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Abstract—Automatic generation of taxonomies can be useful
for a wide area of applications. In our application scenario a
topical hierarchy should be constructed reasonably fast from
a large document collection to aid browsing of the data set.
The hierarchy should also be used by the InfoSky projection
algorithm to create an information landscape visualization
suitable for explorative navigation of the data. We developed
an algorithm that applies a scalable, recursive, top-down
clustering approach to generate a dynamic concept hierarchy.
The algorithm recursively applies a workflow consisting of
preprocessing, clustering, cluster labeling and projection into
2D space. Besides presenting and discussing the benefits of
combining hierarchy browsing with visual exploration, we also
investigate the clustering results achieved on a real world data
set.
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I. INTRODUCTION

Explorative navigation is a common approach for users
who need to gain insight into large document collections.
Different application scenarios, such as browsing of docu-
ment repositories or organizing search results, benefit from
automatically created topic hierarchies or concept hierar-
chies. We propose an approach build upon a scalable,
recursive clustering algorithm, which is applied on document
sets to generate a topical hierarchy suitable for browsing.
The hierarchy is supplemented with a visual navigation and
exploration aid based on the information landscape visual
metaphor.

Kummamaru et. al. [1] made a survey of various ap-
proaches for automatic taxonomy generation. These methods
can be categorized into monothetic (clustering based on
single features) and polythetic (clustering using multiple fea-
tures) algorithms, as well as into top-down (partitioning) and
bottom-up (agglomeration) approaches. In the survey various
algorithms are divided into methods based on clustering of
documents, clustering of words. and clustering documents
and words simultaneously (also called co-clustering).

Cutting et. al. [2] introduced an approach called
Gather/Scatter to aid the user in information retrieval tasks.
It basically clusters search results to provide the user with

a partitioning depending on concepts present in the search
result set. The user can iteratively refine the search results
by selecting interesting clusters and rerun the clustering
to obtain a new, more detailed partitioning of the selected
search results. Due to favorable user feedback there is still
research going on to improve this idea, like for example by
[3].

Andrews et. al. [4] showed that the InfoSky visualization
technique can aid the user in exploring hierarchically orga-
nized document collections. The visualization is basically a
2D layout of classes and documents where spatial proximity
is a measure for their topical relatedness. The algorithm
employed to generate the layout requires that a hierarchy is
specified externally. However, such pre-defined hierarchies
are usually not available, especially since manually crafted
hierarchies are rare due to the labor-intensive task required
for creating them. For this reason, an automatic generation
of a topic hierarchy appears to be a natural extension of
this concept. Sabol et. al. [5] outlined such an approach,
which will be described in detail from a technical point in
the following.

Since Gather/Scatter and InfoSky proved their usefulness
in aiding the user to explore and navigate document collec-
tions, we envisioned an algorithm for generating a hierarchy
that can be used both for browsing of large document
collections as well as for explorative visualization using the
InfoSky approach. The following feature list defines key
aspects of such an algorithm:
• Hierarchical, top-down, polythetic, document clustering

approach, into which the InfoSky projection procedure
can be directly embedded.

• Dynamic cluster structure on each level of the hierarchy
supporting splitting and merging of clusters.

• Constraints on the maximum and minimum number of
elements per hierarchy level due to usability consid-
erations for hierarchy browsing. Also, this keeps the
computational costs of the InfoSky projection algorithm
within well-defined bounds.

• Scalable to data sets consisting of millions of docu-
ments with a reasonable trade-off between runtime and



accuracy.
• Reasonable cluster labeling to support browsing and

navigation.

To achieve these constraints we introduce a top-down,
recursive, scalable clustering algorithm for creating a top-
ical hierarchy from a document collection. This algorithm
generates the hierarchy by recursively executing a workflow
consisting of preprocessing, flat (i.e. partitional) clustering
with dynamic number of clusters, cluster labeling and pro-
jection. This workflow is first applied on the whole data set,
and then recursively reapplied along the generated clusters
on ever smaller data subsets. The recursion stops at clusters
with document count sufficiently small for direct inspection
by the user.

The preprocessing part consists of feature weighting,
selection and normalization [6]. As flat clustering algorithm
we use growing k-means [7] which is based on clustering
methods such as Neural Gas (generalization of online k-
means) and Growing Neural Gas [8], and which, like for
example the spherical batch k-means introduced by Dhillon
et. al. [9], optimizes the cosine similarity. We have chosen
growing k-means due to its good trade-off between perfor-
mance (linear runtime) and reasonably good accuracy [10],
as opposed to algorithms such as DBScan or Chameleon
which are of quadratic time complexity in their basic form,
and algorithms like BIRCH which is excessively order-
dependent and inaccurate. To reduce the running time even
further we used the heuristic optimizations introduced in
[11]. Another advantage of growing k-means is that it offers
a very efficient way of performing model selection. Due
to its iteratively increasing number of clusters, one can
naturally measure the fitness of the clustering for different
number of clusters. Fitness can be evaluated by internal
validity indices like Bayesian Information Criterion (BIC)
[12] or stability-based approaches like the stability method
[13]. On the fitness curve obtained for different number of
clusters (within the permitted maximum and minimum), we
detect the knee point (or sharp point) to identify the best
fitting model by utilizing DiffKnee [12]. Cluster Labeling
is performed with Jensen-Shannon divergence [14]. Finally,
the projection procedure is basically the same as outlined
for the InfoSky algorithm [4].

