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Abstract— Most HTML documents on the World Wide Web
contain far more than the article or text which forms their main
content. Navigation menus, functional and design elementsor
commercial banners are typical examples of additional contents.
Content Extraction is the process of identifying the main content
and/or removing the additional contents. We introducecontent
code blurring, a novel Content Extraction algorithm. As the main
text content is typically a long, homogeneously formated region
in a web document, the aim is to identify exactly these regions in
the document in an iterative process. Comparing its performance
with existing Content Extraction solutions we show that formost
documents content code blurring delivers the best results.

I. I NTRODUCTION

Nowadays most HTML documents on the World Wide
Web are generated from templates by content management
systems. Beside the main textual content they comprise several
additional contents, such as navigation menus, functionaland
design elements or commercials. Already in 2005 Gibson,
Punera and Tomkins [3] estimated those additional contents
to make up around 40 to 50% of most web pages on the
Internet, predicting this ratio to increase constantly.

Content Extraction (CE) is the process of determining the
parts of an HTML document which contain its main textual
content. Several applications benefit from CE under different
aspects: Web Mining and Information Retrieval applications
use CE to pre-process the raw HTML data to reduce noise
and to obtain more accurate results, other applications useCE
to rewrite web pages to improve presentation on small screen
devices or access via screen readers for visually impaired
users. The aim of reducing the size of documents can also
be to speed up the download time for devices with narrow
bandwidth access.

This paper introducescontent code blurring (CCB), a novel
CE algorithm. CCB is robust to invalid or badly formatted
HTML documents, it is fast and concerning its extraction
performance delivers very good results on most documents.

We proceed as follows. In section II we give an overview of
related works in the field of CE, mentioning in particular some
of the algorithms we will use for comparison when evaluating
CCB. The CCB algorithm itself is defined and explained in
section III. We continue by describing our evaluation setup
and compare the performance of CCB with other CE methods
in IV. The paper is concluded with a discussion of the results
and a proposal for further extensions to the algorithm.

II. RELATED WORKS

In most application scenarios mentioned in the introduction
the identification and extraction of the main content has to be
done on-the-fly. Rahman et al. list in [11] requirements such
a Content Extraction system for HTML documents should
comply with. Being generic enough to work with any website
and using a fast extraction algorithm are the most important
aspects for the extraction part of such a system.

One of the more prominent solutions for CE is the Crunch
framework. It was introduced by Gupta et al. in [6] and is
refined continuously [8], [7], [5]. Avoiding a one-solution-fits-
all approach, Crunch combines several heuristics to discover
and remove e.g. link lists, text lists, blocks with a too high
link ratio or commercial banners. The main objective of
Crunch is to optimise HTML documents for presentation on
small screen devices or to improve accessibility for users
employing screen reader software. A detection of link lists
is also used in the link quota filter (LQF) of Mantratzis et
al. in [9]. Debnath et al. developed the Feature Extractor
algorithm and its extension the K-Feature Algorithm in [1].
The underlying idea is to segment a web document in blocks
and analyse these blocks for the presence and prevalence
of particular features like text, images, JavaScript etc. The
extraction process is based on retrieving those blocks which
correspond best to certain desired features, e.g. text for a
classical article main content. Finn et al. introduced the Body
Text Extraction (BTE) algorithm in [2] as a pre-processor for
their application classifying news articles on the web. BTE
identifies a part of the document which contains most of the
text while excluding most of the tags. Pinto et al. [10] extended
the BTE approach to construct Document Slope Curves (DSC).
They use a windowing technique to locate several parts of
the document which fit the main content characteristics as
formulated for BTE in order to overcome BTE’s drawback of
extracting only a single and continuous part of the document.

In [4] we developed a way to measure, evaluate and compare
CE algorithms based on the standard IR measures precision,
recall and F1. In the course of this work we also compared
different CE approaches. An adaptation of the DSC algorithm
turned out to be the best performing general CE method.



