
Direct Optimization of Evaluation Measures in
Learning to Rank using Particle Swarm

Juan M. Fernández-Luna, Juan F. Huete
Departamento de Ciencias de la Computación e I.A.

E.T.S.I. Informática y de Telecomunicación. CITIC-UGR
Universidad de Granada
 Granada, Spain

{jmfluna,jhg}@decsai.ugr.es

Óscar Alejo
Informatic Faculty, University of Cienfuegos

 Cienfuegos, Cuba
alejo@ucf.edu.cu

Ramiro Pérez-Vázquez
Center of Informatic Studies, Central University Las Villas

 Santa Clara, Cuba
rperez@uclv.edu.cu

Abstract— One of the central issues in Learning to Rank (L2R)

for Information Retrieval is to develop algorithms that

construct ranking models by directly optimizing evaluation

measures used in IR such as Precision at n, Mean Average

Precision and $ormalized Discounted Cumulative Gain. In this

work we propose a new learning-to-rank method, referred as

RankPSO. This algorithm is based on Particle Swarm

Optimization. It builds a ranking model able to directly

optimize evaluation measures used in Information Retrieval.

To evaluate performance of RankPSO, we have compared it

with other methods referenced in literature. We have carried

out an experimental study using Letor OHSUMED dataset.

The obtained results were analyzed statistically, demonstrating

that RankPSO has significant improvement in precision

compared to RankSVM, RankBoost and Regression methods;

nevertheless, it does not have significant differences with

AdaRank-MAP, AdaRank-$DCG, List$et and FRank. The

results show the advantages to use Particle Swarm

Optimization as bio-inspired algorithm for learning to rank.

Keywords Information Retrieval, Learning to Rank, Particle

Swarm Optimization.

I. INTRODUCTION

Ranking is the central problem for many IR applications.
These include document retrieval, collaborative filtering, key
term extraction, definition finding, important email routing,
sentiment analysis, product rating, and anti web spam,
among others. Specifically, in the Document Retrieval field
[1], the ranking problem consists of defining a representative
order among the documents, taking into account relevant
degree between each document and the user’s query,
obtaining the retrieval list, in which the relevant documents
are in the highest positions with regard to less relevant
document or irrelevant at all.

This ranking problem is considered as a standing topic of
research inside the branches of Artificial Intelligence and IR,

the Learning to Rank (L2R) problem. Many methods of L2R
have been proposed (i.e. [2], [3], [4], [5]).

Most of the existing methods used for text retrieval are
designed to optimize loss functions loosely related to the IR
performance measures. Ideally, a learning algorithm should
train a ranking model that optimizes directly evaluation
measures according to training data.

Recently, direct optimization of performance measures in
learning has become a hot research topic. Several methods
for classification [4] and ranking [3] have been proposed.

In fact, in this work a new method of L2R, named
RankPSO, is introduced. It can directly optimize any
evaluation measures used in IR. This method is based on
Particle Swarm Optimization (PSO) [6]. The main
contribution of this paper is the application of such
optimization technique to the problem of L2R (to the best of
our knowledge, it has not been applied to this problem),
obtaining good results compared with other approaches.

In order to present the algorithm itself, as well as the
experimentation to evaluate its performance, the rest of the
paper is organized as follows. In the Section II, it is
presented a brief description of the problem of L2R. The
PSO Classic algorithm is detailed in Section III in order to
contextualize our approach. In the Section IV, the RankPSO
algorithm is formally described. Section V is in charge of
introducing the settings of the experimental study that allows
evaluating the performance of the new proposed algorithm,
as well as the results obtained, comparing them statistically
with those from state-of-the-arte methods referenced in
literature. Finally, in Section VI we conclude this work and
point out some directions for future research.

II. LEARNING TO RANK

Recently, a large number of studies have been conducted
on L2R and its application to IR. The aim is to automatically
create a ranking model by using labeled training data and
machine learning techniques. A typical setting in L2R is that

feature vectors and ranks (ordered categories) are given as
training data.

Existing methods for L2R fall into three categories: the
Pointwise Approach [7], which transforms ranking to
classification or regression on single documents; the
Pairwise Approach [8], which formalizes ranking as
classification on document pairs; and the Listwise Approach
[9][10], which directly minimizes a loss function defined on
document lists. In this category two main alternatives are
presented: Probabilistic models for ranking and direct
optimization of evaluation measures.

From 1994, it has been developed various ordinal
regression approaches based on machine learning techniques,
which can be grouped into three categories: (1) Learning of
multiple thresholds, (2) Learning of multiple classifiers and
(3) Optimizing pair wise preferences.

