
Apolda: A Practical Tool for Semantic Annotation

Christian Wartena, Rogier Brussee, Luit Gazendam and Willem-Olaf Huijsen
Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands

Christian.Wartena@telin.nl

Abstract

In this paper we give an overview of methods to find rep-
resentations of ontology defined concepts in texts. We dis-
tinguish two approaches: lexicon-based methods and ap-
proaches using lexicalized ontologies. We focus on the lat-
ter method and describe the problems and choices that have
to be made if this approach is put to work. Finally we de-
scribe an open-source tool that implements the lexicalized
ontology approach along with two examples of its applica-
bility in a practical context.

1. Introduction

Semantic annotation is a broad term covering several
techniques to add labels to limited regions in a text refer-
ring to concepts with an externally defined semantics, usu-
ally from some ontology, taxonomy or thesaurus. The term
semantic annotation thus includes topics like named entity
recognition based on rules, heuristics or probabilistic mod-
els. The term also covers the relatively simple problem of
finding literal occurrences of concepts in a text. This paper
deals with the latter issue.

The problem of semantic annotation is tackled in a large
number of projects. However, the problem is usually con-
sidered as part of the necessary evil that has to be done be-
fore the interesting problems can be addressed. As a conse-
quence the solutions to this problem are seldom described in
detail. For example Köhler et. al. [8] report on the detection
of concepts in the ONDEX system, emphasizing semantic
search (including disambiguation, heuristics and ontology
mapping) while the look up problem, the first step of this
process, is only sketched. In this paper we will give an
overview of the problems of semantic annotation and the
existing approaches to solve them. Moreover we describe
a generic tool for semantic annotation that we have imple-
mented which is already used in several projects.

The organization of this paper is as follows. In the first
section we give an overview of the approaches to concept
annotation that can be found in the literature. Here we iden-

tify two main streams. The first one enriches lexica with
ontological information, the second one enriches ontologies
with lexical information. In section 2.2 we describe the is-
sues of the latter approach in more detail. In section 3 we
present an open source tool that was recently released. Fi-
nally, in section 4 we describe two projects in which this
tool was used.

2. Ontologies, Textual Representations and Se-
mantic Annotation

2.1. State of the Art

For many tasks in text technology it is useful to relate
parts of a text to concepts in an ontology. Such tasks in-
clude searching, keyword extraction, determining the sub-
ject of a text or comparing documents ([14]). Unfortunately,
the relation between concepts and their possible textual rep-
resentations is far from trivial. Almost everything can be
a concept in an ontology, including very abstract concepts
that might require long paraphrases, and the same concept
may be described in several different ways. However, in
most ontologies the majority of the concepts can be refer-
enced in texts with only one word or a small fixed group of
words. This might be related to the fact that most ontologies
of practical importance are about rather concrete things. As
a consequence it is often hard to distinguish between a word
and the concept it represents. For example thesauri are often
devised as a controlled keyword list, but they come with ad-
ditional attributes such as synonymy, or hypernymy which
indicate an ontological relation on the level of the implicit
concept. Some terms are labeled as preferred terms indicat-
ing that it is the preferred textual representation of implicit
context. A standard way to establish an explicit relation be-
tween concepts and their textual representations is to use a
lexicon and an ontology, together with a relation between
concepts of the ontology and the lemmas in the lexicon.
This approach introduces an additional layer between the
representation of a concept in a text and the concept in the
ontology, namely the lemma. The advantage of this layer
is that it allows to separate the problem of linking a lemma



to a concept from the problems arising from the lemmatiza-
tion of the text. In particular a concept itself can remain free
of linguistic information such as part of speech and is lan-
guage independent and concepts in the same or different on-
tologies can have the same textual representations. Further-
more we can link the same ontology to several dictionaries
(e.g. for different languages). A good example of how lem-
mas and concepts can be related is constitutued by WordNet
([11]): each lemma belongs to a so called synset, a set of
synonyms. Clearly, a word can have different senses. So a
word can belong to a different synset. The synsets, rather
than the words, are mutually related by the ontological rela-
tions of hypernymy, hyponymy, meronymy and holonymy
and act as an explicit representation of the concept.

According to this approach, finding concepts in a text
would involve two phases. First the text is lemmatized and
subsequently the found lemmata are mapped onto concepts.
This second step could either produce a list of all possible
concepts (in the case of polysemy) or include a disambigua-
tion procedure.

