Retrieval of MPEG-7 based Semantic Descriptions

Mathias Lux, Michael Granitzer
Know-Center

{mlux, mgrani}@know-center.at
Content

- MPEG-7 and Semantic Descriptions
- Indexing & Search of Semantic Descriptions
- Implementation Details
- Evaluation
- Demonstration
- Future Work
What is MPEG-7?

"Multimedia Content Description Interface"

ISO/IEC Standard for MuMe Meta Data Representation

- XML as well as Compressed Binary

Organized in Descriptors (D) and Descriptor Schemes (DS)
MPEG-7 Semantic Descriptions
(1/2)

Semantic DS allows Semantic Descriptions:

- **Base Descriptor** „SemanticBase“
- Inherited are Agents, Places, Times, Events, Concepts, Objects, ...
- D Instances are interpreted as Nodes

<table>
<thead>
<tr>
<th>Instanz</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathias Lux</td>
<td>Semantic Agent</td>
</tr>
<tr>
<td>Orient Express</td>
<td>Semantic Object</td>
</tr>
<tr>
<td>Traveling</td>
<td>Semantic Event</td>
</tr>
<tr>
<td>Railway München-Salzburg</td>
<td>Semantic Location</td>
</tr>
</tbody>
</table>
MPEG-7 Semantic Descriptions (2/2)

- Semantic Relations interconnect Semantic Objects.
- 45 different Relations, 44 inverse.
- Relations are directed Edges interconnecting Nodes.
Properties of Semantic Descriptions

- Semantic Descriptions are „Labeled Graphs“.
- Node Labels are unique.
- Number of possible Edge Labels is bounded.
- One Semantic Object Instance can be found in multiple Graphs (Domain specific).
Indexing

Indexing is needed for

- Semantic Objects (SO), which are the Nodes
 - Fulltext Index
 - Node IDs
- Semantic Descriptions (SD), which are the Graphs
 - Based on the Paths in the Graphs
 - Paths as Strings
Paths in the Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Path length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>_agentOf_1_location</td>
<td>1</td>
</tr>
<tr>
<td>_locationOf_4_2</td>
<td>1</td>
</tr>
<tr>
<td>_patientOf_3_2</td>
<td>1</td>
</tr>
<tr>
<td>_1_agentOf_2_patient_3</td>
<td>2</td>
</tr>
<tr>
<td>_1_agentOf_2_location_4</td>
<td>2</td>
</tr>
<tr>
<td>_3_patientOf_2_location_4</td>
<td>2</td>
</tr>
</tbody>
</table>
Constructing a Query (1/2)

Query: *Mathias Lux* is doing *something* at the *I-Know*

- *Mathias Lux* is identified as node with ID 1
- *I-Know* is identified as node with ID 2
- „Something“ is a wildcard

![Diagram]

1. agentOf

2. location
Constructing a Query (2/2)

The Query is based on the paths:

- Paths with Length 0: "_1" and "_2"
- Paths with Length 1: "_agentOf_1_*" and "_locationOf_2_*"
- Paths with Length 2: "_2_agentOf_*_location_2"
Query Interface

Creating Queries is like drawing Graphs.

- Possible Candidates for Nodes are identified.
- With Query Expansion Query Graphs are constructed.
- From each Query Graph a Query String is constructed.
- Support for Wildcards
Implementation (1/2)

Open Source Applications for Annotation and Retrieval of Digital Photos: Caliph & Emir

Caliph: Common and Light Weight Photo Annotation
Implementation (2/2)

Emir: **Experimental Metadata Based Image Retrieval**

- Similar Images (CBIR)
- Keywords in Full Text Index
- Semantic Descriptions
- Visualization based on:
 - CBIR (Color, Edges)
 - Similarity of Semantic Graphs
Evaluation

Definition of a Test Set

- No Standardized Test Set available

Evaluation of Retrieval Performance compared to

- Full Text Search
- Different Ranking (Scoring) Algorithms

Assumption: Maximum Common Subgraph Metric yields Optimal Results

\[
similarity(G_1,G_2) = \frac{|mcs(G_1,G_2)|}{\max(|G_1|,|G_2|)}
\]
Test Set

- 85 different Semantic Descriptions
- Photos of I-Know Conferences in 2002 and 2004
- Each Graph from the database was taken to query the whole database, precision and recall were averaged

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>3</td>
<td>11</td>
<td>5.5</td>
</tr>
<tr>
<td>Relations</td>
<td>2</td>
<td>12</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Auswertung

![Graph showing precision and recall for different index types: Full text index, 2-Path Index TF, 2-Path Index TF-IDF, and 2-Path Index Lucene Scorer. The graph compares the performance of these index types across varying recall values.]
Lucene Scoring Function

\[
\text{score}(q,d) = \sum_{t \in q} \text{TF}(t,d) \cdot \text{IDF}(t) \cdot b(t.\text{field},d) \cdot \text{lNorm}(t.\text{field},d) \cdot \text{coord}(q,d) \cdot \text{qNorm}(q)
\]

Lucene Scorer:
- TF ... Term Frequency
- IDF ... Inverse Document Frequency
- b ... Boost Value
- lNorm ... Normalization based on Field Value Length
- qNorm ... Normalization based on Query
- coord ... Term Frequency in Query and Document
Evaluation Results

The Path Index based Retrieval outperforms the Full Text Retrieval on this test case.

Between classical TF*IDF implementation and the term frequency scoring function only slight differences in retrieval performance can be identified.

We assume that the coord(q, d) factor is the reason for the different performance of the classical TF*IDF and the Lucene score function by reflecting the denominator of the maximum common distance metric.
Demonstration

Emir: Experimental Metadata based Image Retrieval
Future Work

- Creating an appropriate Test Set
- Advancing Clustering and MDS Algorithms
- Integration of different Similarity Metrics for Evaluation
 - Path based ST Model
 - Error Correcting Maximum Common Subgraph Metric
 - Different Path Lengths, Selection with TF*IDF
- Implementation for RDF Graphs / OWL
Thank you …

... for your attention!

Visit Caliph & Emir:
http://caliph-emir.sourceforge.net