
Fast LSI-based techniques for query expansion

in text retrieval systems

Luigi Laura, Umberto Nanni, and Fabiano Sarracco

Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria, 113 - 00198 Roma Italy.
{laura,nanni,sarracco}@dis.uniroma1.it

Abstract. It is widely known that spectral techniques are very effec-
tive for document retrieval. Recently, a lot of effort has been spent by
researchers to provide a formal mathematical explanation for this effec-
tiveness [3]. Latent Semantic Indexing, in particular, is a text retrieval
algorithm based on the spectral analysis of the occurrences of terms in
text documents. Despite of its value in improving the quality of a text
search, LSI has the drawback of an elevate response time, which makes
it unsuitable for on-line search in large collections of documents (e.g.,
web search engines). In this paper we present two approaches aimed to
combine the effectiveness of latent semantic analysis with the efficiency
of text matching retrieval, through the technique of query expansion. We
show that both approaches have relatively small computational cost and
we provide experimental evidence of their ability to improve document
retrieval.

1 Introduction

One of the most important tasks of an information retrieval system is
to return, in response to a user query generally expressed as a set of
terms, the subset of the managed documents which best matches the
information necessity expressed by the user. Text matching is, beyond
doubt, the most common technique used to accomplish this document
retrieval task; the search is performed by looking for (and returning to
user) the documents which contain the set, or a subset, of the terms
included in the query. Two classical factors may negatively affect the
quality of text matching search: polysemy, i.e., the same term may have
different meanings (e.g., “web”), and synonymy, i.e., two distinct terms
with the same meaning may be used interchangeably (e.g., “car” and
“automobile”). In the former case, documents that are not relevant may
be erroneously returned, while in the latter case, documents relevant
to the user query may not be returned. To avoid these two and other
similar problems, one would ideally like to represent documents (and
queries) not by terms, but by the underlying (latent, hidden) concepts
referred to by the terms. Unfortunately, as many works clearly point out,
it is not possible to once-and-for-all define a universal terms-concepts

mapping structure, since this one heavily depends on the specific
collection of documents we are dealing with.
Latent Semantic Indexing (LSI), introduced by Deerwester et al. in [5,6],
is a technique to automatically compute from a documents collection
a sort of semantic structure; this is achieved by applying a spectral
decomposition technique, like the Singular Value Decomposition, on
the data structure representing the occurrence of terms in documents.
Documents (and queries) are represented and compared into this
reduced “concept” space where, possibly, a document can be adjacent to
(and thus relevant for) a query, even if the two do not have any term in
common, but nevertheless share some underlying concept. LSI proved to
be a very effective retrieval technique: it has been repeatedly reported
that LSI outperforms classical text matching techniques, also addressing
the problems of polysemy and synonymy[1,12]. This success has been
empirically attributed to its ability to reduce noise, redundancy and
ambiguity in the managed data structures. One of the still unsolved
central questions on LSI is that the computational cost of the retrieval
process strongly depends on the size of the collection. This makes LSI
not appropriate for retrieving documents from huge collections, when
we want to provide a fast online query answer.

Therefore we have on one side text matching, with fast response time
but unsatisfactory filtering capabilities on the the document base, and
on the other side LSI and similar techniques having powerful selection
capabilities but high computational costs. In this paper we present two
techniques that take advantage of the information provided by LSI data
structures to enhance the quality of text matching search without in-
creasing its response time. Both approaches process the user query by
altering the set of terms included in it. We wish to remark that even if
we present our approaches as a way to improve the effectiveness of text
matching, the techniques introduced here, and more generally query ex-
pansion techniques, are fairly independent from the underlying retrieval
algorithm used.
Our first technique, that we named LS-Thesaurus, is inspired by the
work by Qiu and Frei [14]: they showed that the retrieval effectiveness
of text matching can be improved by using a thesaurus, i.e., a structure
indicating the similarity between each pair of terms. The idea is simple
and natural: if terms in the query are relevant to the documents the
user is looking for, these documents should contain also terms similar to
the ones in the query. Consider the following example: suppose that the
query “football games” is provided, and that this paper is included in
the document collection. A text matching search would certainly include
this document in the answer set but, obviously, this is not a document
relevant to football games. However, if we expand the query by adding
terms that are conceptually similar to the ones included in it, relevant
documents are likely to be ranked higher. Our approach differs from the
original work of Qiu and Frei because we make use of the data structures
provided by the LSI technique, to generate the thesaurus.
LS-Filter, that is the second technique we present in this paper, can be
intuitively described as a way to put in the query the more appropriate

