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Abstract— One of the central issues in Learning to Rank (L2R) 

for Information Retrieval is to develop algorithms that 

construct ranking models by directly optimizing evaluation 

measures used in IR such as Precision at n, Mean Average 

Precision and $ormalized Discounted Cumulative Gain. In this 

work we propose a new learning-to-rank method, referred as 

RankPSO. This algorithm is based on Particle Swarm 

Optimization. It builds a ranking model able to directly 

optimize evaluation measures used in Information Retrieval. 

To evaluate performance of RankPSO, we have compared it 

with other methods referenced in literature. We have carried 

out an experimental study using Letor OHSUMED dataset. 

The obtained results were analyzed statistically, demonstrating 

that RankPSO has significant improvement in precision 

compared to RankSVM, RankBoost and Regression methods; 

nevertheless, it does not have significant differences with 

AdaRank-MAP, AdaRank-$DCG, List$et and FRank. The 

results show the advantages to use Particle Swarm 

Optimization as bio-inspired algorithm for learning to rank. 

Keywords Information Retrieval, Learning to Rank, Particle 

Swarm Optimization. 

I.  INTRODUCTION 

Ranking is the central problem for many IR applications. 
These include document retrieval, collaborative filtering, key 
term extraction, definition finding, important email routing, 
sentiment analysis, product rating, and anti web spam, 
among others. Specifically, in the Document Retrieval field 
[1], the ranking problem consists of defining a representative 
order among the documents, taking into account relevant 
degree between each document and the user’s query, 
obtaining the retrieval list, in which the relevant documents 
are in the highest positions with regard to less relevant 
document or irrelevant at all.  

This ranking problem is considered as a standing topic of 
research inside the branches of Artificial Intelligence and IR, 

the Learning to Rank (L2R) problem. Many methods of L2R 
have been proposed (i.e. [2], [3], [4], [5]). 

Most of the existing methods used for text retrieval are 
designed to optimize loss functions loosely related to the IR 
performance measures. Ideally, a learning algorithm should 
train a ranking model that optimizes directly evaluation 
measures according to training data.  

Recently, direct optimization of performance measures in 
learning has become a hot research topic. Several methods 
for classification [4] and ranking [3] have been proposed. 

In fact, in this work a new method of L2R, named 
RankPSO, is introduced. It can directly optimize any 
evaluation measures used in IR. This method is based on 
Particle Swarm Optimization (PSO) [6]. The main 
contribution of this paper is the application of such 
optimization technique to the problem of L2R (to the best of 
our knowledge, it has not been applied to this problem), 
obtaining good results compared with other approaches. 

In order to present the algorithm itself, as well as the 
experimentation to evaluate its performance, the rest of the 
paper is organized as follows. In the Section II, it is 
presented a brief description of the problem of L2R. The 
PSO Classic algorithm is detailed in Section III in order to 
contextualize our approach. In the Section IV, the RankPSO 
algorithm is formally described. Section V is in charge of 
introducing the settings of the experimental study that allows 
evaluating the performance of the new proposed algorithm, 
as well as the results obtained, comparing them statistically 
with those from state-of-the-arte methods referenced in 
literature. Finally, in Section VI we conclude this work and 
point out some directions for future research. 

II. LEARNING TO RANK 

Recently, a large number of studies have been conducted 
on L2R and its application to IR. The aim is to automatically 
create a ranking model by using labeled training data and 
machine learning techniques. A typical setting in L2R is that 



feature vectors and ranks (ordered categories) are given as 
training data.  

Existing methods for L2R fall into three categories: the 
Pointwise Approach [7], which transforms ranking to 
classification or regression on single documents; the 
Pairwise Approach [8], which formalizes ranking as 
classification on document pairs; and the Listwise Approach 
[9][10], which directly minimizes a loss function defined on 
document lists. In this category two main alternatives are 
presented: Probabilistic models for ranking and direct 
optimization of evaluation measures. 

From 1994, it has been developed various ordinal 
regression approaches based on machine learning techniques, 
which can be grouped into three categories: (1) Learning of 
multiple thresholds, (2) Learning of multiple classifiers and 
(3) Optimizing pair wise preferences. 

