
Generating a Topic Hierarchy from Dialect Texts

Wim De Smet
ICRI-LIIR

K.U.Leuven, Belgium

Marie-Francine Moens
ICRI-LIIR

K.U.Leuven, Belgium

Abstract

We built a system for the automatic creation of a text-
based topic hierarchy, meant to be used in a geographi-
cally defined community. This poses two main problems.
First, the appearance of both standard language and a
community-related dialect, demanding that dialect words
should be as much as possible corrected to standard words,
and second, the automatic hierarchic clustering of texts by
their topic.

The problem of correcting dialect words is dealt with by
performing a nearest neighbor search over a dynamic set of
known words, using a set of transition rules from dialect to
standard words, which are learned from a parallel corpus.
We solve the clustering problem by implementing a hier-
archical co-clustering algorithm that automatically gener-
ates a topic hierarchy of the collection and simultaneously
groups documents and words into clusters.

1 Introduction

We developed a system that automatically creates a topic
hierarchy from text documents without metadata, where the
community is geographically defined to the city of Hasselt,
a town in Belgium. Inhabitants of this town are invited
to write about the events in town, shops, crimes, gossip,
restaurants, etc. These community texts are then made ac-
cessible for the other inhabitants in the form of a folkson-
omy, a hierarchical collection of documents. However, its
automatic creation poses several problems.

First, the appearance of both standard language and
a community-related dialect demands that dialect words
should be as much as possible corrected to standard words.
Dialects are variations of a language spoken by a larger
community, bound to a particular geographic area. While
the official language of a country, dictated by an authority,
is often regarded as superior, linguistically seen it is just one
of the possible dialects. To avoid confusion, we will refer to
the standardized version as ”standard language”. ”Dialect”
or ”dialect language” denotes any other form that is not the

standard language. In our work we corrected dialect words
by performing a nearest neighbor search over a dynamic set
of known words, using a set of transition rules from dialect
to standard words, which are learned from a parallel corpus
of standard and dialect words.

The second problem regards the automatic recognition
of topical information and hierarchically clustering of the
community texts based on this information. We implement
a hierarchical co-clustering algorithm that automatically
generates a topic hierarchy of the collection and that simul-
taneously groups documents and words into clusters. The
co-clustering has the property of grouping related terms,
which is especially valuable when processing texts that are
a mixture of standard and dialect terms.

The remainder of this paper is organized as follows. In
section 2, our technique to “standardize” dialect words is
explained. The next section 3 describes our method to as-
sign topic information to the text documents and to cluster
the documents. We present our conclusions in section 5.

2 Handling Dialect Words

The main difference between the standard language and
dialects is the consensus on spelling. As standard language
is supported by authorities, it is required to have a writ-
ten equivalent to enable official communications. Dialects
on the other hand, usually have only a spoken component.
Written versions appear however when a touch of “couleur
locale” is wanted, as is probable in a city-based folksonomy.
Because of the lack of consensus on spelling, dialect words
are not apparent in standard lexicons. A first category of di-
alect words have the same origin of standard words, but are
pronounced differently and their written equivalent mimics
the dialect pronunciation. In other cases, completely new
words appear in dialects that do not necessarily have a one-
to-one translation with standard words.

Because in our clustering model we rely on the words of
the texts, it is vital that words are as much as possible nor-
malized to standard language. Noise in words, caused for
example by spelling errors, deteriorate the recall of finding
related documents, based on common terms. Dialect words

cause similar problems.
When handling dialect words, the algorithm starts from a

initial list of known words correctly spelled (dictionary list).
Dialect texts are processed and upon sufficient similarity of
a word with a known word, it is normalized to this standard
word. In all other cases a new, previously unknown word
is added to the dictionary list. We’ll denote the process of
correcting, normalizing or adding an unknown word as re-
solving that word.

2.1 Algorithm

We keep two different lists of information. The first is
D, a list of words whose spelling is assumed correct (dic-
tionary list). Initially, we populate this list with words from
a dictionary. When new words with a correct spelling are
found, they are added to this list.

