
Automatic User Comment Detection in Flat Internet
Fora

Mathias Bank
Faculty for Mathematics and Economics

University of Ulm
Ulm, Germany

mathias.bank@uni-ulm.de

Michael Mattes
Faculty for Mathematics and Economics

University of Ulm
Ulm, Germany

michael.mattes@uni-ulm.de

Abstract—Millions of people are using the World Wide Web
and are publishing content online. This user generated content
contains many information relevant not only to marketing but to
companies in general (customer-oriented products), governments
(direct democracy) and many more. Analysis on such data
becomes more and more important. This paper deals with a
prerequisite: we propose an algorithm to automatically detect
posting structures in flat internet fora to extract user comments.
The algorithm is able to handle a wide range of different fora
systems — even nested structures. The approach first detects
the main content section by applying a modified version of the
SST algorithm and then detects the posting structure by using
several posting properties found in internet fora. It creates XPath
expressions for faster data extraction in further steps.

Keywords-social media, internet community, forum, web 2.0,
Information Retrieval, crawler, extraction

I. INTRODUCTION

User generated content becomes more and more important.
There are 475 million active internet users in the world. More
than 38% want to start their own weblog [1]. In Germany,
there are 42.7 million internet users [2] and 35% of them
are interested in publishing their own content [3]. 78% of the
internet users rely on recommendations from consumers and
61% trust customer opinions posted online [4]. That is why
user generated content becomes more and more important. The
huge number of user postings makes it necessary to analyze
them automatically. The prerequisite is to be able to extract
user comments from online data.

There is a wide range of different community systems.
Besides classical systems like newsgroups and internet fora
there are so called Web 2.0 systems like weblogs, twitter, flickr
or youtube. In this paper, we will focus on flat internet fora.
The goal is to extract user postings directly from discussion
pages. This could simply be done by downloading and storing
complete discussion pages, but the approach would lead to
noisy data because we would have to handle non-relevant
content. An enhanced extraction algorithm should only store
user comments and meta information themselves without
navigation or advertisement and makes information extraction
and data mining tasks more efficient.

The World Wide Web contains thousands of different inter-
net fora. We present an unsupervised approach which is able
to handle many of them. The proposed algorithm is able to

detect posting structures — including the user comment and
meta information (user name, timestamp) — automatically.
This is done in two steps: first the interesting content section
is identified, then this section is divided into different postings.
The algorithm creates an XPath1 wrapper to further increase
the extraction performance.

We assume to have valid HTML or XHTML pages repre-
sented as DOM trees. Most of the currently available commu-
nity systems do not create valid pages, therefore we have to
use cleaning algorithms like the ”tidy” algorithm to make an
analysis possible.

II. RELATED WORK

Unsupervised content extraction algorithms can mainly be
categorized into local and global techniques [5]. Local algo-
rithms just use a single page and try to detect the relevant
content involving implicit or explicit assumptions about how
the content is represented. Global algorithms instead use many
pages to detect the relevant content by comparing these pages
with each other. There have been many researchers dealing
with the problem of content detection using local and global
algorithms. [6] gives a good overview about some of them.

In almost all community systems pages are generated with
the help of template systems. This fact leads to the assumption
that template structures can be detected by comparing discus-
sion pages. There is a wide range of possible algorithms: we
have chosen the Site Style Tree (SST) approach [7] as global
extraction technique.

The SST algorithm was designed to detect reccuring sec-
tions on web pages. The base concept, the Site Style Tree, is
made up of two different node types: style nodes and element
nodes (fig. 1). An element node represents a DOM node with
tag, attributes and child information, a style node is a list of
element nodes for style representation. For each web page
— represented by its DOM tree — the algorithm creates a
Style Tree by recursively creating element nodes for DOM
nodes and grouping their children to style nodes. Merging
these Style Trees and storing the information, how often a style
node can be found in an element node, creates the Site Style

1W3C standard for addressing parts of XML documents. Version 1: http:
//www.w3.org/TR/xpath/

BODY

IMG

P P

DIV

root

DIV

P A AIMG

BODY

IMGDIV

root

DIV

P AIMG

DOM
tree 1

DOM
tree 2

BODY

IMG

P

DIV

root

DIV

P A AIMG

SST
.....

