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Abstract—The k-means method is a simple and fast clus-
tering technique that exhibits the problem of specifying the
optimal number of clusters preliminarily. We address the
problem of cluster number selection by using a k-means
approach that exploits local changes of internal validity indices
to split or merge clusters. Our split and merge k-means issues
criterion functions to select clusters to be split or merged and
fitness assessments on cluster structure changes. Experiments
on standard test data sets show that this approach selects
an accurate number of clusters with reasonable runtime and
accuracy.
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I. INTRODUCTION

Document clustering is widely used in text information
retrieval systems to enhance retrieval models or to provide
richer navigation facilities. However, the high-dimensional,
very sparse, large-scale nature of text data limits the num-
ber of applicable algorithms and optimization criteria. For
document clustering, standard algorithms like hierarchical
agglomerative clustering methods have been shown to be
outperformed by partititional algorithms like k-means [1]
in terms of runtime and precision [2], [3]. Furthermore, the
evaluation of different cost functions in [2] clearly favors
the maximization of the average cosine similarity.

The simple, yet powerful form of representation com-
monly used with the cosine similarity is the bag-of-word
based vector space model. In this field, the direction of
a vector is more important than its length, which yields
to the spherical k-means algorithm [4], [5]. Spherical k-
means algorithms operate on the sphere around the origin,
or, viewed in a data centric sense, on input data normalized
to unit-length. Another precision improvement could be
achieved in [6], where online updates outperformed the more
commonly used batch k-means variants.

Despite of their good performance, (spherical) k-means
algorithms exhibit the problem that the cluster number
must be known a-priori. Pelleg addressed this issue by
developing a dynamic k-means variant known as x-means
[7]. X-means performs bisecting splits of clusters where
the resulting clustering solution is assessed by the Bayesian
Information Criterion (BIC). However, in [7] x-means issues

only euclidean distance and does not take into account other
existing validity indices (e.g. Calinski-Harabash, Hartigan
and Krzanowski-Lai [8]).

ISODATA [9], another k-means variant, guesses the num-
ber of clusters by using splitting and merging. However, this
algorithm does not measure the fitness of splits or merges via
well defined criteria, but uses several size based thresholds
to split or merge clusters.

In this work, we combine ISODATA and x-means by
incorporating a merge step into x-means as well as online
updates. Changes in the cluster structure that yield from
split and merge steps are assessed by using different internal
validity indices, not only the BIC criterion. Our experiments,
conducted on selected Cluto datasets [2], show, that the
accurate number of clusters can be found automatically with
reasonable runtime and the accuracy is comparable to the
results obtained in [2].

With this work we add the following contributions to the
field of document clustering:
• We extend the x-means algorithm with merge steps,

online updates and extend it to spherical optimization
criteria.

• We perform an in-depth evaluation on standard doc-
ument clustering data sets comparing several validity
indices on the extended x-means.

• Finally, we heuristically adapt the BIC criterion which
improves clustering precision further.

The rest is organized as follows. Section II depicts the split
and merge k-means in detail, followed by the discussion on
validity indices in section III. In sections IV and V we report
the experimental setup and the results of our experiments on
real-life datasets. At the end, section VI concludes our work.

II. SPLIT AND MERGE SPHERICAL K-MEANS

In contrast to the classical, distance based k-means al-
gorithms, spherical k-means methods maximize the cosine
similarity between the data samples and their most simi-
lar centroid. Calculating the cosine similarity is equivalent
to calculating the inner product on a normalized set of
vectors. More formally, given a set of data samples X =
{x1, . . . , xN} with xi ∈ <d being the bag-of-word vector
representation of the ith document and given a set of cluster



C = {c1, . . . , cK} with cj ∈ <d being the cluster centroid
of the jth cluster, the optimization criterion is given as

L =
N∑
i=1

xTi cyi (1)

where yi = argmax1≤k≤K x
T
i ck with ||xi|| = 1 as well

as ||ck|| = 1. The hard assignment of samples to cluster is
denoted as set Y = {y1, . . . , yN}.