The second list L, contains every word apparent in the
corpus together with their corpus frequency and inverse
document frequency.

When processing a text, our goal is to resolve unknown
words and expand D with words we assume spelled cor-
rectly. An unknown word (i.e., 6∈ D), can belong to one of
the following categories:

1. it is a standard word, but does not occur in D yet;

2. it is the misspelled version of a word in D;

3. it is a dialect word. Since dialect words do not have
an official spelling, we will not distinguish between
“correct” and “misspelled” dialect words.

To decide how we will resolve the unknown words from
a text, we first parse the document, and iterate over every
single word t, applying the following algorithm.

If t occurs in D, it needs no resolving, so we proceed to
the next word. If it does not occur in D, it belongs to one
of the previous categories. First, we check for categories 1
and 3. If the corpus frequency of t (the number of times
t appears in the corpus) is higher than a given threshold,
we rule out the possibility that it is coincidentally mistyped,
and assume it is correctly spelled. We then add it to D. This
is the frequency assumption.

If the frequency assumption does not hold, we try to find
the word in D which most likely was meant by the author.
To discover this, we search for words with optimal Dialect
Edit Distance from t. Dialect Edit Distance (ded), an adap-
tation from the normal Edit Distance to take into account
typical dialect transformations, is further explained in sec-
tion 2.2. Here it suffices to state that it measures the similar-
ity of the spelling of two words, specifically if one of them
is a dialect word.

When a non-frequent, unknown word is encountered, we
calculate the ded to every term in D, and assume the word

associated with the smallest distance (or a random selection
from several words with the same, smallest distance) is the
word meant by the author. If the system should be used in
an interactive environment, then the n smallest ded’s can be
retrieved, offering a selection to the user.

If the smallest ded from D stays below a ded-threshold,
the word associated with that distance is selected as the res-
olution word. At this point, a word can also be added to
D because of the edit distance assumption. If both exceed
this threshold however, we assume it unlikely that a simple
spelling error occured, and therefore add t to D.

2.2 Dialect Edit Distance

In case the dialect and standard word have the same
roots, the dialect word has evolved to a different spelling
by following a set of rules that determine the pronunciation.
These rules comprise for example contractions, alterations
of vowels, . . . and are often (but not always) dependent on
the context of letters they appear in. They are however not
exclusive: the same phonetic entity can be expressed by sev-
eral combinations of characters. For example, the Dutch
vowel “o”, would in the Hasselt dialect be written as “eu”
or “ö”, both resulting in the same vowel (different from the
Dutch “o”).

To be able to incorporate these rules, we adapt the
edit-distance algorithm, as developed by Levenshtein [2].
The Levenshtein-distance calculates the minimal number of
character operations, necessary to transform one word into
another. In the original paper, three different operations are
considered: deleting a character, inserting a character and
substituting one character for another. With each operation
adding a cost of 1, the algorithm creates a matrix to derive
which order of operations generates the least total cost.

Our adaptation gives each operation a dynamic cost, de-
pending on the type of operation and the characters in-
volved. This allows for alterations, typical for the dialect, to
cause only a small difference between a dialect word and the
standard word. When comparing an unknown dialect word
with a list of standard words, the word that yields the small-
est dialect edit distance, is likely to be the original standard
word.

2.2.1 Calculation of costs

To learn the cost of each different operation, we make use of
an aligned corpus of dialect words and their standard equiv-
alent.

After calculating the edit-distance matrix between every
pair, we remove the pairs whose distance-over-word length
ratio exceeds a threshold, as they are not likely to be pho-
netically related.

For the remaining words, the distance matrix provides
the alignment where the two words concur, and which op-
erations transform the dialect word to the standard word.
For each operation O, we store its type (substitution s, in-
sertion i or deletion d), its parameter letters (only x for
insertion and deletion, x and y for substitution), and the
context C(an n-letter two-sided window around the dialect
letter). If the beginning or the ending of the word falls in-
side the context, then this is explicitly stored. We repre-
sent it as a following vector: [xi−n, . . . , xi, . . . , xi+n]. Be-
cause the width of our context window is arbitrarely cho-
sen, we might ”overencode” information. If an operation
typically occurs after one specific letter, we may loose in-
formation by storing two letters extra before, and two let-
ters after. Therefore we also store the following subsets:
∀v, w ∈ [0, n] : [xi−v, . . . , xi, . . . , xi+w].