42

: element node

: style node

number of pages
with style node

P AIMG

2

2

2 1 1

Fig. 1. The SST algorithm transforms a list of DOM trees into a Site Style
Tree consisting of style and element nodes. These elements are used to identify
redundant page structures. Using Shannon’s entropy the algorithm computes
values indicating the importance for every DOM node.

Tree. This tree is used to compute node relevances with two
different relevance indicators: the content relevance considers
textual differences between element nodes, the presentation
relevance assesses contained style nodes: the more style nodes
an element node has, the more important it is. Using Shannon’s
entropy [8], the algorithm combines these two relevance mea-
sures and assigns an importance value to each node ∈ [0, 1].
Nodes with identical content and substructure over several
pages receive low importance values. Nodes with different
content and substructure get higher ones. We will use these
values in our approach. Due to page limitations, we have to
point to the original paper [7] for more details.

Extracting user postings from internet fora is quite more
than just detecting the relevant content. An important task is to
detect each user posting. This step of content segmentation is
already focused by many researchers. According to [5]’s tech-
nique categorization, they deal with local algorithms which
make assumptions about repeating structures. There have been
two observations on record lists [9]:

1) Data regions are presented in continuous regions and
have a similar HTML tag structure (data region).

2) Web pages are represented with HTML tags, which form
a tag tree. A data region can be found in one subtree.

[9], [10] and [11] try to automatically extract product
information from web pages by dividing a DOM structure into
similar substructures. The similarity of substructures can be
calculated in different ways. The simplest way is to allow only
identical substructures. [11] introduced a Tree Edit Distance to
compensate small differences in substructures. [12] extended
this method to be more flexible by weighting node types
differently. All these methods are constructed to detect lists.
[13] focused on detecting nested structures by post-order
traversing a tag tree which we can think of as a special

Fig. 2. A discussion page consists of several sections: the header (1), the
category list (2, 3), advertisement (4, 5, 6) and the content section (7) (sample
taken from http://www.motor-talk.de).

DOM tree. [14] improved this method by using more visual
information like gaps and spaces.

III. USER POSTING DETECTION

Detecting user generated content in community systems is
a complex task that can be divided into two subtasks:

1) main content detection
2) posting segmentation
We will discuss these subtasks separately. Each one will cre-

ate an XPath wrapper to increase data extraction performance
in further tasks.

A. Main Content Detection

Community systems have many different sections on discus-
sion pages. Typically, there is a header section, a navigation
section, advertisement sections and the content section (see
fig. 2). We use a modified version of the SST algorithm to
detect the content section from which we want to extract user
postings.

There are two different page types in internet fora: discus-
sion overviews and discussion pages. If we apply the SST
algorithm to all pages at once, we cannot expect to get good
results because of different template designs. Therefore, the
SST algorithm must be applied to each page type separately.
Using the generated importance values on discussion pages,
we create a wrapper to get an XPath expression which extracts
the content section:

• The header and advertisement sections exist on every
page with nearly the same content. They get a low
importance value.

• The content section instead changes more frequently —
there is no second page with the same content. This
section gets the highest importance value.

We traverse the complete Style Tree for every discussion
page and collect the nodes with the highest importance. Each
one is used to create an XPath expression which is saved in a
list. There are three types of wrong expressions:

1) Trivial expressions: In our tests, there have been some
pages where the body tag was marked as most important
due to importance propagation from its children. We
assume that this node cannot be the correct content
node and that there has to be at least one navigation
or header section. These expressions are discarded by
the algorithm.

2) Too specific expressions: Discussion pages consist of
different numbers of postings. Especially if there is just
one posting, the generated XPath expression is more
specific than the ones generated on pages with more
postings. This expression is not wrong at all, it is too
specific. So we have to generalize it by comparing the
XPath expression with expressions generated on other
pages. If there is an expressions with lower precision2,
we have to use this one.

3) Wrong expressions: In some cases, the most important
node is not a content node. This appears, if there is a
section that does not exist on other pages or if the section
has a completely different content. These expressions
can be detected using a simple majority vote.

The algorithm can eliminate all wrong XPath expressions
automatically so that only one correct XPath expression re-
mains which points directly to the content section.

B. Post Segmentation

After finding a direct path to the content section, we divide
it to detect the complete posting structure composed of the user
comment and meta information (e.g. user name, timestamp).
Other scientists focused on the segmentation of product pages.
The task of comment segmentation has not been considered
until now.