In 2005, the methods that directly optimize the 
performance in terms of an IR measure have captured the 
interest of the scientific community. In this line, three new 
categories on L2R approaches can be found in the 
specialized literature: First, the minimization of loss 
functions upper bounding, considering these loss functions 
defined on IR measures [10][3]. Second, the approximation 
of IR measures by means of an easy-to-handle function [11]. 
Third, and finally, specially designed technologies for 
optimizing non-smooth IR measures. In this category, the 
researchers have worked on three main subcategories: (1) 
Smooth Approaches [12], (2) Smooth Approaches using 
Genetic Programming [5] and (3) Smooth Approaches for 
descending gradient [13].  

III. CLASSIC PSO 

Particle Swarm Optimization (PSO) is a population-
based stochastic optimization technique developed by 
Russell C. Eberhart and James Kennedy in 1995 [6], inspired 
by social behavior of bird flocking or fish schooling.  

Basically, individuals in PSO are named particles. Each 
particle i is composed of a position vector, xi, (coordinates in 
the searching space), a vector of velocity, vi , which defines 
the displacement of that position, and a memory of the best 
solution found by the particle pi. Particularly, the velocity of 
any particle is determined as pi as well as gbest, the global 
memory of the swarm δ (for example, the best among the 
particles). There are models that utilize the best solution of 
one specific neighborhood that is considered only one part of 
the swarm. Those models are known as lbest. The global 
approach is considered in our proposal.  

PSO equations to update the velocity and position of each 
particle i are the following:  

 
   vi

(t+1) = vi
(t) + c1 n1 o(pi-xi

(t)) + c2 n2 o(gbest - xi
(t))           (1) 

 
                          xi

(t+1) = xi
(t) + vi

(t+1),                                (2)  
 

where n1 and n2 are unidimensional vectors formed at 
random numbers in [0,1]. On the other hand, c1 and c2 are 
real numbers known as coefficients of acceleration. The 
operator “o” specifies a Hadamard product among the 

matrixes formed by coordinates of vectors, that is, element 
by element. 

The expression of velocity encloses itself the principal 
PSO contribution that permits it to be classified as a 
paradigm of intelligence with swarm [14].  

IV. DESCRIPTION OF RANKPSO APPROACH 

A. General L2R Framework and �otation 

Let Y = {r1, r2,…, rk} the set of ranks, where k denotes 
the number of ranks. There exists a total order between the 
them, i.e. rk > rk-1> … > r1 , where > is the order relationship. 
Suppose that Q = {q1, q2,…, qm} is the set of queries in the 
training set. Each query qi is represented by a list of terms 
{t1, t2,…, th(qi)}, where h(qi) is the number of them in the ith 
query, and it is associated to a list of retrieved documents di 
= {di1, di2,…, din(qi)} and a list of labels yi = {yi1, yi2,…, 
yin(qi)}, where n(qi) denotes the sizes of lists di and yi, di ⊆ D 
(the set of all rankings for all the queries in Q) and yi ⊆ Y for 
the query qi ∈ Q. dij ∈ di denotes the j

th document in di, and 
yij ∈ yi is the label of document dij. A feature vector φ(qi,dij) 
is created from each query-document pair (qi, dij),  i=1, 2,…, 
m;  j=1, 2,…, n(qi). Finally, the training set is noted as  

( ){ }m
iiii ydqS 1,,
=

= . 

Considering the patterns of the described formulation in 
[3], it is supposed that πi is the prediction made by the 
ranking model on di in terms of the query qi. We use Πi to 
denote the set of all possible predictions on di, and use πi(j) 
to denote the position of item j (i.e. dij). The ranking process 
would concentrate on obtaining a prediction πi ∈ Πi for the 
given query qi and the associated list of documents di using 
the ranking model.  

This ranking model, f, is a real-valued function of 
features, more specifically, a document level function, which 
is a linear combination of the features in a feature vector 
φ(qi,dij): 

                           f (qi,dij) = w
Tφ(qi,dij),                            (3) 

 
where w denotes the weight vector. In the ranking of query 
qi, we assign a score to each of the documents using f(qi,dij) 
and sort out the documents based on their scores. We then 
obtain a prediction πi. 