Algorithm 1 Batch Spherical K-Means
Require: X , K, T
Ensure: C, Y

1: initialize centroids c1, . . . , cK
2: for t = 1 to T do
3: for n = 1 to N do
4: yn = arg max1≤k≤K x

T
n ck

5: for k = 1 to K do
6: ck =

∑
xi∈Xk

xi where Xk = {xn|yn = k}
7: ck = ck

‖ck‖

Cluster updates are done either in a batch or online man-
ner. In the batch version (see algorithm 1), cluster vectors
are updated and normalized to unit length after assigning
all data samples, i.e. after calculating Y . In contrast, the
online version (see algorithm 2) performs the adaption of the
winning centroid right after the assignment of a data sample;
a competitive learning technique with a Winner-Take-All
approach. Both algorithms terminate after a user-defined
number of iterations T or if the amount of changes in the
assignment of samples to cluster is below a given threshold.
Also, both algorithms require the number of clusters K to
be found a-priori.

Algorithm 2 Online Spherical K-Means
Require: X ,K, T
Ensure: C,Y

1: initialize centroids ck
2: for all t = 1 to T do
3: for all n = 1 to N do
4: yn = arg max1≤k≤K x

T
n ck

5: cyn
= cyn+η(xn−cyn )
||cyn+η(xn−cyn )||

X-means [7] automatically finds the number of clusters
by using bisecting k-means, combined with internal validity
indices. Here, the bisecting k-means algorithm splits the data
samples into two disjoint clusters by using batch or online
k-means with K = 2. If the split increases the overall fitness
measured by internal validity indices, the cluster is split and
the bisecting k-means continues recursively. If none of the
bisecting steps of each existing cluster leads to an improved
result, the algorithm stops and returns the current clusters as

result. Although good results can be achieved, errors made
in early splits are propagated to subsequent splits.

Algorithm 3 Split and Merge K-Means
Require: X ,K, s(C), m(C), v(C)
Ensure: C, Y

1: C = k-means (Xt, K)
2: repeat
3: cs = s(C), Xs = {xn|yn = s}
4: {ci, cj} = k-means (Xs, K = 2)
5: if v(C) > v(C/cs ∪ {ci, cj}) then
6: C = C/cs ∪ {ci, cj}
7: until |C| is not changing
8: repeat
9: ci, cj = m(C)

10: Yj = Yi, C = C/cj
11: if v(C) > v(C/cj) then
12: C = C/cj
13: until |C| is not changing
14: C = k-means (Xt, C)

To reduce this effect, we extended the x-means approach
with a merge step, as depicted in algorithm 3. Basically,
this split and merge k-means creates an initial partitioning
through a first k-means step with a predefined number of
clusters. Afterwards consecutive split and merge steps are
invoked where the changes on the cluster result are assessed
using some internal validity measure v(C) like the Bayesian
Information Criterion (BIC). Those split and merge steps
are repeated until changes no longer improve the fitness.
At the end of the algorithm, an optional k-means step can
further refine the results of the dynamic updates. Note that
the input parameter K is optional and per default 2, but the
algorithm allows setting a preliminary expectation on the
cluster number to reduce runtime.

In order to reduce the number of splits and merges,
algorithm 3 also introduces a splitting criterion s(C) and
a merging criterion m(C) for selecting the cluster to split or
merge in a step. In our approach, s(C) selects the cluster with
the lowest average data sample similarity. Similarly, m(C)
selects the two most similar clusters as merging candidates.
However preliminary experiments showed that this merge
criterion favored the largest clusters to be merged. Hence,
a penalty factor on the number of connected children was
introduced. That is, take the fewer children of the clusters,
take the square root of it and divide the similarity measure
by this outcome.

