Meta Analysis within Author Verification

Benno Stein Nedim Lipka Sven Meyer zu Eissen webis.de Bauhaus-Universität Weimar

 Outline
 Intrinsic Plagiarism Analysis and Authorship Verification

 • Post-Processing with Unmasking

Problem Setting

How to find a plagiarized section / foreign authorship without a reference corpus?

Problem Setting

How to find a plagiarized section / foreign authorship without a reference corpus?

Formulated as decision problem:

Problem.AVFINDGiven.A text d, allegedly written by author A.Question.Does d contain sections written by an author $B, B \neq A$?

Intrinsic plagiarism analysis and authorship verification (AV) are two sides of the same coin.

4 Stein/Lipka/SMZE@DEXA'08

Building Blocks for Authorship Verification

Pre-analysis			Classification	Post-processing		
Impurity assessment	Decomposition strategy	Style model construction	Style outlier identification	Improvement at section level	Improvement at document level	
Document length analysis	Uniform length	Formatting	Two-class discriminant analysis	Citation analysis	Confidence-based majority decision	
Genre Analysis	Structural boundaries	Surface analysis			Unmasking	
Analysis of issuing institution	Text element boundaries	Complexity	density estimation		Batch means	
	Topical boundaries	measures <i>n</i> -gram analysis	One-class classifier: boundary estimation		Human inspection	
		Language modeling	One-class classifier: reconstruction			
		Dialectic analysis				

Style Model Construction: Starting Points

Selected quantifiable feature classes (from easy to difficult):

- □ surface features
- □ structure and organization
- complexity measures
 - readability
 - writing complexity
 - vocabulary richness, diction
- □ dialectic power
 - argumentation consistency
 - argumentation strategy

For a machine-based identification, features have to be developed and operationalized within a style model \mathcal{R} .

Style Model Construction: Language Modeling

Intrinsic Analysis and Authorship Verification [Building Blocks]

Style Outlier Identification

0	OnWeb-based Plagiarism Analysis <u>Alexander Kleppe</u> , Denois Braunsdort, Christoph Loessoitz_Sven Meyer.zu Eissen Alexander Kleppe@medien.uni-weimar.de, Dennis Braunsdorf@medien.uni-weimar.de, Christoph.Loessnitz@medien.uni-weimar.de Sven.Meyer.zu-Eissen@medien.uni-weimar.de Bauhaus University Weimar Faculty of Media <u>MediaSystems</u> D-99421 Weimar, Germany	 $\mathbf{s} = \begin{pmatrix} 0.16\\ 0.20\\ 0.65 \end{pmatrix}$	$\mathbf{s}_{\Delta} = \begin{pmatrix} 0.014 \\ -0.008 \\ -0.050 \end{pmatrix}$
1	Abstract The paper in hand presents a Web-based application for the analysis of text documents with respect to plagiarism. Aside from reporting experiences with standard algorithms, a new method for plagiarism manalysis is introduced. Since well-known algorithms for plagiarism detection assume the existence of a candidate document collection against which a suspicious document can be compared, they are unsuited to spot potentially copied passages using only the input document. This kind of plagiarism remains undetected e.g. when paragraphs are copied from sources that are not available electronically. Our method is able to detect a change in writing style, and consequently to identify suspicious passages within a single document. Apart from contributing to solve the outlined problem, the presented method can also be used to focus a search for potentially original documents. Key words: plagiarism analysis, style analysis, focused search, chunking, Kullback-Leibler divergence 1 Introduction Plagiarism refers to the use of another's ideas, information, language, or writing, when done without proper acknowledgment of the original source [16]. Recently, when done without proper acknowledgment of sources to the possibility.to easily find and (partially) copy text documents given a specific topic: According to McCabe's plagiarism study on 18,000 Students, about 50% of the students admit to plagiarize from Internet documents [7].	 $\mathbf{s} = \begin{pmatrix} 0.24\\ 0.09\\ 0.54 \end{pmatrix}$	$\mathbf{s}_{\Delta} = \begin{pmatrix} 0.090 \\ -0.121 \\ -0.160 \end{pmatrix}$
0	1.1 Pragiartsm Pappens in several forms. Heintze distinguishes between the following textual relationships between documents: identical copy, edited copy, reorganized document, revisioned document, condensed/expanded document, documents that include portions of other documents. Moreover, unauthorized (partial) translations and documents that copy the structure of other documents can also be seen as plagiarized. Figure 1 depicts a taxonomy of plagiarism forms. Orthogonal to plagiarism forms are the underlying media: plagiarism may happen in articles, books or computer programs.	 $\mathbf{s} = \begin{pmatrix} 0.14\\ 0.20\\ 0.70 \end{pmatrix}$	$\mathbf{s}_{\Delta} = \begin{pmatrix} -0.051 \\ -0.011 \\ 0.000 \end{pmatrix}$
	$\mathbf{d} = \begin{pmatrix} 0.15 \\ 0.21 \\ 0.70 \end{pmatrix}$		