In this context of L2R, evaluation measures are used to 
measure the goodness of a ranking model, which are usually 
query-based. By this term, we mean that the measure is 
defined on a ranking list of documents with respect to the 
query. These include Mean Average Precision (MAP) [15], 
Normalized Discounted Cumulative Gain (NDCG) [16] and 
Precision at n (P@n) [15] (see Section V.B). 

In this research, a general function E(πi, yi) ∈ [0,1] is 
used to represent the evaluation measures. The first argument 
of E is the prediction πi created using the ranking model. The 
second argument is the list of ranks yi given as ground truth. 
E measures the agreement between πi e yi. Most evaluation 
measures return real values in [0,1]. We note the ideal 
prediction as πi

*
. Note that there may be more than one ideal 

prediction for a query, and we use Πi
* to note the set of all 



possible ideal predictions for query qi. For πi
*∈ Πi

* , we have 
E(πi

*, yi) = 1. 
Ideally, we would create a ranking model that maximize 

the accuracy in terms of an IR measure on training data, or 
equivalently, minimizes the loss function [3] defined as 
follows:  

∑∑
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where πi is the prediction determined for query qi by ranking 
model f. 

B. Algorithm 

In this section, a new method of L2R for IR is formally 
described. This method is based on PSO and is able to 
optimize any evaluation measure used in IR. As mentioned 
before, the algorithm is named RankPSO and it is shown in 
Figure 1. 

RankPSO takes as input a training set S, a performance 
measure E and a number of iterations T. First, RankPSO 
creates a specific swarm of particles and initiates each of 
them randomly; always updating the position vector gbest in 
each iteration. Then, the swarm begins its evolution stage. T 
rounds are executed in which the particles propagated in σ 
dimension, with the purpose of finding the best position 
vector gbest obtained in the searching space.  

Finally, the ranking model f is built with the position 
vector gbest obtained in the last round. Equation (4) represents 
the fitness function used to evaluate the position of each 
particle. This fitness function uses the performance measure 
E and the prediction πi obtained from the application in S of 
the expression (3).  

 

1: Input: ( ){ }m

iiii ydqS 1,,
=

= , E and T 

2: for each particle i do 

3:    Randomly initialize vi, xi = pi 

4:    Update gbest 

5: end for each 

6: for t = 1,…,T 

7:    for each particle i do 

8:       Update i with expressions (5) and (2) 

9:       Evaluate xi on S, with expressions (3) and (4) 

10:         Update pi 

11:       Update gbest 

12:    end for each 

13: end for  

14: Build the ranking model f with the position vector gbest   

15: Output:  f 

Figure 1.  The RankPSO Algorithm. 

The σ value is determined by the number of features 
considered in the ranking models. 

To update the velocity of the particle the classic 
expression (1) is considered, adding an inertial weight w 

proposed by Eberhart and Shi in [17]. The expression would 
be the following: 

 
    vi

(t+1) = w vi
(t) + c1 n1 o(pi-xi

(t)) + c2 n2 o(gbest-xi
(t))       (5) 

 
A proposal is to use w < 1.0, to ensure a decrease of the 

velocity with the time that is impossible if w > 1.0. In [17], it 
is recommended its usage in such a way that decreases with 
the time from 0.9 to 0.4.  

In that way, the algorithm of learning is able to construct 
a ranking model optimizing directly one of the evaluation 
measures used in IR. 

V. EXPERIMENTATION AND EVALUATION 

In this section we present the experimental results of the 
evaluation stage of our proposal in terms of effectiveness on 
OHSUMED collection, a standard collection to test L2R 
algorithms. This analysis is based on direct comparison with 
the main methods that conforms the state-of-the-art in this 
field. As measures for evaluation, we have used also the 
standard MAP, P@n and NDCG at the positions of 1 to 10. 

