

Topic Detection by Clustering Keywords

Christian Wartena Rogier Brussee

Telematica Instituut Enschede The Netherlands

Overview

- Problem: find the main topics of a collection
- Keyword extraction
- Clustering
- Distance
- Data and evaluation
- Results

Multimedia

Problem: get the topics of a corpus

 Given a collection of texts, can we identify the main topics of this collection?

- Approach
 - Extract meaningful terms ('keywords')
 - Cluster these terms
 - Does each cluster represent a topic?

Keywords

- Simple approach for determining meaningful terms:
 - Most frequent nouns, verbs (no auxiliaries) and proper names
 - But no terms that are too general
 - i.e. terms with a distribution of co-occurring terms similar to the background distribution

Clustering (1)

- agglomerative hierarchical
 - single link
 - Worked only well for finding many small clusters
- Density based
 - DBSCAN
 - Almost as good as top-down
- Top down
 - induced bisecting k-means
 - Best results

Clustering (2): Induced bisecting k-means

- 1. Select two elements *a*,*b* with maximal distance as seed points for two clusters
- 2. Assign all items to the cluster with the closest seed point
- 3. Compute the centers *a*' and *b*' of both clusters.
- 4. Repeat step 2 and 3 starting with *a*' and *b*' as new seed points until the centers become stable.
- 5. If the diameter of a cluster is larger than a <u>specified</u> <u>threshold value</u>, the whole procedure is applied recursively to that cluster.

Distance

- Two terms are similar if they
 - Have a similar distribution over items
 - Cosine
 - Divergence (relative entropy) of distributions
 - Often co-occur
 - E.g. Jaccard coefficient
 - Co-occur with the same other terms
 - New: our approach
- We need a measure that allows to compute a center of a cluster

Co-occurence

- Key idea:
- Terms are similar if they have similar co-occurrence patterns
 - Consider the probability distribution that a term cooccurs with other terms
 - Compare these co-occurence distributions

	Mission	Peacekeeping	UN	Security Council	Priest	Missionary
Mission	10	4	8	3	2	1
Peacekeeping	4	7	4	5	0	0
UN	8	4	14	8	1	0
Security Council	3	5	8	8	1	1
Priest	2	0	1	1	6	4
Missionary	1	0	0	1	4	8

Telematica Instituut

Term Distribution for source: q(t/d)

Instituut

Document Distribution for a term: Q(d|t)

Instituut

Distribution of co-occurring terms

$$\overline{p_z}(t) = \sum_d q(t \mid d) Q(d \mid z)$$

- where
 - q(t|d) is the term distribution of d
 - Q(d|z) is the document distribution of z
 - "The fraction of z's that is found in d"

- Weighted average of the term distributions of documents
 - The weight is the relevance of d for z given by the probability Q(d|z)

Distance of terms

- Jensen-Shannon divergence of distributions of co-occurring terms
- Kullback-Leibler divergence:

$$D(p||q) = \sum_{t} p(t) \log\left(\frac{p(t)}{q(t)}\right)$$

• Jensen-Shannon divergence:

$$JSD(p||q) = \frac{1}{2}D(p||m) + \frac{1}{2}D(q||m)$$

• Mean distribution: $m = \frac{1}{2}(p+q)$

Evaluation

- Data
 - 758 Wikipedia articles from 8 categories
 - Categories:
 - pop music
 - painting
 - architecture
 - trees
 - monocots
 - charadriiformes
 - aviation
 - space flight
 - 118.099 words
 - 27.373 unique terms

Task

- 160 keywords selected
 - Most frequent
 - $D(\overline{p}_t \parallel q) > 1$
- Cluster keywords into disjoint sets

Keep keywords and clustering method constant

• Vary distance measure and number of clusters

Reference Clustering

- 1: Define a cluster for each category
 - Compute term distribution q_c for each category
 - Assign each term *t* to a cluster *c* such that $JSD(\overline{p}_t || q_c)$ is minimal

• **2:** As 1 but with one additional cluster defined by the term distribution of the whole collection

Evaluation measure

- For each reference cluster
 - find the best fitting cluster
 - compute the F-value for that cluster
- Compute the weighted average of all 8 (9 resp) Fvalues.
 - Weighted by the size of the reference cluster

Results (8 categories)

Results (9 categories)

Instituut

Summary

• Selection and clustering of most meaningful terms seems to be a good method to identify topics

 Divergence of co-occurring terms distributions is an interesting measure for similarity of terms in a collection of documents