The rest of the paper is organized as follows: In section
II an overview approach of our hierarchical clustering algo-
rithm is given. In section III the main workflow components
(preprocessing, clustering, labeling, and projection) are de-
scribed into detail. The experiments section IV provides a
presentation and discussion of the advantages that such an
automatically generated taxonomy offers for browsing and
visualizing document collections. Furthermore, an evaluation
on splits of the Wikipedia used at INEX 2009 is provided.
Finally, in section V we provide a summary and an outlook
on future work.

II. TOP-DOWN RECURSIVE HIERARCHICAL
CLUSTERING ALGORITHM

For the purpose of this paper we define a concept hierar-
chy as a tree structure where the leaves represent documents,
while all higher level nodes in the tree are clusters/concepts.
Our method incorporates a simple recursive, partitional, top-
down clustering approach with constraints on the minimum
and maximum child number at each hierarchy level (which is
the same for sub-clusters and documents). These constraints
limit the branching factor for each cluster node for two rea-
sons: to guarantee a certain runtime behavior of the InfoSky
projection procedure as well as to provide a comfortable
and usable browsing experience for the user. In our method
arbitrary algorithms for document preprocessing, clustering
and labeling may be used. In a final step positioning of
clusters and documents on a 2-dimensional space can be
performed using the InfoSky algorithm.

The algorithm follows a divide and conquer schema.
The initialization includes passing the input data set and
the constraints on the minimum and maximum number of
nodes on each level. The whole input data set, together
with the root node of the hierarchy, is pushed onto the
list of remaining tasks. Tasks are popped from the list
and executed, which generates further sub-tasks. Because
tasks are independent, several can be popped and executed
simultaneously in the case there are more processing cores
available. The algorithm terminates when no more task are
executing and the task list is empty. Processing of each task
consists of the following steps:

Step 1: Preprocess the documents belonging to the task.
The preprocessing transforms the documents in a form
appropriate for executing the following steps.

Step 2: Cluster the documents belonging to the task using
an arbitrary flat clustering algorithm. The clustering creates
a list of clusters with documents attached to clusters as direct
children.

Step 3: Run splitting and merging of clusters to fulfill the
following constraints:
• The number of clusters must be between the given con-

straints. If there are fewer clusters than the minimum
constraint requires, clusters are split (biggest or least
coherent cluster). If there are more cluster than the
maximum allowed number, clusters are merged (two
most similar clusters).

• The number of documents belonging to each cluster
must be between the provided limits, or be at least 1.5
times the upper limit so that the degree of freedom for
a new recursive level is large enough for meaningful
clustering. If these conditions are not met, cluster split-
ting and merging is performed until they are satisfied.

Step 4: Clusters having the number of documents between
the required minimum and maximum are considered com-
pleted and will not be clustered recursively. All other clusters



should have a number of documents at least 1.5 times the
upper limit. These are pushed on the task list to create new
recursive levels of sub-clusters.

Step 5: Label the clusters.
Step 6: Project the clusters into a 2 dimensional space

by using the InfoSky algorithm. For clusters which are
completed also project the documents.

III. HIERARCHY LEVEL GENERATION

In this section we will describe the algorithms used to
process a task.

A. Preprocessing

The preprocessing includes weighting, followed by feature
selection and normalization. For weighting we use the well-
known BM-25 schema [6]. For feature selection we utilize
quantil pruning, where those features of a document vector
are removed which fall below a given quantil of the l1-
norm of the vector. Finally, the vectors are normalized to
unit length effectively projecting them onto a hypersphere.

B. Clustering

For high-dimensional data like text documents the direc-
tion of a vector is more important than its actual length. For
this reason, the most common cost function for a k-means
on the unit-sphere (spherical k-means) tries to maximize the
cosine similarity between the data samples and their most
similar centroid.