A. Letor OHSUMED dataset 

The OHSUMED dataset is a subset of MEDLINE, which 
is a database on medical publications. There are 106 queries 
in the collection. For each query, there are a number of 
associated documents. The relevance degrees of documents 
with respect to the queries are judged by humans, on three 
levels: definitely relevant, partially relevant, or not relevant.  
There are 16,140 query-document pairs with relevance 
labels, and 45 extracted features. We extracted 4 features 
from each query-document pair, also standard in the 
literature. Table 1 gives a list of the features.  

TABLE I.  FEATURES USED IN THE EXPERIMENTS ON OHSUMED 

ID Feature Description 

2 ´´)1),(log( titleindqc
dqq i

i
∑ ∩∈

+  

4 ∑ ∩∈
+

dqq

i

i

titlein
d

dqc
´´)1

||

),(
log(

 

8 ´´)1)
)(

||
log(

||

),(
log( titlein

qdf

C

d

dqc
dqq

i

i

i
∑ ∩∈

+⋅  

3 LMIR with DIR smoothing ‘title + abstract’ 

 
c(qi,d)  being the frequency of the query term qi in document 
d, C the collection, df(·) the frequency of a term in a 
document, and |·| the cardinality of the corresponding set. 

B. Evaluation Criteria 

In this evaluation, we have used P@n, MAP and NDCG 
as performance measures because they are widely used in IR. 
Their definitions are as follows: 

 
Precision at position n (P@n). Precision at n measures 

the relevance of the top n documents in the resulting ranking 
with respect to a given query:  

 



.
#

@
n

resultsntopindocsrelevant
nP =  

For example, if the top 10 documents returned for a 
query are {relevant, irrelevant, irrelevant, relevant, relevant, 
relevant, irrelevant, irrelevant, relevant, relevant}, then P@1 
to P@10 values will be {1, 1/2, 1/3, 2/4, 3/5, 4/6, 4/7, 4/8, 
5/9, 6/10} respectively [15].  

 
Mean Average Precision (MAP). For a single query, 

average precision is defined as the average of the P@n 
values for all relevant documents:    

querythisfordocsrelevanttotal

nrelnP

AP

�

n

#

))(@(
1
∑

=

∗

= , 

 
where � is the number of retrieved documents, and rel(n) is a 
binary function on the relevance of the n-th document: 

( )
1,     

0,                  

thif n doc is relevant
rel n

otherwise


= 
 . 

Similar to mean P@n, over a set of queries, we get MAP 
by averaging the AP values of all the queries [15].  

 
$ormalized Discounted Cumulative Gain ($DCG). 

Recently, a new evaluation measure called Normalized 
Discounted Cumulative Gain [16] has been proposed, which 
can handle multiple levels of relevance judgments. While 
evaluating a ranking list, NDCG follows two rules: 

• Highly relevant documents are more valuable than 
marginally relevant documents.  

• The lower ranking position of a document (of any 
relevance level), the lesser value for the user, 
because it is less likely to be examined by her. 

According to the above rules, the NDCG value of a 
ranking list at position n is calculated as follows: 

∑ = +

−
≡

n

j

jr

n
j

Zn�DGC
1

)(

,
)1log(

12
)(  

where r(j) is the rating of the j-th document in the ranking 
list, choosing the normalization constant Zn  in such a way 
that the ideal list gets a NDCG score of 1.  

C. Evaluation 

For evaluating the performance of the proposed method 
and compare it with those obtained by the main approaches 
found in this research field, it was followed the experimental 
setting published in LETOR website. 

For the learning or training process, 5-fold cross-
validation experiments were performed. These prefixed 5-
folds in OHSUMED were taken from the version 
“QueryLevel�orm”. This allows making direct comparisons 
among published algorithms in terms of precision. More 
specifically, RankPSO has been compared in terms of 
performance with those algorithms that have got their 
assigned scores for each ranking function applied to each 
query-document published in the LETOR website (Pointwise 
approach: Regression; Pairwise approaches: RankSVM, 
RankBoost, FRank; Listwise approaches: ListNet, with loss 

minimization, and AdaRank, with direct optimization of IR 
measures). 