terms for retrieving documents “conceptually related” to the query. To
do this we project the query in the reduced concepts space generated by
LSI; here we emphasize the largest components, that are the “important”
concepts embedded in the query, and at the same time we set to zero the
components with a small value, i.e., that are not relevant to the query.
The modified vector is projected back in the terms space; our hope is
that this new set of terms is better representative of the most important
concepts in the query.
The rest of the paper is organized as follows: Section 2 provides the
necessary background to understand our techniques, detailed respectively
in Section 3 and Section 4. We present preliminary experimental results
in Section 5, and final remarks are addressed in Section 6

2 Basic concepts and notation

In this section we define the preliminary concepts and techniques required
to describe our main results. While doing this, we also fulfill the twofold
task of fixing the notation used in the rest of the paper and presenting
the relevant works in literature.

2.1 Term-document matrix and Text-Matching

search

Consider a collection D = {d1, . . . , dn} of n text documents. Let T =
{t1, . . . , tm} be the set of distinct index terms in D. The index terms are
usually a subset of all the distinct terms occurring in the documents in
D. Generally, this subset is composed only of words that are “relevant
to retrieve the document” thus, for example, common words like articles
and connectives are not considered as index terms. The term-document

matrix of D is an m× n matrix A, representing a function of the occur-
rences of index terms in the documents in a compact way that can be
efficiently managed and used by a text retrieval system. Matrix A has
the following structure:

A =

d1 d2 · · · dn

t1
t2
...

tm

0

B

B

B

@

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
... · · ·

...
am,1 am,2 · · · am,n

1

C

C

C

A

(1)

where element ai,j is generally a real number indicating the relative
weight of term ti in document dj . In its simplest form, A is a binary
matrix where:

ai,j =

1 if term ti occurs in document dj

0 otherwise

In literature a vast set of more refined term-weighting schemes are shown
to provide, at least for particular data sets, better retrieval performances.

In the rather general tf-idf (term frequency-inverse document frequency)
weighting scheme, for instance, the value of element ai,j is a function of
two orthogonal factors:
– A local factor (or term frequency factor) L(i, j), measuring the in-

fluence (or relevance) of term ti in document dj . A commonly used
formula for L(i, j) is:

L(i, j) =
freq(i, j)

maxi∈[1,m] freq(i, j)

where freq(i, j) is the frequency of term ti in document dj , i.e., the
number of occurrences of ti in dj , divided by the total number of
index terms in dj .

– A global factor (or inverse document frequency factor) G(i), whose
aim is to de-amplify the relative weight of terms which are very
frequently used in the collection. A commonly used formula for G(i)
is:

G(i) = log
n

ni

where ni is the number of documents containing term ti.
See [15] for a more detailed description of the various term weighting
schemes presented in literature.

While using a text retrieval system, the user submits a set of (possibly
weighted) terms which, by his knowledge, best represent the information
he is looking for. In our vectorial model, we can represent a user query
as an m-dimensional vector q = (q1, . . . , qm) (the query vector), where
qi = wi if term ti is present in the query with weight wi (or qi = 1
if terms are not weighted), and qi = 0 otherwise. In the following we
assume 0 ≤ qi ≤ 1, for all i ∈ [1, m].
In response to a user query, the system returns a score for each
document in D, indicating its relevance to the query. Formally, the
output of a search algorithm is an n-dimensional vector r = (r1, . . . , rn)
(the rank vector), where the value ri measures the relevance of doc-
ument di for the query expressed by q. We assume that if ri > rj

then document di is more relevant than document dj for the given query.

