Web Page Scoring Based on Link Analysis of Web Page Sets

Hitoshi Nakakubo†, Shinsuke Nakajima‡
Kenji Hatano+, Jun Miyazaki‡, Shunsuke Uemura*
†U-TEC Corporation, Japan
‡Nara Institute of Science and Technology, Japan
+Doshisha University, Japan
*Nara Sangyo University, Japan
Background

• Web search engine
 – Performance of query processing
 – Retrieval accuracy
 • Link analysis approach
 – cut/information unit [Tajima et al., HT ‘98/Li et al., WWW 2001]
 – PageRank [Page et al., WWW ‘98]
 – HITS [Kleinberg, SODA ‘98]
Background

• cut/information unit
 – calculate importance degrees of Web content (=multiple Web pages)

• PageRank/HITS
 – calculate importance degrees of Web page (one Web page) using their hyperlink structure
Problems

- cut/information unit
 - Relativity among Web pages is not considered
 (no guarantee that the Web pages contain one identical topic.)

- PageRank/HITS
 - Relativity of Web contents is not considered
 (no guarantee that Web page unit equal information unit.)

Web pages irrelevant to query keywords are often ranked highly
Our Approach

• In order to provide relevant Web pages
 – extracting sets of Web pages containing one identical topic compiled by a unique author
 • by considering relativity among Web pages
 – adopting PageRank algorithm
 • with considering relativity among Web contents

Retrieval accuracy must be improved!!
Web Page Set (WPS)

- Web page set (WPS) is compiled by a unique author.
 - Quality of a Web page should be homogenized.
 - Containing one identical topic.
 - Importance degree of a Web page should be calculated using one identical topic.

We can treat features of Web pages exactly.
How to extract WPSs?

1. extracting Web pages compiled by a unique author
 - Ayan’s approach
 1. find entry pages
 - calculate the points of each Web page
 » URL strings
 » title of Web page
 » anchor texts
 » number of links in the Web page etc.
How to extract WPSs?

2. determine a boundary of a logical domain
 - an entry page and its descendants are belonging to the same logical domain
 - number of Web pages with in the same logical domain is 10 and above
 » merged into a parent logical domain
How to extract WPSs?

2. determining one identical topic in the same logical domain
 - calculate feature vectors of each Web page
 - apply Ward’s method for clustering the Web pages
 • the number of cluster is one tenth of the number of Web pages in each logical domain
How to calculate PageRanks of each WPS?

- delete all links among Web pages within the same WPSs
- construct link structures among WPSs
- delete all duplicate links between any two WPSs
- calculate PageRanks of each WPS
Experiments

• Web test collection
 – NW100G-01
 • 100GB (11 million pages)
 • contains mostly English and Japanese pages
 • developed by NTCIR (NII Test Collection for IR) project

• Search topics & relevance judgment
 – NTCIR-4 WEB Info 1
 • categorizes 4 relevance levels (highly relevant, relevant, partially relevant, irrelevant)
Evaluation Measures (1)

• Discounted Cumulated Gain (DCG)

[Jarvelin, Kekalainen 2000]

 • relevance measure taking account of multiple valued relevance levels

\[
dcg(i) = \begin{cases}
g(1) & \text{if } i = 1 \\
dcg(i - 1) + \frac{g(i)}{\log(i)} & \text{otherwise} \\
\end{cases}
\]

\[
g(i) = \begin{cases}
h & \text{if } d(i) \in H \ (\text{highly relevant}) \\
a & \text{if } d(i) \in A \ (\text{relevant}) \\
b & \text{if } d(i) \in B \ (\text{partially relevant}) \\
\end{cases}
\]
Evaluation Measures (2)

- **Weighted Reciprocal Rank (WRR)**

 [Eguchi et al. 2003]
 - extension of Mean Reciprocal Rank (MRR) [Voorhees 1999] to multiple valued relevance levels

 \[
 mrr = \text{AVG}\left(\frac{1}{\text{rank of the first appeared relevant document}}\right)
 \]

 \[
 \text{wrr}(m) = \max(r(i))
 \]

 \[
 r(i) = \begin{cases}
 \delta_h / (i - 1 / \beta_h) & \text{if } d(i) \in H \text{ and } 1 \leq i \leq m \\
 \delta_a / (i - 1 / \beta_a) & \text{if } d(i) \in A \text{ and } 1 \leq i \leq m \\
 \delta_b / (i - 1 / \beta_a) & \text{if } d(i) \in B \text{ and } 1 \leq i \leq m \\
 0 & \text{otherwise}
 \end{cases}
 \]

 where \(\delta \in \{0, 1\}, \beta_b \geq \beta_a \geq \beta_h > 1\)
Parameters

• the size of logical domain
 – more than or equal to 10 pages
• the number of WPSs
 – 1/10 of total Web pages
• DCG
 – weight for relevance: \((h,a,b) = (3,2,0)\)
• WRR
 – \((\delta_h, \delta_a, \delta_b) = (1,1,0), \ (\beta_h, \beta_a, \beta_b) = (\infty, \infty, \infty), m = 100\)
Evaluation by DCG

More relevant documents were retrieved at lower ranks in our approach

- Conventional
- Our Method
Evaluation by WRR

The first relevant documents were appeared at lower ranks in our approach.
Conclusion

• proposed a new Web page scoring based on the notion of Web Page Set (WPS)
 – better accuracy than conventional ones w.r.t. DCG and WRR evaluation measures
Future Work

- more discussion of the notion of WPS
 - compare possible variations of WPS
- improvement of scoring
 - better (optimal) WPS size and # of clusters
 - better (optimal) distribution of page scores inside WPSs
Danke Schön!