We have analyzed more than 3, 500 real postings in 13
different internet fora based on 8 fora systems and have done
some interesting observations in addition to those mentioned
in [9]:

1) User comments mainly consist of textual data which
spans more than one line. At an average, a post has
320 characters (Median: 187, 0.25 quantile: 80.3, 0.75
quantile: 387) with 4.3 line breaks (Median: 2, 0.25
quantile: 1, 0.75 quantile: 6). Postings without line
breaks (25%) have an average of 94 characters (Median:
51, 0.25 quantile: 17, 0.75 quantile: 104.3).

2) Paragraphs are represented either with p nodes or they
are separated by br nodes.

3) The complete user comment can be found in one parent
node which is possibly splitted by further elements: a,
img, code, object, blockquote and sometimes
ul or ol nodes.

4) Most community systems format quote and code sec-
tions with div or table substructures. These substruc-
tures may also split the user comment.

5) User comments are different. Comparing complete post-
ings (with user comment, user name and timestamp) we

2The precise XPath expression contains the more general one.

Fig. 3. Post candidate search: After detecting user comments (left side) with
the help of text nodes a node generalization returns the complete posting
structure (right side).

can see that there is no similarity except the base posting
structure, which encloses the user comments. We are
looking exactly for this base structure.

6) Some community systems use nested structures to rep-
resent answer relations requiring us to use an algorithm
that is able to detect nested structures.

The algorithms found in literature do not use these prop-
erties. They are not capable of posting detection because
the algorithms have to deal with different substructures in
depth and length. Our algorithm for post segmentation works
differently and takes advantage of these observations. It is a
mixture of local and global detection techniques and uses the
base idea of [13]: traversing the content section in a bottom
up way to detect nested structures.

1) Post Candidate Search: The proposed approach first
looks for possible posting candidates which mainly consist of
user comments themselves. We observed that these comments
can be found in one parent node. The task of post candidate
search is to find these comments and to generalize them to
the complete posting structures (fig. 3). This is done in four
steps:

Merge inline elements: User comments are separated by
several tags. Most of them are inline elements3 — so called
”text level” elements. We extend these elements with block
elements that are typically used in comment sections but
not for posting structures: pre, blockquote and p. The
algorithm moves their content to the corresponding parents
and removes the nodes themselves. We get a modified DOM
tree with block elements only.

Find text nodes: In the modified DOM tree, the algorithm
looks for possible comment candidates. It takes advantage of
the observations made and uses the following criteria that have
shown to return good results:

• The text node consists of at least 150 characters or
• the text node consists of at least 50 letters and new line

characters (\r,\n).
• The text node does not begin with ”___”, which is

typically used for signatures.
The parents of these text nodes are candidates ci for user

postings and are collected in a list L. It is important to notice

3We use the W3C definition of inline elements: http://www.w3.org/TR/
REC-html40/struct/global.html#h-7.5.3, namely span, img, b, i, strong,
em, a, acronym, abbr, code and br nodes

that this list is not necessarily complete because the algorithm
misses very short entries. They will be recovered afterwords
using the generated XPath expression. The list L can also
contain unwanted nodes like quote or code sections that have
not been detected as comment elements (because div or
table substructures have been used). The criteria just ensure
that posting structure elements or meta data (e.g. user name or
timestamp) are not selected. But they can cause two different
possible mistakes: if the user comment itself is too small to be
selected and the contained quote / code block is big enough,
we get a completely wrong candidate. If the user comment
instead also reaches the necessary text length, we get more
candidates than real user postings. The next two steps will
handle these problems.

Clean text nodes: Not all candidates ∈ L are user comments.
In some circumstances, a text node is a subelement of a bigger
comment (e.g. quote or code block). We have to remove wrong
candidates by using the property that the complete comment
can be found in one parent node. For each candidate ci, we
recursively select all parents p1 . . . pn. If we find a parent pi

in the candidate list L, we remove the candidate ci since the
list contains a more general text node cj already.

Node generalization: All direct text node parents are stored
in L. They do not represent complete posting structures yet
because additional meta information like time and user name
is missing. The algorithm has to generalize comment nodes
∈ L to find the complete posting structure.