Let A be a term-document matrix representing a collection D of doc-
uments, and let q be a non zero query vector1 given as input to the
text-matching search algorithm (or simply TM). Algorithm TM returns
as output the following rank vector:

r = q ·A

Note that A is a sparse (possibly binary) matrix and q is a sparse
(possibly binary) vector. Therefore the matrix-vector product q · A can
be computed very efficiently. For instance, if, as commonly happens,
the size of the query is limited to k terms, then Algorithm TM on a
document base of n documents has cost O(kn).

1 Here we are assuming that at least one term of the query occurs in the collection

2.2 Query Expansion and Similarity Thesaurus

By query expansion or, more generally, query reweighting, we mean the
process aimed to alter the weights, and possibly the terms, of a query.
Usually, this process can be driven by the feedback provided by the user
to the system (for instance, by selecting, among the retrieved documents,
the ones that are considered more interesting). In this case the target is to
refine a previously performed search. Indeed, a query can be reweighted
also by exploiting a “knowledge”, stored in the system, about terms usage
in the particular collection of documents under exam. For instance, if in
the collection of documents the term “automobile” is used often, then
the system should add this term to a query containing only the term
“car”. In this paper we focus on this latter approach.
A commonly used method to have a statistic estimation of relationships
among terms in a collection of documents, is to compute the term-term
correlation matrix AAT . If, for instance, we use the tf-idf weighting
scheme, then the entries of AAT measure the co-occurence of terms in
documents.
Qiu and Frei present in [14] an alternative approach to measure the term-
term relation. Their idea is to compute the probability that a document
is representive of a term. To do that, they propose the following weighting
scheme:

ai,j =

8

>

<

>

:

(0.5+0.5∗
freq(i,j)

maxj freq(i,j)
)∗itf(j)

r

P

n
l=1

((0.5+0.5∗
freq(i,l)

maxl freq(i,l)
)∗itf(j))2

if freq(i, j) > 0

0 otherwise

(2)

where, as before, freq(i, j) is the frequency of occurences of term ti in
document dj and, for each term ti, maxj freq(i, j) is the maximum fre-
quency of term ti over all the documents in the collection. Furthermore,
let mj the number of distinct terms in the document dj , the inverse

term frequency is defined as,

itfj = log
m

mj

(3)

In order to distinguish this particular term-document matrix from the
ordinary one defined in Section 2.1, we denote it as A.
A similarity thesaurus is a term-term correlation matrix S defined as:

S = AA
T
.

A query vector q can be reweighted by using matrix S in the following
way. First the vector s = qS is computed. Then a threshold function
ξ(s, xr) is applied to s. Assuming that s = (s1, . . . , sm), function ξ(s, xr)
returns an m-dimensional vector s

′ = (s′1, . . . , s
′
m) such that:

s
′
i =

si if si is among the xr largest (absolute) elements in s

0 otherwise

In other words, function ξ sets to zero all the elements of s which are
not among the largest xr elements, considering their absolute value. Note

that computing the function ξ requires time linear in the size of s. The
obtained vector s

′ is then normalized, by dividing all its elements by
|q| =

Pm

i=1 qi, thus obtaining a new vector s
′′. Finally, the expanded

query q
′ is computed as q

′ = q + s
′′.

Query expansion techniques dates back to the work done by Maron and
Kuhns in 1960 [9]. Automatic query expansion, despite the not encour-
aging results shown in the early work done by Lesk [8], Sparck Jones and
Barber [16] and Minker et al. [10], where it seemed not an effective tech-
nique, has been revaluated after the researches made by Vorhees [18], by
Crouch and Yang [4] and by Qiu and Frei [13].
The use of a thesaurus to improve the retrieval effectiveness has been
introduced by Qiu and Frei in [14], where the authors use a global simi-
larity thesaurus, and in [4] by Crouch and Yang. The difference in their
approaches is on the type of the thesaurus: Qiu and Frei use a similarity
thesaurus, i.e., a thesaurus based on the similarity between terms; the
thesaurus proposed by Crouch and Young is statistical, i.e., is based on
statistical co-occurences of the terms.