The whole experiments were performed taking into 
account MAP as performance measure in the expression (4).  

Fig. 2 graphically shows the obtained efficiency in the 
ranking on OHSUMED, considering MAP as performance 
measure. These results show the good performance of 
RankPSO. Otherwise, the Figure 3 shows the behaviour of 
the values of precision in the ranking for OHSUMED under 
NDCG@1, NDCG@5 and NDCG@10 terms. Table 2 
contains the values obtained in the ranking on OHSUMED, 
considering P@n as performance measure, from 1 to 10 
positions. 

 

 
Figure 2.  Performance on OHSUMED, considering the MAP measure 

 
Figure 3.  Performace on OHSUMED considering the NDCG measure 

 
Algorithms P@1 P@2 P@3 P@4 P@5 

Regression 0.597 0.601 0.577 0.561 0.534 

RankSVM 0.597 0.549 0.543 0.544 0.532 

ListNet 0.652 0.609 0.602 0.575 0.550 

AdaRank-
MAP 

0.634 0.596 0.590 0.589 0.567 

AdaRank-
NDCG 

0.672 0.624 0.598 0.584 0.577 

RankBoost 0.558 0.548 0.561 0.558 0.545 

FRank 0.643 0.620 0.593 0.584 0.564 

RankPSO 0.672 0.619 0.593 0.593 0.579 

TABLE II.  PERFORMANCE CONSIDERING P@1,..., P@5 

 
 
 
 



 
Algorithm P@6 P@7 P@8 P@9 P@10 

Regression 0.505 0.500 0.484 0.475 0.467 

RankSVM 0.525 0.510 0.493 0.492 0.486 

ListNet 0.537 0.527 0.524 0.514 0.498 

AdaRank-
MAP 

0.557 0.539 0.524 0.508 0.498 

AdaRank-
NDCG 

0.556 0.551 0.535 0.521 0.509 

RankBoost 0.530 0.524 0.513 0.502 0.497 

FRank 0.552 0.545 0.525 0.515 0.502 

RankPSO 0.558 0.547 0.533 0.521 0.506 

TABLE III.  PERFORMANCE CONSIDERING P@6,..., P@10 

After obtaining the results of each studied algorithms, 
statistic tests were applied to determine the significance in 
the precision at query level. In this sense, non-parametric 
tests were applied for two related samples, applying the 
Wilcoxon test, even for k related samples, using Friedman 
test. In the tests analysis, the statistic significance was 
considered with p-value<0.05.  

The obtained results for LETOR OHSUMED allow to 
confirm that RankPSO has significant improvement in terms 
of precision compared to RankSVM, RankBoost and 
Regression methods; nevertheless, it do not have significant 
differences with AdaRank-MAP, AdaRank-NDCG, ListNet 
y FRank.  

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed a new method called 
RankPSO for Learning to Rank. This approach is based on 
Particle Swarm Optimization and allows direct optimization 
of evaluation measures used in IR. 

Analyzing the results of the experimentation and 
comparing the RankPSO performance with respect to the 
evaluation measures achieved by state-of-the-art approaches, 
we could conclude that RankPSO is just as good as the 
similar direct optimization methods.   

Finally, we affirm that, for LETOR OHSUMED dataset, 
the methods based on direct optimization of evaluation 
measures can always outperform conventional methods. 
However, no significant difference exists among the 
performances of the direct optimization methods themselves. 
It may be that these methods hit a ceiling here (ceiling 
effect), so that one cannot expect to be much better without 
putting more problem knowledge into the algorithms. 

As future work, we plan to address the following issues:                       
• To compare our approach with other state-of-the-art 

methods. 
• We wish to conduct more experiments with medium 

and large scale datasets, to further verify the 
performance of RankPSO. 

• To propose new learning-to-rank models based on 
Multi-objective Particle Swarm Optimization. 

• To search for the application of new bio-inspired 
algorithms at L2R for IR. 

• To conceive new ranking models taking into account 
not only the queries, the associated list of documents 

for these queries and relevant judgments, but also the 
context where the queries are formulated.  
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