The introduction of criterion functions to retrieve specific
clusters that should be split or merged decreases the amount
of investigated splits and merges considerable at probable
cost of lessened precision.



III. INTERNAL VALIDITY INDICES

Clustering precision strongly depends on the chosen inter-
nal validity indices to measure the result fitness. Note, that
our selection of indices is based on some preliminary eval-
uations that ruled out common indices like Davis-Bouldin
and Dunn-Index (see also [8]).

One well known measure is the Bayesian Information
Criterion (BIC) [7]. Assuming a univariate distribution of
within cluster sample distances, the BIC is given as

−ni
2

log 2π−nim
2

log σ2−ni − k
2

+ni log
ni
n
−k

2
log n (2)

where ni is the size of the ith cluster, n the size of the data
set, k the cluster number, m the dimension of the data, and
σ2 = 1

ni−k
∑
i(xi − cyi

)2

However, for our extended x-means algorithm preliminary
experiments turned out that only two terms are of signifi-
cance, reducing the BIC in its simplified, heuristic form to:

BICh = −nim
2

log σ2 − k

2
log n (3)

Besides BIC, multivariate indices can measure cluster
quality based on the total scatter of between-cluster and
within-cluster sum-of-squares, denoted as Bk respectively
Wk. One such measure is the Calinski and Harabasz index
[10] defined as

CHk =
tr(Bk)/(k − 1)
tr(Wk)/(n− k)

(4)

with tr(Wk) or tr(Bk) being the trace of these matrices.
Similarly, the Hartigan index [11] is defined as

Hk = (
tr(Wk)
tr(Wk+1)

− 1)(n− k − 1) (5)

and the Krzanowski and Lai index [12] as

diffk = (k − 1)2/mtr(Wk−1)− k2/mtr(Wk) (6)

KLk = |diffk|/|diffk+1| (7)

IV. EXPERIMENTAL SETUP

We experimentally evaluated the performance of the split
and merge k-means using the four internal validity indices
on different real-world datasets in the field of text mining. In
the remainder of this section we will describe the different
data sets, our experimental methods and the experimental
results.

The data sets for our experiments originate from the
CLUTO clustering toolkit1 and are described in table I.
The data sets are grouped into three parts depending on the
number of classes contained in each data set, which allows
to analyze the performance on either few, medium or many
classes.

1http://www.cs.umn.edu/∼karypis/cluto

Name Source |X | # Classes
hit S. J. M. (TREC) 2301 6
rev S. J. M. (TREC) 4069 5
la1 LA Times (TREC) 3204 6
la2 LA Times (TREC) 3075 6
tr31 TREC 927 7
k1b WebACE 2340 6
tr41 TREC 878 10
re0 Reuters-21578 1504 13
fbis FBIS (TREC) 2463 17
k1a WebACE 2340 20
wap WebACe 1560 20
re1 Reuters-21578 1657 25

Table I
REAL WORLD DATA SETS

The datasets have already been preprocessed by removing
stop words and are stemmed using Porter’s algorithm. All
terms that occur only in one document were eliminated
(see [2] for further details). In addition, we performed tf-
idf weighting and normalized the documents to unit-length.

Cluster performance evaluation uses the well-known F-
score measure which is defined as

F (Lr, Si) =
2 ∗R(Lr, Si) ∗ P (Lr, Si)
(R(Lr, Si) + P (Lr, Si))

(8)

where Lr defines a particular class of size nr and Si a
particular cluster of size ni. R(Lr, Si) is the recall value
defined as nri/nr and P (Lr, Si) is the precision value
defined as nri/ni. By taking the maximum over all clusters
the final F-score is given as

FScore =
C∑
r=1

nr
n

argmaxSi∈T F (Lr, Si) (9)

We carried out multiple experiments with different param-
eter settings on all 12 data sets. Firstly, all introduced validity
indices are evaluated to assess their impact on splitting or
merging quality including a comparison between online and
batch updates. Secondly, we evaluated whether our approach
dynamically finds the correct number of clusters independent
from the initial k-means cluster number. Therefore, we
evaluated three different settings on the initial numbers of
clusters. For all datasets with less or equals 10 classes, the
minimum number of clusters is set to 2 and the maximum
number to 15. Furthermore, the initial cluster number is
either set to 2, 8 or 15. For all other datasets the minimum
number of clusters is set to 5 and the maximum to 35 with
initial cluster numbers of 5, 15, and 35.