2.3 Latent Semantic Indexing

If we look at matrix A as a set of n distinct column vectors, we can
interpret the elements of each column vector as the coordinates of the
corresponding document in the m-dimensional subspace spanned by the
terms in the collection. Intuitively, the more two documents (or a doc-
ument and a query) are similar, the more the corresponding vectors are
“close” to each other in the m-dimensional subspace. Polysemy and syn-
onymy issues get their own interpretation in this context: along the same
vector may lay two or more distinct meanings (polysemy), or, vice versa,
the same concept may be spread along different vectors (synonymy).
The main idea behind Latent Semantic Indexing is to pre-compute
a k-rank approximation of matrix A (with k ≪ m), and to score
documents according to their proximity to the given query vector in this
low dimensional subspace. Experimentally, LSI turned out to be very
effective in documents retrieval, overcoming, in most cases, the problems
of polysemy and synonymy. A widely accepted intuitive explanation is
that, more than terms, are the “latent semantic” concepts that should
index the documents and the query.

As we said, LSI algorithm has a preprocessing offline phase. During this
step the Singular Value Decomposition (or simply SVD) of A is com-
puted. This is a way to rewrite A as a product of three matrices:

A = U Σ V
T

where:
U is a m × m orthonormal matrix 2, whose column vectors are the

eigenvectors of A AT ;

2 A square matrix M is orthonormal if is regular (detM 6= 0) and if MT = M−1; so,
for a orthonormal matrix M it holds M−1 ·M = MT ·M = I .
Also det M = ±1.

V is a n×n matrix whose column vectors are the eigenvectors of AT A;

Σ is a m× n matrix made as follows:

Σ =

»

Σr 0
0 0

–

where Σr = diag(σ1, . . . , σr). The values σ1, . . . , σr are called sin-

gular values, are decreasingly ordered, and correspond to the square
roots of the eigenvalues of A AT . Note that r is the rank of matrix
A, and obviously r ≤ n.

We get a k-rank approximation Ak of A, by considering only the largest
k singular values and fixing the remaining (r−k) singular values to zero.
Therefore,

Ak = Uk Σk V
T

k (4)

where:

– Uk = U (1:m,1:k) is the m×k matrix composed by the first k columns
of U ; 3

– Vk = V (1:n,1:k) is the n× k matrix composed by the first k columns
of V ;

– Σk = Σ(1:k,1:k) is the diagonal k × k matrix whose elements are the
k largest singular values.

Note that Ak has still size m× n. A well known theorem by Eckart and
Young (see [7]) states that, among all the m×n matrices of rank at most
k, Ak is the one that minimizes the distance from A, measured by the
Frobenius norm.
The i-th row vector of Vk defines the components of document di in the k-
dimensional subspace spanned by the column vectors of Uk. Observe that
Vk = AT Uk Σ−1

k . When a user query q is given as input to algorithm LSI,
the projection of q in the k dimensional subspace is computed as: qk =
q Uk Σ−1

k . Then the score of each document di is obtained by measuring
the distance between the i-th row vector of Vk and the query vector qk.
One way to do this is to compute the cosine of the angle between the
two vectors:

ri = cos
“

qk, V
(i:i,1:k)

k

”

where V
(i:i,1:k)

k is the i-th row of Vk. The computational cost of LSI is thus
O(kn). Note that, unlike TM, the matrices Vk, Uk and the vector qk are
dense and therefore their product cannot be efficiently computed. This
computational cost, which heavily depends on the size of the collection
of documents, makes LSI unsuitable for online applications dealing with
huge collections of documents, like, for instance, web search engines.

Papadimitriou et al. present a formal probabilistic analysis of the LSI as
a IR tool in [12]. Azar et al. [1], in a more general context from Papadim-
itriou et al. , justify from a theoretical point of view both the empirical
success of LSI and its effectiveness against the problem of polysemy.