An approach in which information about the possible
representations of a concept is included in the ontology is
sometimes more practical than relating lemmas in a dictio-
nary to an ontology. Creating and maintaining dictionaries
and keeping them synchronized with an ontology, possibly
under development, is not an easy task. In addition, in or-
der to automatically find the occurrences of concepts in a
text, the lexicon has to be usable by some lemmatizer which
may impose additional constraints on the lexicon. These ob-
stacles justify an approach in which information about the
possible textual representations of a concept is included in
the ontology itself. Ontologies (taxonomies) extended in
this way are sometimes called lexicalized ontologies (tax-
onomies). They are used in influential projects like TAP
([6]) or KIM ([7]). Both projects use a knowledge base that
is part of the ontology. The knowledge base is in fact a
set of instances which have lexical variants, official name,
etcetera as an attribute. In these lexicalized ontologies tex-
tual representations seem to always be linked to individuals,
which has to do with the fact that the usage of the ontolo-
gies is strongly related to the recognition of named entities.
In general however, we would also like to specify textual
representations of classes like in, e.g., the model of [13].

The current approach is in line with the guidelines for
ontology development given by the SKOS standard ([10]).
In the SKOS RDF binding there are the distinct notions of
a skos:Concept and two attributes to express the tex-
tual representation of a concept, the skos:prefLabel
property for the preferred or standard representation and
the skos:altLabel property for alternative represen-
tations. Both label properties are subproperties of the
rdfs:label property. The recommended practice of
the use of skos:Concept is that each term in a the-

saurus that occurs as recommended label corresponds to a
skos:Concept. In this model, relations defined on the
semantic level like broader and narrower are defined on con-
cepts while two labels of the same concept are (by defini-
tion) synonymous.

The ISO topic maps standard ([5], [12]) is designed for
creating thesauri and indices of documents. Therefore topic
maps make a strict distinction between a topic and the oc-
currence of a topic in a document. A topic can be anything
including a concept. Topics can have different base names,
sort and display names corresponding to different textual
representations. When a topic “occurs” in a document is a
decision that is left to the creators of the index, but clearly
one strategy is to record the occurence at a specific location
in a text of a basename of a topic.

2.2. Semantic Annotation with Lexicalized
Ontologies

2.2.1 Level of abstraction

A text can be looked at at different levels of abstraction.
Depending on our point of view, we can consider it as a se-
quence of letters, as a sequence of tokens or as a sequence of
lemmas. This makes a difference, since at each level the text
is normalized in some way, and ambiguities are resolved or
introduced. It is not clear a priori at which level the tex-
tual representations of concepts should match. At a high
level we can abstract from many problems related to capi-
talization, line breaks, hyphenation etc. On the other hand
we also lose information or make it less accessible. This
can be illustrated with e.g. the difference between a hyphen
and a dash. A dash is normally separated by blanks from
the preceding and following word. A hyphen on the other
hand, is a separation marker by itself and has no surround-
ing blanks. If we treat a sentence as a list of tokens, this
difference is no longer directly accessible. At this level of
abstraction the string “Art - Works”, like in the web site title
“The Metropolitan Museum of Art - Works of Art”, could
readily become indistinguishable from “Art-Works”.

A similar problem occurs with capitalization. Usually
capitalization is irrelevant and life becomes easier if we can
abstract it away. However, there exist cases where the use
of capitals makes an essential difference.

Likewise for lemmatization, if we apply matching at the
level of (normalized) lemmas we can reduce the number
of textual representations needed. For example, there is no
need to specify the plural and the singular form of a noun
and in languages with rich morphology we can reduce the
number of representations even further. Unfortunately, case
or number can make a difference as in “British Museum” vs.
“British museums”. Again this difference could be made
accessible as an attribute at the cost of complexity in the
representation of a concept.



A way out of these problems is to make details which are
abstracted from accessible as features of the higher-level el-
ements. For example, the type assigned to a token by the
tokenizer (e.g. dash or hyphen) can be coded as an attribute
of the token. To use this extra information would require
that the textual representation of a concept is no longer a
simple string but an expression that specifies attributes of
tokens. Unfortunately this could be a hindrance for using
ontologies in which some kind of label or lexical represen-
tation is already present.

2.2.2 Other typical problems

Most of the problems mentioned above are related to han-
dling so called multiword expressions. In lexicon-based ap-
proaches these are often somewhat problematic. Reasoning
from the lexicon there is seldom a natural reason to code
multiwords. For example, there is no need to code an en-
try like “art museum” for a task like lemmatization since
both words are coded separately. In fact, such tasks will
even be complicated by the addition of multiwords, because
ambiguity is created. Moreover, in this way we either in-
troduce redundancy (in this case of morpho-syntactic fea-
tures of “museum” and “art museum”) or dependencies in
the lexicon (between “art museum” and “museum”). In the
approach using lexicalized ontologies the problems of stem-
ming/lemmatizing and the recognition of multiword entries
is separated in a very natural way.