Supervised learning situation: given are sections s_i from both the target class (author *A*), where c(s) = 0, and the outlier class (other authors), where c(s) = 1.

Style Outlier Identification

Compute for each section the relative differences between section-specific style feature values and document-specific style feature values.

1. Let $\sigma_1, \ldots, \sigma_m$ denote style feature functions.

2. For each section
$$s \subseteq d$$
:
• compute style model $\mathbf{s} = \begin{pmatrix} \sigma_1(s) \\ \vdots \\ \sigma_m(s) \end{pmatrix} \in \mathbf{R}^m$
• compute relative deviations $\mathbf{s}_\Delta = \begin{pmatrix} \frac{\sigma_1(s) - \sigma_1(d)}{\sigma_1(d)} \\ \vdots \\ \frac{\sigma_m(s) - \sigma_m(d)}{\sigma_m(d)} \end{pmatrix} \in \mathbf{R}^m$

3. Learn an outlier hypothesis h from a sample $\{(\mathbf{s}_{\Delta}, c(s))\}, c(s) \in \{0, 1\}.$

Evaluation: Style Model Performance

The unsatisfying precision is rooted in the class imbalance.

The Gretchenfrage: Are parts of *d* plagiarized, if we find an outlier?

Evaluation: Style Model Performance

The unsatisfying precision is rooted in the class imbalance.

The Gretchenfrage: Are parts of *d* plagiarized, if we find an outlier?

# Outliers	Strategy	\rightarrow	Hypothesis
0	minimum risk	\rightarrow	not plagiarized
1	minimum risk	\rightarrow	plagiarized
2	minimum risk	\rightarrow	plagiarized
3	minimum risk	\rightarrow	plagiarized

Intrinsic Analysis and Authorship Verification [Building Blocks]

Evaluation: Style Model Performance

The unsatisfying precision is rooted in the class imbalance.

The Gretchenfrage: Are parts of *d* plagiarized, if we find an outlier?

# Outliers	Strategy	\rightarrow	Hypothesis	Strategy	\rightarrow	Hypothesis
0	minimum risk	\rightarrow	not plagiarized	post-processing	\rightarrow	not plagiarized
1	minimum risk	\rightarrow	plagiarized	post-processing	\rightarrow	not plagiarized
2	minimum risk	\rightarrow	plagiarized	post-processing	\rightarrow	not plagiarized
3	minimum risk	\rightarrow	plagiarized	post-processing	\rightarrow	plagiarized

Post-Processing with Unmasking [Building Blocks]

Reliable Interpretation of Outliers

Problem.AVOUTLIER (an easier variant of AVFIND)Given.A set of texts $D = \{d_1, \ldots, d_n\}$, allegedly written by author A.Question.Does D contain texts written by an author $B, B \neq A$?

Reliable Interpretation of Outliers

Problem.AVOUTLIER (an easier variant of AVFIND)Given.A set of texts $D = \{d_1, \ldots, d_n\}$, allegedly written by author A.Question.Does D contain texts written by an author $B, B \neq A$?

The belief into an answer depends on the number of found outliers:

# Outliers	Strategy	\rightarrow	Hypothesis
0	minimum risk, post-processing	\rightarrow	not plagiarized
2	minimum risk	\rightarrow	plagiarized
2	post-processing	\rightarrow	not plagiarized
4	minimum risk, post-processing	\rightarrow	plagiarized

Reliable Interpretation of Outliers

Problem.AVOUTLIER (an easier variant of AVFIND)Given.A set of texts $D = \{d_1, \ldots, d_n\}$, allegedly written by author A.Question.Does D contain texts written by an author $B, B \neq A$?

The belief into an answer depends on the number of found outliers:

# Outliers	Strategy	\rightarrow	Hypothesis
0	minimum risk, post-processing	\rightarrow	not plagiarized
2	minimum risk	\rightarrow	plagiarized
2	post-processing	\rightarrow	not plagiarized
4	minimum risk, post-processing	\rightarrow	plagiarized

Post-process borderline situations to gain further evidence for accepting or rejecting a hypothesis.