As seeding mechanism we used the directed random
seeding, also known as k-means++, introduced in [13].

Regarding online update learning rate η, preliminary ex-
periments showed that in case of online updates the update
factor starting at 0.2 and using the square root of the
connected elements as decreasing factor yields best results.
We kept this setting throughout the experiments.



data ind. fµ (kµ) fσ (kσ) fm (km)
hit KL 0.52 (5.4) 0.05 (0.97) 0.6 (5)
rev BICh 0.72 (5.6) 0.05 (1.26) 0.77 (5)
la1 BICh 0.68 (5.9) 0.08 (1.79) 0.79 (5)
la2 BICh 0.71 (10) 0.06 (1.25) 0.76 (10)
tr31 CH 0.78 (7.9) 0.06 (0.74) 0.87 (7)
k1b KL 0.78 (6) 0.09 (0.82) 0.91 (5)
tr41 H 0.66 (9.9) 0.04 (2.42) 0.74 (10)
re0 CH 0.51 (12.2) 0.02 (0.42) 0.53 (12)
fbis CH 0.63 (14.1) 0.04 (1.2) 0.68 (14)
k1a Hart 0.56 (16.1) 0.04 (1.91) 0.62 (13)
wap KL 0.55 (18.5) 0.03 (0.71) 0.61 (18)
re1 KL 0.52 (26.9) 0.04 (2.13) 0.57 (26)

Table II
BEST RESULTS USING BATCH UPDATES

To overcome seeding problems, 10 runs are conducted for
each parameter setting and we report mean f-score fµ, stan-
dard deviation fσ , and maximum f-score fm. Similarly, we
report kµ, kσ , and km indicating mean, standard deviation
and maximum number of clusters found.

V. RESULTS AND DISCUSSION

In table II the best results for each data set using batch
updates are shown and in table III the best ones for online
update. The abbrevations for the indices are directly taken
from section III.

First of all, we compare our results to the bisecting k-
means approach on the same data set with predefined, correct
cluster number reported in [2]. Noteworthy, in [2] only the
best result over several runs are shown, corresponding to
our fm, without a mean and standard deviation. Using the
best result only, our variant achieves better results for k1b,
but slightly worse performance on the Reuter splits re0 and
re1. Overall the f-scores seem to be comparable, so that our
approach can compete with the bisecting k-means using a
predefined cluster number.

Next, we investigate if the found cluster numbers are
in the range of the given class numbers. Results confirm,
that in most cases the found cluster number is close to the
class number. Especially in cases of few classes (5 - 7) the
mean cluster number is 11 out of 12 within a deviation of
one class. On the k1b data set for example, the mean of
the cluster number is 5.4 with the best result at the real
class number of 6. It is of course more likely that the class
number can be guessed in small class problems as well as for
problems that can be better separated by k-means algorithms.
For data sets with more classes the deviation of the cluster
number to the class number increases, but nevertheless in
most cases the cluster number is quite near the class number.
Sometimes it fails completely like for tr41 or re0, but for
fbis the cluster number is at 15.9 with best result achieved
at 17 which is exactly the class number.