In either approach concepts can only be coded and rec-
ognized if they can be represented by a fixed phrase, typi-
cally a noun phrase. One could argue that a sentence like
“He was soon producing some spectacular and original im-
ages” refers to the concept of “painting”, but finding such
references is far beyond the scope of both approaches.

Sometimes there is ambiguity, in the sense that two or
more concepts have a common textual representation or the
representations of two concepts in a text have an overlap.
Usually, in these cases only one of the possible annotations
is the contextually appropriate one. In our approach we sep-
arate the tasks of finding representations of concepts and
disambiguation into two steps. The tool described below
only does the first task. A next stage of analysis would have
to solve the ambiguities (see e.g. [9]).

Even though a lexicalized ontology contains the infor-
mation of the proper names which you want to recognize,
this recognition is not simple. Often the ontology only con-
tains the most complete representation (e.g. William Jeffer-
son Clinton), whereas the number of ways in which refer-
ence can be made to this person is numerous: e.g. "William
J. Clinton", "Bill Clinton", "governor Clinton", "president
Bill Clinton", "president Clinton" and "Mr. Clinton." One
approach is to store all properties of the person names of
your ontology in lists: defining the first names, the last

names and roles and to use grammatical rules for spotting
combinations of elements. The applicable rules can anno-
tate the found name with a normalized form which subse-
quently is matched with the ontology. This method allows
for the recognition of many names, but the mapping still
requires some effort. Another more general method is to
generate all the variants of one name and store them in our
lexicalized ontology. This name generation can be achieved
by using grammatical rules. The advantage of this approach
is that it allows for a direct annotation without any mapping.
However, it does not allow for the recognition of new names
or the slightest deviations of stored names.

3. Implementation

3.1. GATE

GATE is an open source framework for annotating texts
developed by the natural-language processing group of the
University of Sheffield ([4]). GATE manages annotations,
language resources (like documents and ontologies) and
processing resources (PR). Processing resources can access
the annotations added by processing resources run previ-
ously and add new ones. The annotations are stored and
managed by GATE. PRs can be build as Java plugins using
the the APIs provided by the GATE framework. A num-
ber of common processing resources, like a tokenizer and
a sentence splitter are part of the distribution. Two spe-
cial PRs are the JAPE transducer and the gazetteer. The
gazetteer takes lists of strings as input. Each list has a label.
For each occurence of a string from a list, this occurence
will be annotated with the label of the list. The JAPE trans-
ducer takes a grammar based on regular expressions as its
input. The grammar specifies patterns over strings and an-
notations, and the annotations that should be added in case
the pattern matches. Both PRs can be made aware of an
ontology that is loaded as a language resource ([2], [3]).
Each gazetteer list can be associated with a concept from
the ontology. The patterns of the JAPE grammar can contain
concepts of the ontology as well. The latter has to be inter-
preted in the sense that a pattern matches if any subconcept
of the specified concept matches.

The usage of gazetteer lists with associated ontological
concepts reflects the idea of a lexicon with a mapping of
lemmas onto concepts as described above. The method is
well suited for the treatment of large lists like lists of city
names, and the like. For the recognition of a large num-
ber of different concepts with only a few representation per
concept this method is not very feasible.

In the next section we will describe a PR that is able to
annotate a text with concepts of an ontology by using spec-
ified labels for textual representation from that ontology.



3.2. Apolda

We have implemented our ideas described above about
the way annotation with lexicalized ontologies should be
done in a freely available plugin for GATE, called Apolda
(Automated Processing of Ontologies with Lexical Deno-
tations for Annotation). Apolda is published under the
GNU Lesser General Public License (LGPL) at http:
//apolda.sourceforge.net.

Apolda can annotate texts on the basis of an OWL ontol-
ogy that is loaded as a resource in GATE. The textual repre-
sentations in the ontology should be coded as OWL annota-
tion properties (owl:AnnotationProperty). Which
annotation properties should be used for annotating the
documents can be specified by the initialisation parame-
ters. One can either specify a predefined property, such
as rdf:label or rdf:comment or a user defined one.
Two annotation properties can be specified, one for the pref-
ered representation and one for the alternative representa-
tions. In the examples below we will discuss how to deal
with ontologies using more than two different labels for the
specification of textual representations. If no annotation
property is specified in the initialisation of the plugin the
identifier of the classes (rdf:ID, excluding namespace) is
used as a substitute.