Idea: Interpret AVOUTLIER results under the Unmasking framework.

Unmasking for Authorship Verification [Koppel/Schler 2004]

Problem. AV

Given. Two documents d_1, d_2 .

Question. Are d_1 and d_2 written by the same author?

Procedure Unmasking:

- 1. Chunking.
- 2. Model Fitting.
- 3. Impairing.
- 4. Goto Step 2 until the feature space is sufficiently reduced.

Unmasking for Authorship Verification [Koppel/Schler 2004]

Problem. AV

Given. Two documents d_1, d_2 .

Question. Are d_1 and d_2 written by the same author?

Procedure Unmasking:

- 1. *Chunking.* Decompose d_1, d_2 into two sets of sections, D_1, D_2 .
- 2. *Model Fitting.* With the 250 most frequent words in d_1 , d_2 build a VSM for each s in D_1 , D_2 . Learn a classifier that discriminates between D_1 , D_2 .
- 3. Impairing. Drop the 3 most discriminating features from the VSMs.
- 4. Goto Step 2 until the feature space is sufficiently reduced.

Unmasking for Authorship Verification [Koppel/Schler 2004]

Problem. AV

Given. Two documents d_1, d_2 .

Question. Are d_1 and d_2 written by the same author?

Procedure Unmasking:

- 1. *Chunking.* Decompose d_1, d_2 into two sets of sections, D_1, D_2 .
- 2. *Model Fitting.* With the 250 most frequent words in d_1 , d_2 build a VSM for each s in D_1 , D_2 . Learn a classifier that discriminates between D_1 , D_2 .
- 3. Impairing. Drop the 3 most discriminating features from the VSMs.
- 4. Goto Step 2 until the feature space is sufficiently reduced.
- 5. *Meta Learning.* Analyze the degradation in the quality of the model fitting.

Unmasking for Authorship Verification

Characteristic of a typical outcome:

Rationale:

- □ A large fraction of the 250 words are function words and stop words.
- □ Only few of the words are related to topic.
- Only few words do the discrimination job—the topic words for a large part.
- □ Different authors can be distinguished by their use of function words.

Unmasking for Authorship Verification

Characteristic of a typical outcome:

Rationale:

- □ A large fraction of the 250 words are function words and stop words.
- Only few of the words are related to topic.
- Only few words do the discrimination job—the topic words for a large part.
- Different authors can be distinguished by their use of function words.

Unmasking for Authorship Verification

Characteristic of a typical outcome:

Rationale:

- □ A large fraction of the 250 words are function words and stop words.
- Only few of the words are related to topic.
- Only few words do the discrimination job—the topic words for a large part.
- Different authors can be distinguished by their use of function words.

Post-Processing with Unmasking [Results]

Strategy Overview

- 1. Solve AVOUTLIER with one-class classifier. For borderline situations:
- 2. Construct AVBATCH from the classified target and outlier sections.
- 3. Apply Unmasking to solve AVBATCH.

Evaluation: Artificial Data

	Classification	Post-processing				
Impurity	AVOUTLIER Minimum risk	AVватсн Majority	AVBATCH Unmasking			
heta	prec rec F	prec rec F	prec rec F			
0.20	0.12 1.00 0.56	0.71 0.83 0.77	0.73 0.90 0.82			
0.30	0.20 1.00 0.60	1.00 0.56 0.78	1.00			
0.40	0.18 1.00 0.59	1.00 0.83 0.92	1.00 0.87 0.94			

Evaluation: Artificial Data

	Classification	Post-processing				
Impurity	AVOUTLIER Minimum risk	AVватсн Majority	AVBATCH Unmasking			
heta	prec rec F	prec rec F	prec rec F			
0.20	0.12 1.00 0.56	0.71 0.83 0.77	0.73 0.90 0.82			
0.30	0.20 1.00 0.60	1.00 0.56 0.78	1.00			
0.40	0.18 1.00 0.59	1.00 0.83 0.92	1.00 0.87 0.94			

Strategy overview:

Summary

Summary

Authorship verification happens within three steps:

- 1. Pre-processing. Text decomposition + style model construction
- 2. Classification. Style outlier identification / one-class classification
- 3. Post-processing. Improve reliability of the classification step.

Main contribution:

A post-processing strategy for borderline situations, based on unmasking.

Thank you!