Now, we look at the different validity indices and their
suitability to assess splits and merges to provide a dynamic

data ind. fµ (kµ) fσ (kσ) fm (km)
hit BICh 0.55 (5.4) 0.02 (0.84) 0.59 (6)
rev KL 0.73 (5.6) 0.06 (0.84) 0.78 (5)
la1 BICh 0.72 (5.6) 0.06 (0.7) 0.8 (6)
la2 CH 0.75 (5.4) 0.04 (0.52) 0.79 (5)
tr31 CH 0.82 (7.5) 0.06 (1.18) 0.92 (7)
k1b CH 0.85 (5.4) 0.04 (0.52) 0.93 (6)
tr41 BIC 0.7 (13.1) 0.06 (0.99) 0.84 (12)
re0 BICh 0.52 (10.5) 0.05 (4.35) 0.57 (8)
fbis CH 0.63 (15.9) 0.03 (2.33) 0.68 (17)
k1a BIC 0.57 (16.7) 0.04 (2) 0.64 (19)
wap KL 0.56 (18.8) 0.04 (0.92) 0.62 (20)
re1 H 0.55 (30.9) 0.02 (1.29) 0.58 (29)

Table III
BEST RESULTS USING ONLINE UPDATES

cluster structure. The results show that although each index
is likely to provide a good criterion to assess the fitness the
heuristically simplified BIC criterion as well as the adapted
Calinski-Harabasz index seem to provide mostly the best
results.

Finally, we point out that the initial setting on the cluster
number for the first k-means run does not alter very much the
final cluster number. In other words starting at 2, 6 or 15 for
the few class problems does lead to similar results. However,
one must mention that if the initial cluster number is much
lower than the contained count of classes, the final cluster
number underestimates it most likely. The same applies if the
initial cluster number is much higher than the class number,
so that an overestimates happens. For this reason, it is better
to set the initial cluster number in the near range of the
correct cluster number, if this information is available.

Finally, we want to investigate the runtime behavior of
our algorithm. Compared to x-means our approach is faster,
because we have fewer split steps (one compared to k steps
for a current cluster number for x-means) and the merge
steps are computationally less complex. Furthermore, the
calculations of the validity indices are also computationally
cheap through caching distances, so that our algorithm is not
really much slower than a simple bisecting k-means with a
prespecified cluster number.

However, there is a considerable difference between us-
ing our approach with batch or online updates. Using the
geometrical correct online update (cyn

= cyn+η(xn−cyn )
||cyn+η(xn−cyn )|| )

leads to a faster convergence of the algorithm, but the actual
runtime is mostly higher compared to batch updates. This is
a domain problem, because of the fact that text data is highly
sparse, implementations can optimize a simple batch update
by looking only at non-zero dimensions of the documents
to sum up to a final centroid. In case of online updates,
each non-zero dimension of the centroid that tends to be
dense must be updated in each step. Fortunately, there exists
heuristics in the spherical scenario to boost the performance
to get a comparable runtime results as batch k-means [14].
However, we wanted to stick to the geometrical correct



update in this first approach.
Exemplarily, the runtime for one of the larger problems

like rev (4069 docs 23220 feats) is 3 sec. for batch updates
and 39 sec. for online updates, whereas for a smaller
problem like for tr31 (927 docs 10128 feats) we got 1.5
sec. compared with 3 sec.

VI. CONCLUSION & FUTURE WORK

We showed that our split and merge k-means reaches the
goal of providing a clustering structure that dynamically
selects its cluster number with an acceptable runtime and
a favorable precision. Our approach can be highly effective
to generate an initial clustering result with an automatically
detected number of clusters as well as in incremental appli-
cations where the given cluster hierarchy should be updated
dynamically as new documents are added or old documents
are removed.

Furthermore, it has been shown that online updates are
favorable to batch updates, but compared with their in-
creased computational power might not been applicable for
real world data in the field of text mining without using the
referenced heuristics.

Concerning validity indices, the adapted Calinski-
Harabasz index and the simplified Bayesian Information
Criterion lead to the best result to assess the clustering
fitness.

As a final remark, our split and merge approach seems
to reach the goal of providing a clustering structure that
dynamically selects its cluster number with an acceptable
runtime and a favorable precision.
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