As described above, we have to make a choice for the
level of abstraction at which an annotation tool works. In
order to offer maximal flexibility while at the same time
preserving simplicity in expressing textual representations
Apolda supports two types of textual representations. The
literal representations that have to match literaly at the low-
est level of representation and the standard representations
that can match at any level available. Moreover, standard
representations are matched case insensitively while the lit-
eral ones are compared case sensitively with the document.
In both cases only whole words will match, i.e. the match-
ing region has to start at the beginning of a token and has to
end at the end of a token, according to the tokeniser used. A
literal textual representation matches a region in the text if
it matches either the literal string of a token or, if a lemma-
tizer was run before, the lemma for that token. The literal
representations can be specified in an intuitive way by us-
ing quotation marks. If a standard textual representation
consists of more than one token each token can match at a
different level. E.g. a representation exhibiting painter will
match the string exhibiting painters that consists of tokens
with lemmas exhibit and painter. Thus the first word will
match at the string level, while the second one matches at
the lemmatized level. If only a subset of the possible reali-
sations should match, an exhaustive list of literal represen-
tations has to be specified.

Apolda will find all matches that are possible without
trying to disambiguate. In our approach disambiguation

should be delayed to a separate module. Thus Apolda can
give several annotations to the same region or two anno-
tations can have a partial overlap. Only one exception is
made to this principle. If an annotation could be added to
a proper substring of another annotation, only the longest
match is added. Thus if Rembrandt and Rembrandt van
Rijn are both representations of the same concept, the con-
cept art:RembrandtVanRijn is added only once if the longer
representation is found in a text.

Sometimes it is usefull to have textual representations
for several languages in one ontology. In this case it is im-
portant to keep the representations from the different lan-
guages apart: the same string can denote completely differ-
ent concepts in different languages. In OWL this is solved
elegantly by allowing a language attribute on an annotation
property. Apolda uses these language attributes, and will
only use those textual representation for which the language
attribute is consistent with the globaly specified language.

4. Practical Applications

We have used Apolda in an experiment to automatically
generate keywords of TV programs in the archive of Sound
& Vision, the Dutch national TV and radio archive. In
this task we tried to generate the keywords for the TV pro-
gram by analyzing its web site’s text. In this archive, pro-
grams are currently described manually. The description
consists of multiple sorts of information, of which one is
the subject of the program described in keywords. The
keywords are selected from a thesaurus containing 3700
terms. A SKOS representation of this thesaurus is available
in RDF OWL. For one term multiple textual representations
are specified: the plural form of the preferred spelling is
in the skos:prefLabel, the singular form of the pre-
ferred spelling is in the altLabelSg and synonyms are
in the altLabelSyn (plural) and altLabelSynSg (singu-
lar form). All altLabels are rdfs:subProperty of the
skos:altLabel. By specifying the skos:altLabel
and skos:prefLabel in Apolda, we will find all defined
textual representations of the concepts. The thesaurus con-
tained 9168 textual representations in total. Using Apolda
we were able to annotate five hundred texts with all oc-
curring terms in half a day. This half day was needed to
make some small corrections in the OWL file, load all text,
Apolda and the OWL file in GATE, specify the GATE
pipeline and process the documents. We manually com-
pared results against an existing method to spot terms in
which we used GATE with gazetteer lists. Small differences
where found in performance. A term which was not spotted
by Apolda turned out to be a modeling error in the thesaurus
which was incorporated into the gazetteer list but which was
not remodeled into a term in the OWL file. The direct map-
ping of Apolda to the proper terms makes it clear that some



words refer to multiple terms. This is not clear in the old
process The biggest difference is the ease of use of Apolda.
Apolda spots and annotates a term with the preferred terms
URI without the need for any programming.

A second use of Apolda is in the MultimediaN ViTa
project at the Telematica Instituut dealing with the seman-
tic annotation of video material. One of the approaches
used is automatic enrichment of text with metadata that is
either already associated with the content or user gener-
ated. In this particular application, enrichment is done by
automatically hyperlinking occurrences of Wikipedia con-
cepts in the metadata text. For this application, the Dutch
Wikipedia was used. To each Wikipedia article one or more
“categories" are associated. E.g., the article on “Alan Tur-
ing" is associated with, both “Brits informaticus" (British
computer scientist) and “Geschiedenis van de computer"
(history of computing). This relation forms a hierarchical,
ontology-like structure. Subsequently, this ontology, trans-
formed into OWL, was read into Apolda, that could then
annotate occurrences of the concepts in the metadata texts.