Fig. 1. An example for a web document with an outlined main content.
The main text content is usually a long and homogeneously formatted region,
while additional contents, such as navigation menu, commercials or layout
elements contain short texts and are highly structured.

III. C ONTENT CODE BLURRING

The idea underlying content code blurring is to take advan-
tage of typical visual features of the main and the additional
contents. Additional contents are usually highly formatted and
contain little and short texts. The main text content on the
other hand commonly is long and homogeneously formatted.
The example document in fig. 1 demonstrates this observation.

As in the source code of an HTML document any change
of format is indicated by a tag, we will accordingly try to
identify those parts of a document which contain a lot of text
and few or no tags. This corresponds to finding areas with a
lot of content and little code.

A. Concept and Idea

So, the idea and aim of content code blurring is to locate
those regions in a document which contain mainly content and
little code. To formalise this task we need to define what is a
region in a document, what we mean by content and by code
and how to measure the amount of content or code in a region.

The question of what is content and what is code can be
answered quite easily. Roughly said, all the tags in the source
code correspond to code while everything else is content. After
all, the tags provide the structure, layout and formatting of a
web document. The text outside the tags instead makes up the
content.

The next question is, how to turn a document into a structure
for which we can define the concept of regions. We will take
two different approaches here. The first approach is striking a

new path for document representations in the CE context by
determining for each single character whether it is contentor
code. So, a document is turned into a sequence of code and
content characters. The second approach is based on a token
sequence as used by BTE and DSC. Each tag and each word
correspond to a token. The whole document is accordingly
represented as a sequence of tag and word tokens. Both ways
lead to a representation of a document as a sequence of
elements which are either content or code. This sequence
can be characterised as a vector of atomic content or code
elements. We will refer to this vector from now on as the
content code vector. Note, that this document representation
is very robust to syntax errors in the HTML code: as long as
the tags can be identified this vector can be built.

Now, based on this vector of atomic elements we will
form regions, which are based on the criteria of consisting
mainly of content or of code. Accordingly, it is immediately
clear whether to retain or to discard a region in an extraction
process. To determine these regions, we will calculate for each
atomic element acontent code ratio of how many content and
code elements surround it. If the content code ratio is high for
several atomic elements in a row we have found a part of the
document with a relatively uniform format, as it implies few
tags in a part of the document which mainly consists of text.

How much an element is surrounded by content or code
depends on the appearance of content or code elements in its
neighbourhood. The neighbourhood is defined individually for
each atomic element and corresponds to a symmetric range of
entries in the content code vector. To calculate the content
code ratio in this neighbourhood we use a process inspired by
the blurring filters of image processing applications.

B. Blurring the Content Code Vector

Before starting the process of determining the content code
ratio we will change the representation of the content code
vector into a more suitable format. We will represent it as
a vector of floating point values. Each entry in the vector is
initialised with a value of1 if the according element is of type
content and with a value of0 for code.

To obtain the content code ratios we calculate a weighted
and local average of the values in the neighbourhood of each
entry, i.e. for each atomic element. Based on these local
average values we create a new vector which represents for
each element the individual ratio of content and code in its
neighbourhood. If all the elements in a neighbourhood started
with a value of1, also the neighbourhood average will be1.
The same is valid for neighbourhoods with an initial value
of 0. In mixed neighbourhood the resulting average will be
between0 and1 and depends on the values of the surrounding
elements. If they are mainly content, the ratio will be high,if
they are mainly code, the ratio will be low – exactly the effect
that we intended to achieve.

The weights in the average calculation are used for mod-
elling a stronger influence of near elements and a weaker influ-
ence for those further away. We chose the weights according to
a Gauss distribution to obtain this effect. To further realise an



influence of elements which are beyond the neighbourhood
boundaries we iteratively repeat this process of calculating
neighbourhood averages. In each iteration we use the resulting
vector of content code ratios as input for the next step. The
iteration is stopped as soon as the values start to settle.

