely that this measure was
used. This would have the effect that the selection of keywords
is biased towards words with high tf.idf values.

The results show that the best method is the correlation
coefficient given by (3). This eventually could be explained



Fig. 2. Precision and recall for 4 algorithms with the BBC data set

by the fact that humans are more sensible to deviations of the
average than to information gain.

VI. CONCLUSION

We presented three statistical methods to improve keyword
extraction that go beyond the use of tf-idf. All three methods
try to implement the tf-idf strategy of balancing the relevance
for the text with discriminative power. Unlike the classical
tf-idf measure however, we take the relations and context
of words into account by using the so called co-occurrence
distribution. For the task of ranking keyword candidates, this
leads to an improvement over tf-idf based ranking when
evaluated with two substantially different human annotated
datasets: ACM abstracts and BBC synopses. A correlation
coefficient between co-occurrence distributions outperformed
a more principled information theoretic approach.
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