In 2005, the methods that directly optimize the
performance in terms of an IR measure have captured the
interest of the scientific community. In this line, three new
categories on L2R approaches can be found in the
specialized literature: First, the minimization of loss
functions upper bounding, considering these loss functions
defined on IR measures [10][3]. Second, the approximation
of IR measures by means of an easy-to-handle function [11].
Third, and finally, specially designed technologies for
optimizing non-smooth IR measures. In this category, the
researchers have worked on three main subcategories: (1)
Smooth Approaches [12], (2) Smooth Approaches using
Genetic Programming [5] and (3) Smooth Approaches for
descending gradient [13].

III. CLASSIC PSO

Particle Swarm Optimization (PSO) is a population-
based stochastic optimization technique developed by
Russell C. Eberhart and James Kennedy in 1995 [6], inspired
by social behavior of bird flocking or fish schooling.

Basically, individuals in PSO are named particles. Each
particle i is composed of a position vector, xi, (coordinates in
the searching space), a vector of velocity, vi , which defines
the displacement of that position, and a memory of the best
solution found by the particle pi. Particularly, the velocity of
any particle is determined as pi as well as gbest, the global
memory of the swarm δ (for example, the best among the
particles). There are models that utilize the best solution of
one specific neighborhood that is considered only one part of
the swarm. Those models are known as lbest. The global
approach is considered in our proposal.

PSO equations to update the velocity and position of each
particle i are the following:

 vi

(t+1) = vi
(t) + c1 n1 o(pi-xi

(t)) + c2 n2 o(gbest - xi
(t)) (1)

 xi

(t+1) = xi
(t) + vi

(t+1), (2)

where n1 and n2 are unidimensional vectors formed at
random numbers in [0,1]. On the other hand, c1 and c2 are
real numbers known as coefficients of acceleration. The
operator “o” specifies a Hadamard product among the

matrixes formed by coordinates of vectors, that is, element
by element.

The expression of velocity encloses itself the principal
PSO contribution that permits it to be classified as a
paradigm of intelligence with swarm [14].

IV. DESCRIPTION OF RANKPSO APPROACH

A. General L2R Framework and �otation

Let Y = {r1, r2,…, rk} the set of ranks, where k denotes
the number of ranks. There exists a total order between the
them, i.e. rk > rk-1> … > r1 , where > is the order relationship.
Suppose that Q = {q1, q2,…, qm} is the set of queries in the
training set. Each query qi is represented by a list of terms
{t1, t2,…, th(qi)}, where h(qi) is the number of them in the ith
query, and it is associated to a list of retrieved documents di
= {di1, di2,…, din(qi)} and a list of labels yi = {yi1, yi2,…,
yin(qi)}, where n(qi) denotes the sizes of lists di and yi, di ⊆ D
(the set of all rankings for all the queries in Q) and yi ⊆ Y for
the query qi ∈ Q. dij ∈ di denotes the j

th document in di, and
yij ∈ yi is the label of document dij. A feature vector φ(qi,dij)
is created from each query-document pair (qi, dij), i=1, 2,…,
m; j=1, 2,…, n(qi). Finally, the training set is noted as

(){ }m
iiii ydqS 1,,
=

= .

Considering the patterns of the described formulation in
[3], it is supposed that πi is the prediction made by the
ranking model on di in terms of the query qi. We use Πi to
denote the set of all possible predictions on di, and use πi(j)
to denote the position of item j (i.e. dij). The ranking process
would concentrate on obtaining a prediction πi ∈ Πi for the
given query qi and the associated list of documents di using
the ranking model.

This ranking model, f, is a real-valued function of
features, more specifically, a document level function, which
is a linear combination of the features in a feature vector
φ(qi,dij):

 f (qi,dij) = w
Tφ(qi,dij), (3)

where w denotes the weight vector. In the ranking of query
qi, we assign a score to each of the documents using f(qi,dij)
and sort out the documents based on their scores. We then
obtain a prediction πi.

In this context of L2R, evaluation measures are used to
measure the goodness of a ranking model, which are usually
query-based. By this term, we mean that the measure is
defined on a ranking list of documents with respect to the
query. These include Mean Average Precision (MAP) [15],
Normalized Discounted Cumulative Gain (NDCG) [16] and
Precision at n (P@n) [15] (see Section V.B).