There are several options to calculate the operation’s
cost. This cost must lie within [0, 1], and be inversely pro-
portionate to the confidence. One way to estimate this con-
fidence is by the formula conf(OC) = |OC |

|C| , |Oc| = be-
ing the number of times the operation, together with con-
text C appears in the corpus, and |C| = being the num-
ber of times context C appears in the corpus alltogether.
The cost-function f(|OC |, |C|) can then be expressed as
1 − conf(OC).

We feel however that this relative frequency does not
capture all information. For example, two operations both
have a relative frequency of 50%. The first however has an
|OC | of 2 and a |C| of 4, while the other one has an |OC |
of 20 and a |C| of 40. Because operation 2 occurs 10 times
more than operation 1, we wish to give it a higher confi-
dence, and a lower cost. The cost-function we designed
has for this purpose has the following characteristics. If
|OC | = 0, the operation did not occur in the training data,
and its cost equals 1. If |OC | = |C| (|OC | cannot exceed
|C|), it receives the minimum cost, associated with the value
of |OC |. This cost decreases monotonally on increasing
|C|. For values of |OC | between 0 and |C|, we calculate the
quadratic interpolation between 1 and the minimum cost.

We defined the monotonically decreasing function for
(|OC | = |C|) as

g(|C|) = 1 − 1
1 + log (1 + |C|)

which leads, together with the quadratic interpolation to

f(|OC |, |C|) = g(|C|) ∗ |OC |2

|C|2
− 2 ∗ g(|C|) ∗ |OC |

|C|
+ 1

3 Topic hierarchy generation

Instead of explicitely extracting tags or keywords from
documents, we try to build the topic hierarchy by grouping

documents related by their topics into clusters, and create
a hierarchy of these clusters. We associate representative
words to each cluster. This way, the cluster hierarchy is
translated into a topic hierarchy

The method we used for this is a co-clustering algorithm.
In typical clustering algorithms, documents are clustered
based on word similarity (i.e. how many words they have in
common), and words are clustered based on their document
similarity (i.e. how many documents contain the words si-
multaneously). The resulting clusters usually exhibit good
characteristics, related words and related documents occur
in the same clusters. There is no relationship however, be-
tween document clusters and word clusters, as they have
been calculated independently. Co-clustering algorithms
resolve this problem by alternating every refinement step
between document clustering based on already found word
clusters, and word clustering by already found document
clusters.

An alternate hierarchical co-clustering algorithm has
been developed by Dhillon in [1]. It transforms the co-
clustering problem into a minimal cut problem. The al-
gorithm is presented in figure 1, and has been borrowed
from [3]. In this paper a hierarchy of forum posts are or-
dered into a hierarchical, topic-based clustering.

The document-by-word matrix A is generated by extract-
ing all words from each document. Stop words are first re-
moved from this matrix based if they have a low idf-value.
Two different weight values for the matrix’ entries have
been tested: the tf · idf -value of the word, and a constant
value 1. Neither of these values yielded significantly bet-
ter results in our implementation, so the constant value was
chosen.

The resulting hierarchy should reflect the ordering of
topics from high-level to low-level, where each cluster con-
tains documents relevant to this topic, and associated words
that can describe the cluster.

4 Evaluation

4.1 Dialect Edit Distance

To evaluate the dialect edit distance, we used an dictio-
nary mapping a lexicon D of standard words with correct
spelling (among which the standard words from T). The
particular dialect-standard dictionary used in this evaluation
was composed by a folklore organization, dedicated to the
preservation of the Hasselt (and related) dialect. Not every
dialect, however, will have such a group among its speak-
ers. Therefore, we evaluated our algorithm by training it on
several, smaller samples of the dictionary.