Visually the whole process corresponds to constructing a
one dimensional image from the atomic elements, in which
each pixel represents a single element and is initially coloured
white if it represents content and black if it represents code.
The iterative calculation of the content code ratio corresponds
to applying repeatedly a Gaussian blurring filter1 – hence the
name content code blurring.

Figure 2 demonstrates this visual interpretation. The original
image has been generated from HTML source code as de-
scribed above. When blurring the image the abrupt transitions
between black and white are smoothed by shades of grey. The
parts of the image which were initially mainly black end up
being coloured in darker shades, those which have initially
been mainly white will remain in brighter shades. Translated
into the content code ratio, the bright areas have a high ratio
of content to code and are accordingly rich in content, the
dark ones have a low ratio and are rich in code.

Finding the regions in a document which contain mainly
content then corresponds to selecting those elements which
have a high content code ratio, i.e. a value closer to1 or a
brighter colour in the image interpretation. We will use a fixed
threshold for this ratio and select all elements of the document
which have a content code ratio above this threshold as being
part of the main content.

C. Adaptation and Implementation

Though the visual interpretation of blurring a black and
white image is very descriptive the overhead of creating an
image representation of the HTML code is not necessary. In-
stead we use the afore mentioned way of calculating weighted
averages of the content code vector of floating point values.

The iteration of this calculation is stopped when meeting a
certain stop criterion. We will use a low rate of changes in
the finally as main content extracted text as stop criterion.
This means, we determine after each step of the iteration
the content which would be declared main content given the
current content code ratios of the atomic elements. And if this
extracted content is not changing any more, the iteration stops.

The extraction itself is based on the final values of the
content elements. If their value is above a thresholdt they are
considered main content, otherwise additional content andare
removed from the source code. A few downstream refinements
take care that in the character based version words are always
extracted entirely. We will refer to this initial form of the
algorithm as CCB.

In [4] we observed that most CE algorithms have problems
with highly fragmented contents which additionally contain

1Gaussian filters can be found in nearly all image processing programs.
They achieve the blurred effect in an image by spreading a pixels colour
value to its neighbour pixels according to a Gauss distribution.

TABLE I

OVERVIEW OF THE EVALUATION PACKAGES.

Package Web site URL Size
bbc BBC online http://news.bbc.co.uk 1000
chip Chip online http://www.chip.de 361
economist Economist.com http://www.economist.com 250
espresso L’espresso http://espresso.repubblica.it 139
golem Golem http://golem.de 1000
heise heise online http://www.heise.de 1000
manual several – 65
repubblica La Repubblica.it http://www.repubblica.it 1000
slashdot Slashdot http://slashdot.org 364
spiegel Spiegel online http://www.spiegel.de 1000
telepolis Telepolis http://www.telepolis.de 1000
wiki Wikipedia http://de.wikipedia.org 1000
yahoo Yahoo! news http://news.yahoo.com 1000
zdf ZDF heute.de http://www.heute.de 422

a lot of in-text hyperlinks. This caused all CE methods to
perform remarkably poor on wiki style web documents.

Especially the in-text links contribute very strong to the
fragmentation, which is lethal also to CCB’s attempt to find
areas with few tags. Hence we will analyse a variation of
CCB which is intended to cope with this problem. Thinking
of our initial idea of text blocks with uniform layout we
create anadapted CCB (ACCB) which ignores anchor-tags
entirely during the creation of the content code vector. After
all, hyperlinks are not influencing the format intentionally.
Their visual influence is more a side-effect of the necessity
to reference another document.

At the first glance, this approach might seem too specialised
for the wiki style pages and even counterproductive for other
HTML documents. LQF for example uses the presence of
hyperlinks as a sure sign for additional contents. Ignoring
hyperlinks might accordingly weaken the general extraction
performance. Hence, we will pay special attention to the
performance of ACCB in comparison with the original CCB.

So, for the evaluation we will end up with three variations
of content code blurring. The character based version in its
original form (CCB), with the adaptation of ignoring hyper-
links (ACCB) and the token based version (TCCB).