The observations have shown that each posting can be found
in its own subtree. The cleaning step has already ensured that
there is only one candidate for each posting (or none). To find
the posting structure, the algorithm just has to select more
general nodes:

listChanged = true;
while listChanged do

listChanged=false;
for candidate c in L do

if c has a parent p and this is the only one then
replace c with p in L;
listChanged=true;

end if
end for

end while
The generalization is done for all candidates by replacing

each candidate ci with its parent node pi until one of the
following stopping criteria is true:

1) pi does not exist
2) pi is also parent of another candidate cj ∈ L, j 6= i

With these stopping criteria we ensure to get no overlapping
while generalizing candidates. The problem of too specific
text node candidates due to quote or code sections is resolved
automatically by this step.

2) Wrapper Generation: The candidate list L can now be
used to generate an XPath wrapper to automatically select
posting nodes in further extraction steps.

We use a global detection strategy to calculate the

/ table [contains(@id,"posting")]

/ table [contains(@id,"posting")]

/ div [class="entries"]

/ div [class="entries"]

/ div [class="editable"]

/ div

Fig. 4. Wrapper generation: All subpatterns in all XPath expressions are
compared to each other. The resulting XPath expression contains equal node
types and attributes.

TABLE I
XPATH EXPRESSION QUALITY

content section posting segmentation
perfect 82.4% 64.0%
correct 100% 90.0%

correct XPath expression for posting structures. For
each candidate ci ∈ L, we create the corresponding
XPath expression as detailed as possible by using all
available attributes without position information (e.g.
/div[@id="content"][@style="color:black"]).
Collecting all XPath expressions allows to compare
subpatterns (fig. 4): we divide each XPath expression
into subpatterns by splitting the XPath string at slash
characters ”/”. If all expressions have the same node type
at position i, we add this pattern with the common node
attributes to the resulting XPath. The XPath creation is
stopped if one node type is different or if all subpatterns have
been checked.

In nested structures, the process is altered by inverting the
subpattern list to check nodes backwards. Identical nodes are
added at the front of the generated XPath expression and the
algorithm stops by adding an additional slash character ”/” at
the front to make different ”root” nodes possible.

This global strategy ensures to generate an XPath expression
for all postings. Using this expression, we will get all postings,
even the ones missed in previous steps.

IV. EVALUATION

The complete algorithm creates two different XPath ex-
pressions. The first one ensures, that we only detect posting
structures in the main content section. The second one points
to posting structures in this main content section. In our
evaluation, we check both expressions.

The algorithm was tested against 51 real internet fora, based
on 14 different fora systems. Each forum uses a different
template and was not used except for evaluation. So we can
also check our observations. The evaluation was generated by
loading 20 discussion pages per forum and applying the pro-
posed algorithm. The resulting XPath expressions have been
checked for their suitability (table I). An XPath expression
for the content section is perfect, if it points directly to the
parent nodes of postings. It is correct, if the content section is
within the selected subtree. An XPath expression for posting
segmentation is perfect if it only returns postings. It is correct
if it points to postings but also to other elements.

Content detection works great. Posting segmentation works
good but could be further improved. It is able to compensate
the preciseness of the content detection. Comparing the results
depending on forum systems (table II) shows that systems with

TABLE II
SYSTEM BASED QUALITY ANALYSIS

system quantity correct perfect
Burning Board 3 100% 66.7%

drupal 6 83.3% 0%
IPB 5 75% 50%

myBB 4 66.7% 66.7%
phpBB 7 100% 57.1%

SMF 3 100% 33.3%
Unclassified NewsBoard 2 100% 100%

Vanilla 3 100% 100%
vBulletin 13 92.3% 84.6%

miscellaneous 5 60% 60%

(a) Postings with own subtree (b) Postings without own sub-
tree

Fig. 5. The proposed algorithm is able to detect posting structures if the
complete posting (user comment and meta information) can be found in an
own subtree (a). Some templates do not follow this assumption and present
meta information and user comments of all postings in one subtree (b).

additional content in the content section are difficult to handle.
Discussion specific sections with topic related information can
cause problems: the generated XPath expression for posting
structures could detect non-postings. Before creating the XPath
wrapper, the algorithm is aware, which sections are postings
and which are not. It is very hard to store this information in
XPath expressions automatically (with the help of siblings or
children). In our application, we want to extract user name,
posting time and user comments to apply text mining methods.
To get the correct sections, we reapply the SST algorithm to
extracted postings themselves. Only changing sections such as
the user comment, the user name and the posting time get a
high relevance. Discussion headers, footers and advertisement
are discarded easily. This is why correctness suffices for our
approach in most cases.