In this research, a general function E(πi, yi) ∈ [0,1] is
used to represent the evaluation measures. The first argument
of E is the prediction πi created using the ranking model. The
second argument is the list of ranks yi given as ground truth.
E measures the agreement between πi e yi. Most evaluation
measures return real values in [0,1]. We note the ideal
prediction as πi

*
. Note that there may be more than one ideal

prediction for a query, and we use Πi
* to note the set of all

possible ideal predictions for query qi. For πi
*∈ Πi

* , we have
E(πi

*, yi) = 1.
Ideally, we would create a ranking model that maximize

the accuracy in terms of an IR measure on training data, or
equivalently, minimizes the loss function [3] defined as
follows:

∑∑
==

−=−=
m

i

ii

m

i

iiii yEyEyEfR
11

*)),(1()),(),(()(πππ , (4)

where πi is the prediction determined for query qi by ranking
model f.

B. Algorithm

In this section, a new method of L2R for IR is formally
described. This method is based on PSO and is able to
optimize any evaluation measure used in IR. As mentioned
before, the algorithm is named RankPSO and it is shown in
Figure 1.

RankPSO takes as input a training set S, a performance
measure E and a number of iterations T. First, RankPSO
creates a specific swarm of particles and initiates each of
them randomly; always updating the position vector gbest in
each iteration. Then, the swarm begins its evolution stage. T
rounds are executed in which the particles propagated in σ
dimension, with the purpose of finding the best position
vector gbest obtained in the searching space.

Finally, the ranking model f is built with the position
vector gbest obtained in the last round. Equation (4) represents
the fitness function used to evaluate the position of each
particle. This fitness function uses the performance measure
E and the prediction πi obtained from the application in S of
the expression (3).

1: Input: (){ }m

iiii ydqS 1,,
=

= , E and T

2: for each particle i do

3: Randomly initialize vi, xi = pi

4: Update gbest

5: end for each

6: for t = 1,…,T

7: for each particle i do

8: Update i with expressions (5) and (2)

9: Evaluate xi on S, with expressions (3) and (4)

10: Update pi

11: Update gbest

12: end for each

13: end for

14: Build the ranking model f with the position vector gbest

15: Output: f

Figure 1. The RankPSO Algorithm.

The σ value is determined by the number of features
considered in the ranking models.

To update the velocity of the particle the classic
expression (1) is considered, adding an inertial weight w

proposed by Eberhart and Shi in [17]. The expression would
be the following:

 vi

(t+1) = w vi
(t) + c1 n1 o(pi-xi

(t)) + c2 n2 o(gbest-xi
(t)) (5)

A proposal is to use w < 1.0, to ensure a decrease of the

velocity with the time that is impossible if w > 1.0. In [17], it
is recommended its usage in such a way that decreases with
the time from 0.9 to 0.4.

In that way, the algorithm of learning is able to construct
a ranking model optimizing directly one of the evaluation
measures used in IR.

V. EXPERIMENTATION AND EVALUATION

In this section we present the experimental results of the
evaluation stage of our proposal in terms of effectiveness on
OHSUMED collection, a standard collection to test L2R
algorithms. This analysis is based on direct comparison with
the main methods that conforms the state-of-the-art in this
field. As measures for evaluation, we have used also the
standard MAP, P@n and NDCG at the positions of 1 to 10.

A. Letor OHSUMED dataset

The OHSUMED dataset is a subset of MEDLINE, which
is a database on medical publications. There are 106 queries
in the collection. For each query, there are a number of
associated documents. The relevance degrees of documents
with respect to the queries are judged by humans, on three
levels: definitely relevant, partially relevant, or not relevant.
There are 16,140 query-document pairs with relevance
labels, and 45 extracted features. We extracted 4 features
from each query-document pair, also standard in the
literature. Table 1 gives a list of the features.

TABLE I. FEATURES USED IN THE EXPERIMENTS ON OHSUMED

ID Feature Description

2 ´´)1),(log(titleindqc
dqq i

i
∑ ∩∈

+

4 ∑ ∩∈
+

dqq

i

i

titlein
d

dqc
´´)1

||

),(
log(

8 ´´)1)
)(

||
log(

||

),(
log(titlein

qdf

C

d

dqc
dqq

i

i

i
∑ ∩∈

+⋅

3 LMIR with DIR smoothing ‘title + abstract’

c(qi,d) being the frequency of the query term qi in document
d, C the collection, df(·) the frequency of a term in a
document, and |·| the cardinality of the corresponding set.