One variant of a spherical k-means is the growing k-
means (algorithm 1). Given a data set X and a number of
clusters K it outputs centroids C with assignments of data
samples to the clusters Y . The algorithm starts with 2 initial
centroids and incrementally adds new centroids until K
clusters are created. For each number of clusters two loops
over the data set are performed. The first one to find the
nearest centroid for each sample and to update this centroid
utilizing an online adaption with a decreasing learning rate
(cyn = cyn + ηxn). The second loop calculates the current
cluster assignments Y and the average similarity of the data
samples to their centroids (sk). Finally, the centroid with the
least average similarity to its data samples is identified, and
in the middle between this centroid and its most dissimilar
data sample a new node (i.e. cluster centroid) is inserted.

A considerable reduction in effective runtime is achieved
by using a simplified update function compared to the
geometrically correct update of cyn =

cyn+η(xn−cyn )
||cyn+η(xn−cyn )|| ,

as well as by employing a heuristic that postpones the
normalization on the cluster centroid until the length of the
vector gets too long (||cyn || − 1.0 > l). Both heuristics,
introduced in Zhong [11], are valid due to the spherical
nature of the algorithm. As learning rate η we utilized
one that decreases with the square root of the cluster size
(η = 1/|

√
Xk(x)|). We additionally introduce a repulsion

term which pushes the old centroid a little bit away from the

Algorithm 1 Growing Spherical K-Means
input:
X = {x1, . . . , xN} with xi ∈ <d, K, l, η, ν
output:
C = {c1, . . . , cK}, Y = {y1, . . . , yN} ∀ yn ∈ {1, . . . ,K}
steps:
initialize centroids c1 and c2 by a seeding mechanism
for m = 2 to K do

for n = 1 to N do
yp = yn
yn = argmax1≤k≤m x

T
n ck

cyn = cyn + ηxn
cyp = cyp − νxn
if ||cyn || − 1.0 > l then

cyn =
cyn
||cyn ||

for n = 1 to N do
yn = argmax1≤k≤m x

T
n ck

sk = sk +max1≤k≤m x
T
n ck

if m < K then
ci = argmin1≤k≤m S(ck)
xj = argminx∈Xi

xT ci with Xi = {xn|yn = i}
ct =

ci−xj

2 , C = C ∪ {ct}

document, so that a faster and better separation between the
old and the new centroid can be achieved (cyp = cyp−νxn).

As seeding mechanism for the initial two clusters of the
growing k-means a directed randomized method, also known
as k-means++ method, is used [15]. The first seed is taken
randomly from the data set and the others are selected to
maximize the dissimilarity to already selected seeds.

We utilize model selection to find a suitable number of
clusters. Growing k-means provides intermediate results for
each cluster configuration starting with the one consisting
of 2 clusters (one could also start with a user-defined
number of clusters), whereby the fitness of the current
result is measured before each consecutive insertion. In this
way model selection can be performed without having to
execute the clustering algorithm anew for different number
of clusters.

We utilize two different fitness indices. The first one is
the stability method [13] which relates the cluster results
and the prediction results to maximize the agreement be-
tween the labels. Furthermore, we also use the Bayesian
Information Criterion (BIC) as statistical criterion to assess
model fitness [12]. Using those two indices a fitness curve
over the growing cluster number can be computed. However,
the first decisive local maximum does not always deliver
a satisfying cluster number selection. Zhao et. al. [12]
introduced DiffBIC, which is a more substantiated method
to find the sharp point or knee point of such a fitness curve.
We apply the method to both indices and call it therefore
DiffIndex. DiffIndex provides us with the best number of



clusters and if the intermediate cluster results have been
stored, will immediately output the final clustering result.

C. Cluster Labeling

Glover et. al. [14] showed that when external knowledge
is not available Jensen-Shannon divergence seems to provide
very good labeling results. We apply this method for cluster
labeling, however, it should be noted that we did not perform
a detailed evaluation.

D. InfoSky Projection

InfoSky projections algorithm computes a 2D represen-
tation of the cluster hierarchy such that high-dimensional
similarity is represented by spatial proximity in 2D. It was
designed for efficiently projecting large, hierarchically orga-
nized document collections. The algorithm proceeds recur-
sively by positioning clusters on each level of the hierarchy
using a force directed placement (FDP) algorithm, which
has a time complexity of O(n3). The resulting vertices are
inscribed into a Voronoi region belonging to their parent
cluster, which is then further subdivided into smaller, nested
Voronoi areas. The recursion stops when it reaches the leaves
(i.e. documents), which are positioned and inscribed in the
same way as clusters. As long as the number of child nodes
on each hierarchy level has an upper limit (which is here the
case), each FDP run can be considered to execute in constant
time, yielding to a complexity of roughly O(n ∗ log(n)) for
the whole projection algorithm. The detailed description of
the InfoSky method can be found in [4].

IV. EXPERIMENTS

Besides discussing an application scenario involving vi-
sualization, where the hierarchy is used to drive a scalable
projection algorithm, we tested our clustering algorithm on
a Wikipedia split provided at INEX 2009.