5. Conclusions and Related Work

The main contribution of this paper is its focus on and
explicit elaboration of finding occurrences of concepts from
an ontology in a text. Usually, this is part of a larger project
and is paid little attention to as an independent problem.
Thus, many design choices are not made explicit and the
method is not available as a generic reusable component.
In this paper we have described the problems of annotating
texts with concepts from a lexicalized ontology. We have
presented a publicly available tool that was developed on
the basis of clearly defined principles and have shown its
practical value in two concrete examples. Since the tool
we have described here implements one of the two standard
ways to link texts to ontologies, we believe that this tool is
a useful extension of the GATE framework.

The two representation types, standard and literal, result
in a great flexibility and offer sufficient possibilities to han-
dle most lexicalized ontologies. In some cases, however, we
would like to have even more expressivity to code the rep-
resentation of more complex concepts (see e.g. [14]). Thus
we consider implementing JAPE expressions as a third type
of representation.

Finally, we want to mention tOKo, a tool that has large
similarities with Apolda ([1]). tOKo aims to detect concepts
in texts and offers a huge number of features to facilitate
this. Semantic annotation with a lexicalized ontology is one
of them. In tOKo there is no clear distinction between the
concepts and their textual representation, but there are con-
venient ways to specify abbreviations, miss-spellings, syn-
onyms etc. It is also possible to use patterns and link them
to concepts. Internally tOKo works different from Apolda,

since it does not try to match the representations at a lemma-
tized representation of the text but internally expands each
representation to all possible surface forms.

Acknowledgements

This work was partly financed by MultimediaN and
Catch. We thank William van Dieten for helpful comments.

References

[1] Anjo Anjewierden et al. tOKo and Sigmund: text analy-
sis support for ontology development and social research.
http://www.toko-sigmund.org, 2006.

[2] K. Bontcheva. Open-source Tools for Creation, Maintenance,
and Storage of Lexical Resources for Language Generation
from Ontologies. In Proceedings of 4th Language Resources
and Evaluation Conference (LREC’04), 2004.

[3] K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham.
Evolving gate to meet new challenges in language engineer-
ing. Nat. Lang. Eng., 10(3-4):349–373, 2004.

[4] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
GATE: A framework and graphical development environ-
ment for robust NLP tools and applications. In Proceedings
of the 40th Anniversary Meeting of the Association for Com-
putational Linguistics, 2002.

[5] L. M. Garshol and G. Moore. ISO 13250-2: Topic Maps —
Data Model. Final draft, ISO/IEC, 16. December 2005.

[6] R. Guha and R. McCool. TAP:a Semantic Web platform.
Computer Networks, 42(5):557–577, 2003.

[7] A. Kiryakov, B. Popov, D. Ognyanoff, D. Manov, A. Kir-
ilov, and M. Goranov. Semantic annotation, indexing, and
retrieval. In D. Fensel, K. P. Sycara, and J. Mylopoulos, edi-
tors, Int. Semantic Web Conference, volume 2870 of Lecture
Notes in Computer Science, pages 484–499. Springer, 2003.

[8] J. Köhler, S. Philippi, M. Specht, and A. Rüegg. Ontol-
ogy based text indexing and querying for the semantic web.
Knowl.-Based Syst., 19(8):744–754, 2006.

[9] V. Malaisé, L. Gazendam, and H. Brugman. Disambiguat-
ing automatic semantic annotations with thesaurus structure.
accepted at TALN2007, 2007.

[10] A. Miles, B. Matthews, D. Beckett, D. Brickley, M. Wilson,
and N. Rogers. Skos: A language to describe simple knowl-
edge structures for the web. In XTech 2005 Conference Pro-
ceedings, 2005.

[11] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J.
Miller. Introduction to WordNet: an on-line lexical database.
International Journal of Lexicography, 3(4):235 – 244, 1990.

[12] S. Pepper. The tao of topic maps - finding the way in the age
of infoglut, 2000.

[13] D. Vallet, M. Fernández, and P. Castells. An ontology-based
information retrieval model. In A. Gómez-Pérez and J. Eu-
zenat, editors, ESWC, volume 3532 of Lecture Notes in Com-
puter Science, pages 455–470. Springer, 2005.

[14] C. Wartena, A. Anjewierden, and W. van Dieten. Using pat-
terns of higher order concepts to detect inconsistencies in
large text collections. In Proceedings of the International
Workshop: Ontologies in Text Technology (OTT’06), pages
107—112, Osnabrück, 2006.