We tested the accuracy of the dialect edit distance by se-
lecting two disjoint subsets from the corpus: training data
and test data. From the training data, a set of dialect rules

1. Given the m ∗ n document-by-word matrix A, calculate diagonal help-
matrices D1 and D2, so that:

∀1 < i ≤ m : D1(i, i) =

∑
j

Ai,j

∀1 < j ≤ n : D2(j, j) =

∑
i

Ai,j

2. Compute An = D1
−1/2 ∗A ∗D2

−1/2

3. Take the SVD of An: SV D(An) = U ∗Λ ∗V∗

4. Determine k, the numbers of clusters by the eigengap: k =
arg max(m≥i>1)(λi−1 − λi)/λi−1, where λ1 ≥ λ2 ≥ · · · ≥
λm are the singular values of A

5. From U and V, calculate U[2,···,l+1] and V[2,···,l+1] respectively,
by taking columns 2 to l + 1
where l = dlog2 ke,

6. Compute Z =

[
D1

−1/2U[2,···,l+1]

D2
−1/2V[2,···,l+1]

]
and normalize the rows of

Z

7. Apply k-means to cluster the rows of Z into k clusters

8. Check for each clusters the number of documents. If this is higher than a
given treshold, construct a new document-by-word matrix formed by the
documents and words in the cluster, and proceed to step 1

Figure 1. The hierarchical co-clustering algo-
rithm for automaticaly generating a topic hi-
erarchy

was extracted, as explained in section 2.2. Our test data con-
sisted of 500 words, selected with two different properties.
One set was sampled from the dictionary’s dialect words
without restriction. The second set contained only dialect
words that have an edit distance of maximally 0.5 times the
dialect word’s length. Not every word in the dictionary is a
phonetical transformation of its standard word, some words
are (phonetically) unrelated. Those words can not be re-
solved to the standard word using the Dialect Edit Distance.
Therefore, by restricting the test data to word-pairs that are
relatively similar, the second test set was used to evaluate
the Dialect Edit Distance’s performance in se. The first test
set evaluated the performance in a real life setting.

Using the acquired rules rules, for every dialect word d
from the test data, we determined the word from L with the
smallest dialect edit distance (or select one random in case
of multiple smallest distances) and compared it to the stan-
dard word associated with d. We repeated this procedure
for different sizes of the training data. The test data size
remained the same. To provide comparison with a baseline
approach, we repeated the experiments using the standard
edit distance. Results can be seen in tables 1 and 2.

Training data Edit Distance Dialect Edit Distance
500 26.4% 39.6%

1000 28.2% 43.2%
2000 27.4% 46.0%
5000 27.2% 41.2%

Table 1. Accuracy of resolving 500 dialect
words without restriction, using different
sizes of training sets

Training data Edit Distance Dialect Edit Distance
500 40.8% 62.6%

1000 41.2% 63.6%
2000 37.8% 61.8%
5000 37.0% 64.8%

Table 2. Accuracy of resolving 500 dialect
words with an edit distance smaller than 0.5
times the dialect word length, using different
sizes of training sets

Some remarks on the results:

1. The Dialect Edit Distance has an average improvement
of 15% accuracy over the standard Edit Distance in the
real life setting, and an average improvement of 24%
in case of resolvable dialect words.

2. Accuracy was based on the comparison of the single
word with lowest Dialect Edit Distance. If we relax
this constraint and look among n best words, we ex-
pect an improvement of these results. These n best
words can be used for term expansion, as explained in
section 4.2.

4.2 Topic hierarchy generation

The tested hierarchy was generated using 300 commu-
nity texts from the city of Hasselt. The results from the hier-
archical clustering algorithm were disappointing. The main
problem consisted of the algorithm’s inability to calculate
a satisfying value for k, the number of clusters, when us-
ing the eigengap method. In our experiments, the 300 texts
were clustered into 297 clusters in the first level, making a
hierarchy impossible, and leaving only a handful of docu-
ments joined in the same cluster. When choosing a fixed
value for k, it was shown that documents joined in a single
cluster often share a topic, although recall was low (other
related documents were in different clusters), and equally
often non-related words shared a cluster.