The algorithm is not able to detect user postings if they can-
not be found in own subtrees (fig. 5) because the assumption
of [9] is not valid. The abstraction step fails. It is possible to
detect such structures by testing different node combinations
and creating virtual nodes. This was not done in this work.

Our approach is also not able to handle systems in which
the first comment is formated completely different (similar
to weblog systems). The global strategy in our wrapper
generation would have to check XPath expressions at same
posting positions to solve this problem. Until now, we have not
found a really good solution to allow special representations
at any position. Fortunately, we only have seen this style in
few individual and drupal based systems.

Last but not least, the algorithm is not applicable to com-
munity systems with low answer rate, because we need more
than one posting to make the generalization step possible.

V. CONCLUSION

The proposed algorithm has shown that it is possible to
detect posting structures automatically in flat internet fora. It is
applicable to a large number of different systems and templates
if the posting can be found in an own subtree.

Unfortunately, the algorithm cannot be applied completely
unsupervised because the user has to check the applicability.
Further research on the topic of user comment extraction
should address one important question: Is it possible for an
extraction algorithm to pre-check a web page for a suitable
structure or can the algorithm post-check the reported postings
for plausibility?

REFERENCES

[1] U. McCann, “Wave.3 - social media tracker,” March 08. [Online].
Available: http://www.universalmccann.com/

[2] B. van Eimeren and B. Frees, “Ergebnisse der ard/zdf-
onlinestudie 2008 - internetverbreitung: Groesster zuwachs bei
silver-surfern.” [Online]. Available: http://www.ard-zdf-onlinestudie.de/
fileadmin/Online08/Eimeren I.pdf

[3] M. Fisch and C. Gscheidle, “Ergebnisse der ard/zdf-onlinestudie
2008 - mitmachnetz web 2.0: Rege beteiligung nur in
communitys.” [Online]. Available: http://www.ard-zdf-onlinestudie.
de/fileadmin/Online08/Fisch II.pdf

[4] N. online, “Buzzmetrics,” May 2008. [Online]. Available: http://de.
nielsen.com/products/documents/NielsenonlineBuzzMetrics20080521.
pdf

[5] D. Gibson, K. Punera, and A. Tomkins, “The volume and evolution of
web page templates,” pp. 830–839, 2005.

[6] T. Gottron, “Content extraction: Identifying the main content in html
documents,” Ph.D. dissertation, Johannes-Gutenberg University Mainz,
2008. [Online]. Available: http://ubm.opus.hbz-nrw.de/volltexte/2009/
1859/pdf/diss.pdf

[7] L. Yi, B. Liu, and X. Li, “Eliminating noisy information in web pages
for data mining,” pp. 296–305, 2003.

[8] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 1948.

[9] B. Liu, R. Grossman, and Y. Zhai, “Mining data records in web pages,”
in KDD ’03: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining. New York, NY,
USA: ACM, 2003, pp. 601–606.

[10] M. lvarez, A. Pan, J. Raposo, F. Bellas, and F. Cacheda, “Finding and
extracting data records from web pages,” Journal of Signal Processing
Systems, 2008.

[11] Y. Zhai and B. Liu, “Web data extraction based on partial tree align-
ment,” in WWW ’05: Proceedings of the 14th international conference
on World Wide Web. New York, NY, USA: ACM, 2005, pp. 76–85.

[12] Y. Kim, J. Park, T. Kim, and J. Choi, “Web information extraction by
html tree edit distance matching,” in ICCIT ’07: Proceedings of the
2007 International Conference on Convergence Information Technology.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 2455–2460.

[13] B. Liu and Y. Zhai, “Net - a system for extracting web data from flat and
nested data records,” in Proceedings of 6th International Conference on
Web Information Systems Engineering (WISE-05, 2005.

[14] S. P. Algur and P. S. Hiremath, “Extraction of flat and nested data records
from web pages,” in AusDM ’06: Proceedings of the fifth Australasian
conference on Data mining and analystics. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2006, pp. 163–168.