B. Evaluation Criteria

In this evaluation, we have used P@n, MAP and NDCG
as performance measures because they are widely used in IR.
Their definitions are as follows:

Precision at position n (P@n). Precision at n measures

the relevance of the top n documents in the resulting ranking
with respect to a given query:

.
#

@
n

resultsntopindocsrelevant
nP =

For example, if the top 10 documents returned for a
query are {relevant, irrelevant, irrelevant, relevant, relevant,
relevant, irrelevant, irrelevant, relevant, relevant}, then P@1
to P@10 values will be {1, 1/2, 1/3, 2/4, 3/5, 4/6, 4/7, 4/8,
5/9, 6/10} respectively [15].

Mean Average Precision (MAP). For a single query,

average precision is defined as the average of the P@n
values for all relevant documents:

querythisfordocsrelevanttotal

nrelnP

AP

�

n

#

))(@(
1
∑

=

∗

= ,

where � is the number of retrieved documents, and rel(n) is a
binary function on the relevance of the n-th document:

()
1,

0,

thif n doc is relevant
rel n

otherwise

=
 .

Similar to mean P@n, over a set of queries, we get MAP
by averaging the AP values of all the queries [15].

$ormalized Discounted Cumulative Gain ($DCG).

Recently, a new evaluation measure called Normalized
Discounted Cumulative Gain [16] has been proposed, which
can handle multiple levels of relevance judgments. While
evaluating a ranking list, NDCG follows two rules:

• Highly relevant documents are more valuable than
marginally relevant documents.

• The lower ranking position of a document (of any
relevance level), the lesser value for the user,
because it is less likely to be examined by her.

According to the above rules, the NDCG value of a
ranking list at position n is calculated as follows:

∑ = +

−
≡

n

j

jr

n
j

Zn�DGC
1

)(

,
)1log(

12
)(

where r(j) is the rating of the j-th document in the ranking
list, choosing the normalization constant Zn in such a way
that the ideal list gets a NDCG score of 1.

C. Evaluation

For evaluating the performance of the proposed method
and compare it with those obtained by the main approaches
found in this research field, it was followed the experimental
setting published in LETOR website.

For the learning or training process, 5-fold cross-
validation experiments were performed. These prefixed 5-
folds in OHSUMED were taken from the version
“QueryLevel�orm”. This allows making direct comparisons
among published algorithms in terms of precision. More
specifically, RankPSO has been compared in terms of
performance with those algorithms that have got their
assigned scores for each ranking function applied to each
query-document published in the LETOR website (Pointwise
approach: Regression; Pairwise approaches: RankSVM,
RankBoost, FRank; Listwise approaches: ListNet, with loss

minimization, and AdaRank, with direct optimization of IR
measures).

The whole experiments were performed taking into
account MAP as performance measure in the expression (4).

Fig. 2 graphically shows the obtained efficiency in the
ranking on OHSUMED, considering MAP as performance
measure. These results show the good performance of
RankPSO. Otherwise, the Figure 3 shows the behaviour of
the values of precision in the ranking for OHSUMED under
NDCG@1, NDCG@5 and NDCG@10 terms. Table 2
contains the values obtained in the ranking on OHSUMED,
considering P@n as performance measure, from 1 to 10
positions.

Figure 2. Performance on OHSUMED, considering the MAP measure

Figure 3. Performace on OHSUMED considering the NDCG measure

Algorithms P@1 P@2 P@3 P@4 P@5

Regression 0.597 0.601 0.577 0.561 0.534

RankSVM 0.597 0.549 0.543 0.544 0.532

ListNet 0.652 0.609 0.602 0.575 0.550

AdaRank-
MAP

0.634 0.596 0.590 0.589 0.567

AdaRank-
NDCG

0.672 0.624 0.598 0.584 0.577

RankBoost 0.558 0.548 0.561 0.558 0.545

FRank 0.643 0.620 0.593 0.584 0.564

RankPSO 0.672 0.619 0.593 0.593 0.579

TABLE II. PERFORMANCE CONSIDERING P@1,..., P@5

Algorithm P@6 P@7 P@8 P@9 P@10

Regression 0.505 0.500 0.484 0.475 0.467

RankSVM 0.525 0.510 0.493 0.492 0.486

ListNet 0.537 0.527 0.524 0.514 0.498

AdaRank-
MAP

0.557 0.539 0.524 0.508 0.498

AdaRank-
NDCG

0.556 0.551 0.535 0.521 0.509

RankBoost 0.530 0.524 0.513 0.502 0.497

FRank 0.552 0.545 0.525 0.515 0.502

RankPSO 0.558 0.547 0.533 0.521 0.506

TABLE III. PERFORMANCE CONSIDERING P@6,..., P@10

After obtaining the results of each studied algorithms,
statistic tests were applied to determine the significance in
the precision at query level. In this sense, non-parametric
tests were applied for two related samples, applying the
Wilcoxon test, even for k related samples, using Friedman
test. In the tests analysis, the statistic significance was
considered with p-value<0.05.