Topic hierarchy generation is a difficult task. First of all
there is the difficulty that clustering based on a bag of words

often results in unsatisfactory performance. We often cre-
ate sparse document vectors from the texts that have little
overlap, and if there is some overlap, the overlap might be
realized with words that are not salient with regard to the
content of a text and which do not occur with a sufficient
frequency in order to be filtered out with an inverse doc-
ument frequency metric. Such a situation results in a low
precision of the clusters. The problem is especially critical,
if one wants to hierarchically cluster texts at various topical
levels. Effective techniques for detecting words at different
levels of salience is only possible when integrating natu-
ral language processing techniques that allow to recognize
salience at the discourse and sentence level. Because we
do not have access to part-of-speech taggers and sentence
parsers for dialect texts or for texts that are a mixture of di-
alect and standard words, we could not implement such an
approach. There is also the problem of a low recall, i.e. doc-
uments are prevented from clustering if the same content is
signaled by different words. This is especially a problem if
texts are a mixture of standard and dialect words. Although
by using the dialect edit distance (see above), we could al-
ready normalize a part of the variations, there is still the
problem of distinct words that have the same meaning. The
hierarchical co-clustering algorithm was partly successful
in solving this problem. However, we could make addi-
tional improvements. First of all, using the eigengap for de-
tecting the number of clusters did not yield an accurate es-
timate of the number of clusters. The (relative) differences
between all eigengaps were quite similar up to already a
large k value. This is due to the poor overlap between the
documents, making that no correlation or dependency can
be found between them. We hope by increasing the num-
ber of documents and consequently the number of related
terms, this method yields better results. Alternatively we
could use another heuristic for estimating the natural num-
ber of clusters in the collection.

As a possible solution to the poor overlap, we propose
term expansion in case of unknown words. Instead of using
the unknown word, or the single resolved word, we add the
n words with smallest ded to the document. This will create
overlap in case of dialect words (in case of variant dialect
words, or one dialect and one standard word). To compen-
sate for the increased amount of words, we can give these
expanded terms a lower value in the documents-by-words
matrix. We suspect that related documents will benefit from
this increased overlap in addition to words they already have
in common. The similarity of non-related documents will
increase also if they have similar dialect words in common,
but because they will not share other terms (as they are not
related), the total distance will remain limited.

5 Conclusion

We tackled the difficult problem of automatically gener-
ating a topic hierarchy from dialect texts. We were able
to fairly well normalize dialect words to their equivalent
terms in standard language. A standard way to create a
topic hierarchy is to group related documents and extract
a suitable description from each cluster. Because of the
large variety in the vocabulary (not all dialect words have
an equivalent term) co-clustering the documents and terms
simultaneously seemed to us a suitable technique in an at-
tempt to correlate distinct dialect and standard terms with
a related meaning. The research has shown that still many
research questions demand valuable solutions. Texts that
are casually generated often use a living language that dy-
namically changes, which cannot be easily processed with
current means. The importance of this kind of research will
only grow as people increasingly chat, communicate and
gossip through digital means.

6 Acknowledgements

The research presented in this paper has been carried out
as part of the project A4MC3, Architectures for Mobile
Community Content Creation. This project is supervised by
the Belgian IBBT, the Interdisciplinary Institute for Broad-
Band Technology, a research institute founded by the Flem-
ish Government. We thank them for their financial support
during this research.

Furthermore, we also like to thank Concentra, a Belgian
publisher, for their good cooperation during the project and
for providing us with test data.

References

[1] Inderjit S. Dhillon. Co-clustering documents and words
using bipartite spectral graph partitioning. In Knowl-
edge Discovery and Data Mining, pages 269–274,
2001.

[2] Vladimir I. Levenshtein. Binary codes capable of cor-
recting deletions, insertions, and reversals. Technical
Report 8, 1966.

[3] Gu Xu and Wei-Ying Ma. Building implicit links from
content for forum search. In SIGIR ’06: Proceedings
of the 29th annual international ACM SIGIR confer-
ence on Research and development in information re-
trieval, pages 300–307, New York, NY, USA, 2006.
ACM Press.