3 In this paper we use the colon notation to define submatrices: by A(i:j,k:l) (with
i ≤ j and k ≤ l) we denote the submatrix of A having element ai,k as the upper left
element and aj,l as the lower right element.

Algorithm 1 Algorithm LS-Thesaurus Pre-Process

1: Input: a collection of documents D;
2: Output: a Similarity Thesaurus, i.e., a m×m matrix Sk;
3:
4: Compute the term-document matrix A from D;

5: (U,Λ)←EIGEN(AA
T
);

6: Uk←U (1:m,1:k);
7: Λk←Λ(1:k,1:k);
8: Sk←Uk Λk UT

k ;

Algorithm 2 Algorithm LS-Thesaurus Expand

1: Input: a query vector q, a similarity thesaurus Sk,
2: a positive integer xr;
3: Output: a query vector q

′;
4:
5: s← q Sk;
6: s

′← ξ(s, xr);

7: s
′′← s

′

|q|
, where |q| =

Pm

i=1 qi;

8: q
′← q + s

′′;

3 LS-Thesaurus Algorithm

In this section the first of our two approaches is presented. The idea here
is to generate a similarity thesaurus like the one described in Section 2.2.
In this case, however, the similarity matrix S is computed starting from
a low rank approximation of A (as in LSI). We can formally define our
similarity matrix Sk in the following way:

Sk = Ak A
T

k = Uk Σk V
T

k V k Σ
T

k U
T

k = Uk Σ
2
k U

T

k (5)

Note that U and the diagonal elements of Σ correspond respectively to

the eigenvectors and the eigenvalues of matrix AA
T
. Therefore, in the

preprocessing step, we compute the eigenvalues and the eigenvectors of

matrix AA
T

(through the function EIGEN()). We assume that the set
of eigenvalues λ1, . . . , λr is returned in the form of a diagonal matrix
Λ = diag(λ1, . . . , λr), while the eigenvectors are returned as the column
vectors of a matrix U . The preprocessing step ends by returning the
similarity matrix Sk computed as described in Equation (5). The query
expansion is performed in the same way as in the original similarity
thesaurus.

4 LS-Filter Algorithm

In this section we present our second query expansion technique, de-
noted as LS-Filter. Here we start from the following assumption. In the
LSI algorithm documents and queries are projected (and compared) in

Algorithm 3 Algorithm LS-Filter Pre-Process

1: Input: a collection of documents D;
2: Output: a pair of matrices (P, P−1);
3:
4: Compute the term-document matrix A from D;
5: (U,Σ, V)←SV D(A);
6: Uk←U (1:m,1:k);
7: Σk←Σ(1:k,1:k);
8: P←Σ−1

k UT
k ;

9: P−1←Uk Σk;

Algorithm 4 Algorithm LS-Filter Expand

1: Input: a query vector q, matrices (P, P−1),
2: two positive integers xc and xt;
3: Output: a query vector q

′;
4:
5: p←P q;
6: p

′← ξ(p, xc);
7: p

′′←P−1
p
′;

8: q
′← ξ(p′′, xt);

a k-dimensional subspace. The axes of this subspace represent the k

most important concepts arising from the documents in the collection.
The user query tries to catch one (or more) of these concepts by using
an appropriate set of terms. However, it may happen that, due to user
obliviousness or to intrinsic properties of the collection, the set of terms
in the user query is not the best suitable for a text matching search.
What algorithm LS-Filter tries to do is to “guess” the concepts the user
is indicating with its query and to find the most suitable terms for re-
trieving, by a text matching search, the most relevant documents for
these concepts.
This is achieved by projecting the query vector q into the reduced
(“concepts”) space generated by LSI (through a precomputed matrix
P = Σ−1

k UT
k). The k-dimensional vector p we obtain measures the re-

lation between the query and each of the k (latent) concepts contained
in the collection. The algorithm filters it by setting to zero the elements
having small absolute values (by using function ξ). The filtered vector
p
′ is then projected back in the terms space, thus obtaining a vector p

′′

which provides the (weighted) terms that are the counterimage of the
concepts is the query. Finallly, we apply again function ξ, thus leaving in
the final expanded query q

′ only the xt terms having the largest weights.