A. Application Scenario: Landscape Visualization

In [5] Sabol et. al. give a detailed description of a graph-
ical user interface including a cluster hierarchy browsing
component and a landscape visualization computed by the
described algorithm. In figure 1 an example of such a user
interface is shown.

To assess the benefits provided by the hierarchy of top-
ical clusters and by the similarity layout provided by the
associated information landscape we performed heuristic
evaluation of new functionality during the design phase.
Formal experiments and thinking aloud tests were conducted
at later development phases. Experiments performed in [4]
suggest that the combination of an information landscape
with tree and table widgets does offer advantages in use
cases where the goal is to learn about topical relation-
ships, discover topical clusters and gain an overview of
the previously unexplored data. Experiments described in
[5] focused on explorative browsing in multiple coordinated

Figure 1. An example user interface showing the cluster hierarchy in a
tree and in a landscape.

view environments. Automated zooming and panning to
user’s point of interest were found to be slightly better than
purely manual navigation, however the results turned out to
be less conclusive than expected.

B. Evaluation on Wikipedia splits (INEX 2009)

1) Data: For our experiment we applied the algorithm to
small-scale as well as to the large-scale data of the INEX
xml mining challenge 2009 1. The INEX XML Wikipedia
data set is a split of the English Wikipedia where the
documents have already been preprocessed, and are pro-
vided in a bag-of-words representation including terms and
frequent phrases (specifically term vectors of uni-grams and
bi-grams). The two splits of the English Wikipedia consist
of 54,575 documents as well as 2,666,190 documents.

2) Methods: We used the provided online evaluation tool
of the INEX challenge found at 2 to evaluate our hierar-
chy. Clustering results were evaluated against the category
schema provided by the YAGO especially concerning micro
and macro purity. Our settings for each of the methods were
using BM-25 weighting and a 0.5 quantil pruning as well as
a 0.8 learning rate and a square root weight for the decaying
factor. Furthermore, since the evaluation does not favor
hierarchical structures directly, but allowed multiple clusters
for one document, we assigned each document to each
cluster in its complete parent structure. In the following the
online evaluation tool at INEX 2009 provided us with macro
and micro purity values which are obviously dependent on
the number of clusters, so that we have tried to keep the
cluster number constant on different runs.

3) Results and Discussion: Our resulting hierarchy, con-
sisting of 10,467 clusters for 54,575 documents, was eval-
uated against a YAGO category set of 73,944 categories
and against a reduced set of 12,803 categories. Using the
73,944 categories for evaluation we achieved a micro purity
of 0.3891 and a macro purity of 0.4945 in case of stability
method as fitness measure. For 12,803 categories 0.4295 and

1http://www.inex.otago.ac.nz/tracks/wiki-mine/wiki-mine.asp
2http://inex.de-vries.id.au/scoreboard/



0.5303 were achieved. When using BIC as fitness measure
we achieved 0.4959 and 0.5473 for 12,803 categories in the
ground truth and 0.4493 and 0,4924 for 73,944 categories.
The algorithm was executed on a quad core system with 16
GB RAM and required less than 4 minutes to compute the
hierarchy (including vector loading), while taking advantage
of all CPU cores (except for the top hierarchy level).

In case of the larger data set containing 2,666,190 doc-
uments our hierarchy consisted of 133,704 cluster nodes,
yielding a micro purity of 0.4025 and a macro purity of
0.4457 compared to 348,552 YAGO categories. For the
smaller set of 12,636 YAGO categories we achieved 0.4833
and 0.5359. Runtime was roughly about 2 hours on the same
machine.

We have to admit that the evaluation of the INEX chal-
lenge was not intended to evaluate a hierarchical clustering
solution. Nevertheless, the clusters appear to be reasonable
pure considering the large-scale as well as multiple category
distribution. Especially the clustering quality of higher levels
in the topic hierarchy will disappear in this arithmetically
averaged purity as there are much more leaf clusters than
intermediate clusters. However, clusters nearer to the root
will be of much more interest to the user since those will
have the most influence on the guiding effect. For this
reason the evaluation of our hierarchy should also contain a
schema to assess the correctness of hierarchical relationships
between documents and specifically weight the correctness
or usability of higher levels in the hierarchy.

V. CONCLUSION & FUTURE WORK

Driven by the application scenario, in our approach we
were focused on fast computation of the hierarchy, pro-
viding a browsing structure with reasonable labeling, and
application of a projection algorithm to provide a visual
exploration capability. Usability considerations as well as
the scalability of the projection algorithms placed further
constraints on the hierarchy structure which had to be
addressed. Next development steps might include a dynamic
selection of flat clustering algorithms, more sophisticated
feature selection methods or clustering algorithms with
implicit feature selection, such as the recently published
ROCC algorithm [16]. Furthermore, we want to provide a
distributed implementation of our approach to process Web-
scale document collections. 3
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