IV. EVALUATION

For evaluation, we will use the same evaluation methods as
in [4]. We collect web documents and provide a gold standard
for their main text content. To compare the extract providedby
a CE algorithm with the gold standard we need to compute an
overlap between the texts. For this purpose we determine the
longest common (but not necessarily continuous) sub sequence
of words in both texts. Considering this sub sequence as the
intersection between retrieved (i.e. extracted) and relevant text
(i.e. part of the gold standard) allows to apply standard IR
measures like recall, precision and F1.

The evaluation data is organised in packages which are
listed in table I. The manual package consists of documents
for which the main contents have been outlined manually. For
the other packages we applied dedicated programs, which are
capable of harvesting the main content from the documents of
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Fig. 2. The blurring of a content code vector interpreted as agrayscale image.

particular web sites. In this way we obtained large amounts
of documents for large scale tests. Altogether we have 14
packages and a total of 9,601 documents for evaluating CE
algorithms. These packages cover different scenarios of doc-
ument styles, layout techniques and main content lengths.

In most documents the main content is quite obvious. The
only problematic case are the documents of the slashdot
package. Here the main article is always extended by a rather
lengthy discussion thread of slashdot users. We will consider
the discussion not to be part of the main content.

A. Fixing the Parameters

The content code blurring algorithms have two main pa-
rameters: the range of the neighbourhood and the threshold
value for the extraction. The range defines the direct influence
of the atomic elements on their neighbourhood; the threshold
provides the minimum content code ratio an element has
to satisfy for being declared part of the main content. To
find good settings for these parameters we evaluated the
performance of the CCB, ACCB and TCCB manually on a
small set of documents.

It turned out quite soon, that a threshold of 0.75 is a good
setting for all neighbourhood ranges and all variations of
the algorithm. Keeping the threshold fixed allowed an easy
exploration of settings for the range. Here a range of 40 turned
out to be a good choice for the character based algorithms CCB
and ACCB, while for the token based TCCB a range setting
of 25 is the best choice.

B. Results

The average F1 results for extracting the main content from
the documents are shown in table II. The table also includes
the performance of the DSC algorithm as the best algorithm
in our last comparison. The alternative of not using any CE is
listed under the “plain” method and forms the baseline. Each
CE algorithm should perform better than not using CE at all.

The results of the content code blurring algorithms are
generally quite good. First of all we can notice that – with the
exception of the wiki pages – all versions of CCB are achiev-
ing better results than the plain method baseline. This result
qualifies CCB as a valid CE method. The second important
insight is, that ACCB does not show a significant drawback in
comparison to CCB. So, the adaptation of ignoring hyperlink
tags during the construction of the content code vector doesnot
cause a drop in the performance of the content code blurring
approach. We can deduce that ACCB – though also improving
the F1 performance on the wiki package significantly – is
not overfitted for Wikipedia documents. ACCB is actually

performing better for some of the other packages as well.
So, the adaptation, which was specifically introduced for the
particular case of main contents with a high ratio of in-text
links is also useful for other scenarios.

The next good news is the performance of ACCB in com-
parison to DSC. While for the original, character based CCB
and for the token based TCCB the performance does not show
clear advantages or disadvantages, ACCB in general performs
better than DSC. Looking at the total of our 14 evaluation
scenarios, ACCB is scoring considerably higher F1 scores than
DSC for five packages, comparable results on six packages
and worse results only for three packages. Further, on four
of the comparable packages ACCB is having slightly higher
F1 scores, which might underline the tendency of a better
performance. Among the packages, where ACCB is inferior
to DSC is the generally problematic slashdot package. Though
ACCB is achieving better recall values for slashdot documents,
it is much less precise. The problem of the short main content
and long additional text contents of the user discussions seems
to affect the character based content code blurring stronger
than DSC. Interesting is, that on the same package, DSC
itself is coming second to TCCB when considering the F1
performance. This is also the case for the spiegel package,
where ACCB is outperformed by DSC, but TCCB is still better
than DSC. So, the question is, if in these cases it is solely
the character based approach with has exceptional drawbacks
in comparison to a token based approach. This might be a
hint, that a more sophisticated construction of the content
code vector could improve the results of the content code
blurring idea. A solution somewhere between the character
and token based construction of the vector might deliver still
better results.