5 Experimental results

In this section we present the results of the experimental studies we ac-
complished so far. We compared the behavior of the following approaches:

– TM: the simple text matching;
– LS-T: text matching with queries previously expanded by LS-

Thesaurus algorithm;
– LS-F: text matching with queries previously expanded by LS-Filter

algorithm;
– LSI: the full LSI computation as described in Section 2.3.

Dataset. Our data set are three books from O’Reilly (www.oreilly.com).
They are publicly downloadable (in HTML version) from [11], and are an
interesting (and difficult) dataset because they are quite specific (they
all are related with computer science), and the correlation between them
is high if compared to more heterogeneous collections of documents. We
considered each HTML page as a different document, and indexed all the
text of the page (excluding the tags). The overall number of documents
is more than 3000, 1500 of which were from the first book, 1000 from
the second book and the remaining 500 were from the last one. This
collection is larger than the standard small datasets like CISI and MED
[2] but its size allows a fast experimental setup, as opposite, for example,
to the huge corpora provided for the TREC conferences [17].

Retrieval performance evaluation. To evaluate the effectiveness of
these different IR techniques we used the standard precision versus recall
diagrams at the eleven standard recall levels [2]. We briefly recall its
definition.
Let q be a given user query. Let R ⊆ D be the subset of documents
which are relevant to q (usually determined by human experts), and let
|R| be the number of such documents. Moreover, we define Ah, for any
integer h ∈ [1, n], as the set of the h most relevant documents for q (we
assume there are no ties), according to the rank vector returned by the
system we are evaluating. Let Rah = R ∩ Ah be the intersection of the
sets Ah and R. The recall and precision measures are defined as follows:
– Recallh is the ratio between the number of relevant documents in

Ah and the total number of relevant documents:

Recallh =
|Rah|

|R|

– Precisionh is the fraction of relevant document in Ah:

Precisionh =
|Rah|

|Ah|
=
|Rah|

h

Note that the value of Recallh increases as the value of h increases (for
h = n, Recalln = 1).
We first compute the values of Recallh and Precisionh for each
h = 1, . . . , n. Then we plot the precision-recall diagram by computing,
through interpolation, the values of Precisionh, corresponding to the
values of h for which Recallh = 0.0, 0.1, 0.2, . . . 1 (the standard recall
levels).

Overview of the results. The precision-recall diagram for the tests
we conducted, is plotted in Figure 1; we can observe that the techniques
we propose performs between LSI and TM. It is interesting also to note

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 p

re
ci

si
on

% recall

LSI
TM

LS-F
LS-T

Fig. 1. Average precision at eleven standard recall levels

their relative performance: LS-T behaves better in the first half of the
plot, and then is outperformed. To complete the picture, in Figure 2 is
it shown the average of the times needed by each algorithm to respond a
query, depending on the size of the collection. We notice that there are
two different y-axis; the left one, whose range is from 0 to 60 seconds,
measures the LSI while the right one, ranged 0 to 6 seconds, measures
the other techniques (TM, LS-F and LS-Thaving roughly the same per-
formances)4. The plot confirms at least one order of magnitude between
LSI and the other techniques. These results indicate that the techniques
we propose are a good trade-off between retrieval effectiveness and time
performance.

Is it interesting to notice that, despite the (worst-case) running time of
LS-T is obviously linear in the number of the terms in the collection (and
definitely worse than LSI, linear in the number of documents), in practice
the similarity thesaurus matrix is largely sparse (Qiu and Frei observed
that usually around 3% of the entries are not zeroes). This means that
every term can index its similar terms, and we can still provide a fast
query answer. Consistently with the observation of Qiu and Frei our
thesaurus has around 2,7% of non-zero entries.
We conclude by presenting, in Table 1, some examples of queries ex-
panded by algorithm LS-Filter. We note that in some cases the system
works as we would like to, for example when it adds the terms “bourne”

4 We would like to point out that our IR system has been implemented to study
and evaluate different techniques and therefore we focus only on the relative perfor-
mances; in an optimized real IR system answer times can be significantly smaller.