The obtained results for LETOR OHSUMED allow to
confirm that RankPSO has significant improvement in terms
of precision compared to RankSVM, RankBoost and
Regression methods; nevertheless, it do not have significant
differences with AdaRank-MAP, AdaRank-NDCG, ListNet
y FRank.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new method called
RankPSO for Learning to Rank. This approach is based on
Particle Swarm Optimization and allows direct optimization
of evaluation measures used in IR.

Analyzing the results of the experimentation and
comparing the RankPSO performance with respect to the
evaluation measures achieved by state-of-the-art approaches,
we could conclude that RankPSO is just as good as the
similar direct optimization methods.

Finally, we affirm that, for LETOR OHSUMED dataset,
the methods based on direct optimization of evaluation
measures can always outperform conventional methods.
However, no significant difference exists among the
performances of the direct optimization methods themselves.
It may be that these methods hit a ceiling here (ceiling
effect), so that one cannot expect to be much better without
putting more problem knowledge into the algorithms.

As future work, we plan to address the following issues:
• To compare our approach with other state-of-the-art

methods.
• We wish to conduct more experiments with medium

and large scale datasets, to further verify the
performance of RankPSO.

• To propose new learning-to-rank models based on
Multi-objective Particle Swarm Optimization.

• To search for the application of new bio-inspired
algorithms at L2R for IR.

• To conceive new ranking models taking into account
not only the queries, the associated list of documents

for these queries and relevant judgments, but also the
context where the queries are formulated.

ACKNOWLEDGMENT

This work has been supported by the Spanish Ministerio
de Ciencia e Innovación by means of the Project TIN2008-
06566-C04-01.

REFERENCES

[1] Y. Cao , J.X., T-Y Liu , H. Li , Y. Huang, H-W Hon, “Adapting
ranking SVM to document retrieval”, In Proceedings of SIGIR, 2006.

[2] H. Valizadegan, R. Jin, R. Zhang, J. Mao, “Learning to Rank by
Optimizing NDCG Measure”, In Proceedings of NIPS, 2009.

[3] J. Xu, T.-Y.L., M. Lu, H. Li, W-Y. Ma, “Directly Optimizing
Evaluation Measures in Learning to Rank”, In Proceedings of SIGIR
2008.

[4] T. Joachims, “A support vector method for multivariate performance
measures”, In Proceedings of ICML 2005.

[5] J.-Y. Yeh, J.-Y.L., H.-R. Ke, W.-P. Yang, “Learning to rank for
information retrieval using genetic programming”, In Proceedings of
SIGIR 2007.

[6] R. Eberhart, “A new optimizer using particle swarm theory”, In
Proceedings of the Sixth International Symposium on Micro Machine
and Human Science MHS95, 1995.

[7] R. Nallapati, “Discriminative models for information retrieval”, In
Proceedings of SIGIR 2004.

[8] Y. Freund, R.I., R. Schapire, Y. Singer: “An efficient boosting
algorithm for combining preferences”, In Proceedings of JMLR 2003.

[9] Z. Cao, T.Q., T.-Y. Liu, M.-F. Tsai, H. Li, “Learning to rank: from
pairwise approach to listwise approach”, In Proceedings of ICML
2007.

[10] Y. Yue, T.F., F. Radlinski, T. Joachims, “A support vector method for
optimizing average precision”, In Proceedings of SIGIR 2007.

[11] M. Taylor, J.G., S. Robertson, T. Minka, “Softrank: Optimising non-
smooth rank metrics", In Proceedings of SIGIR 2007.

[12] C. Burges, R.R., Q. Le: “Learning to rank with nonsmooth cost
functions”, In Proceedings of NIPS 2006.

[13] E. Snelson, J.G.: “Learning to Rank with SoftRank and Gaussian
Processes”, In Proceedings of SIGIR 2008.

[14] C. Blum, X.L.: ‘Swarm intelligence in optimization’, 2008.

[15] T.-Y. Liu, J.X., T. Qin, W.-Y. Xiong, H. Li: ‘Letor: Benchmark
dataset for research on learning to rank for information retrieval’, In
Proceedings of SIGIR, 2007.

[16] K. Jarvelin, “Cumulated Gain-Based Evaluation of IR Techniques”,
In Proceedings of ACM Transactions on Information Systems, 2002.

[17] R. Eberhart, Y.Shi., “Comparing inertia weights and constriction
factors in particle swarm optimization”, 2000.