When looking in more detail at the packages where ACCB
is performing better than DSC, it becomes obvious that the
secret of ACCB’s success is a better recall. It is usually
slightly less precise than DSC, but achieves better recall
values. Accordingly, in the light of F1 it reaches a better
tradeoff between recall and precision. This also explains the
observations for the slashdot package. ACCB extracts the user
comments better and more complete than DSC. But as they
are not considered to be part of the main content, ACCB is
punished for this extraction in the precision measure.

However, ACCB’s recall is not perfect either. If parts of the
main content are highly formatted, they might not be recog-
nised as main content. Especially if they are positioned close
to other highly structured additional contents, the situation is
very difficult for all content code blurring implementations.



TABLE II

EVALUATION RESULTS OF NEW SINGLE DOCUMENT ALGORITHMS: AVERAGE F1.
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accb-400.9240.7030.8900.8750.9590.9160.4190.9680.1770.8610.9080.6820.7320.929
ccb-40 0.9230.7160.9140.8760.9390.8410.4200.9640.1600.8580.9130.4030.7420.929
tccb-25 0.9140.8420.9030.8710.9470.8210.4040.9180.2690.9100.9020.6600.7580.745
dsc 0.9370.7080.8810.8620.9580.8770.4030.9250.2520.9020.8590.5940.7800.847
plain 0.5950.1730.6130.6240.5020.5750.3710.7040.1060.5490.8580.8230.5820.514

TABLE III

AVERAGE NORMALISED PROCESSING TIME IN S/KB
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accb-r400.0010.0080.0150.0160.0090.0120.0200.0140.0130.0150.0520.0280.0130.001
ccb-r40 0.0070.0080.0150.0160.0090.0110.0180.0110.0130.0160.0520.0240.0130.001
tccb-25 0.0010.0010.0020.0020.0010.0010.0010.0010.0010.0010.0040.0030.0010.001
crunch 0.0270.0120.0140.0330.0330.0320.0470.0480.0190.0180.0770.0730.0240.028
dsc 0.0010.0010.0020.0020.0010.0010.0010.0010.0010.0010.0030.0020.0010.001
lqf-50 0.0040.0030.0160.0100.0040.0110.0170.0010.0090.0090.0510.0130.0110.001

This phenomenon can typically be observed for the headlines
of news articles. They usually follow a section of additional
contents, have a short text themselves and are separated
from the rest of the main content by some other formatting
instructions. However, DSC suffers from the same problem,
even to a higher degree. ACCB’s improvement in recall is
also due to a better performance exactly in these tricky cases.
The flexibly determined regions seem to be more appropriate
in comparison to DSC’s windowing approach.

When looking at the processing time in table III, the token
based approaches of DSC and TCCB are comparably fast.
ACCB and CCB need longer to process a document, simply
due to the much longer content code vector. However, ACCB
and CCB are both reasonably fast. Their time performance
is similar to the LQF filters and still faster than the Crunch
framework, which we have listed in this table as well.

V. CONCLUSIONS ANDFUTURE WORK

We presented content code blurring, a Content Extraction
algorithm which can be based either on characters or tokens.
Comparing CCB with other CE algorithms we have shown
that on most documents it yields better results than DSC.
Especially on the difficult Wikipedia documents the adapted
version ACCB is clearly superior to DSC. The results in
absolute terms could still be improved, though.

Future works on CCB will comprise fine tuning on the
parameters, combining it with other methods to achieve still
better results and to incorporate some notion of the DOM
block elements to enhance recognition of structurally related
parts of a document. Further, we will do some experiments
with more sophisticated models for constructing the content
code vector.
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