 0

 10

 20

 30

 40

 50

 60

 500 1000 1500 2000 2500 3000
 0

 1

 2

 3

 4

 5

 6

 7

 8

LS
I

-
tim

e
(s

ec
on

ds
)

T
M

, L
S

-T
 &

 L
S

-F
 -

 ti
m

e
(s

ec
on

ds
)

number of documents

LSI
TM, LS-T, LS-F

Fig. 2. Time comparison chart – left y-axis is for LSI, right y-axis for TM, LS-F and
LS-T

and “prompt” to the query “shell logout”; sometimes, however, it adds
misleading terms, like “ctrl” to the query “job control”. We also see that
the weight of the terms in the original query can be less than the one
of the added terms; see for example the weight of term “control” in the
query “job control”.

6 Conclusions

In this paper we introduced two techniques, LS-Thesaurus and LS-Filter,
that allow fast user query answer based on the LSI reduced space matrix.
The preliminary experimental tests showed that our approaches perform
well, and are a good trade-off between LSI and more simple methods
like text matching. However, to evaluate the real effectiveness of both
techniques we definitely need to perform more experiments on further
data sets. We are working in this direction, and we are developing an
open IR system that would allow to easily test different techniques.

We want to point out that the thesaurus generated according to LS-

Thesaurus can be useful not only in the query expansion process, but
also as a tool by itself. Moreover it can be used in an online style: the
user can ask a query, see a list of similar terms and then he can decide
to refine the query by adding some of these terms.
For the LS-Filter, we must remark its double behavior. In cases where
the query terms correctly express the concept behind the query, this al-
gorithm is able to outline and discard concepts of no interest, providing

java beans job control shell logout zip file

java 0.58136 job 0.42763 shell 0.68739 file 0.71548
bean 0.54392 background 0.12985 bourne 0.11818 util 0.16258
jdk 0.24954 echo 0.10754 login 0.09497 zip 0.15056
property 0.09444 number 0.09974 perl 0.09123 checksum 0.09776
nbsp 0.08534 list 0.07858 prompt 0.09851
amp 0.07158 control 0.06929
job 0.07119 ctrl 0.06882
program 0.06206 object 0.06669
value 0.05819 line 0.05827

filename 0.05827

Table 1. Examples of query expanded by LS-Filter: user queries (first row) and the
corresponding terms and weights.

more suited terms for the search. Sometimes (very often) query terms
are still ambiguous and don’t catch the real concept of interest. In these
cases, we are not able to provide a correct retrieval; furthermore, the con-
cept filtering can cut-off the concept of interest (with no high ranking),
providing absolutely incorrect terms. The performances, in these cases,
are vary bad, worse than simple text-matching. That is why in some
cases the average graphics show for LS-Filter performances comparable
to simple text-matching search.
This technique could be more effective if an appropriate user relevance
feedback helps to discriminate relevant concepts in cases of ambiguous
queries. In the system we are implementing, we want to provide the
ability to select from the collection a set of terms with high discrimi-
nating power above concepts. In this way, every retrieved document is
presented with all the discriminating terms it contains. Furthermore, ev-
erytime there is an ambiguity in the query among two or more concepts,
the system is able to prompt the user for selection (/deselection) of the
discriminating terms associated with ambiguous concepts. By selecting
(/deselecting) one or more of these terms, or one or more of the retrieved
documents, the user implicitly choices the concept of interest, allowing
this way a more precise retrieval.

References

1. Y Azar, A. Fiat, A.R. Karlin, F. McSherry, and J. Saia. Spectral
analysis of data. In Proc. of STOC 2001, 2001.

2. R. Baeza-Yates and R. Ribeiro-Neto. Modern Information Retrieval.
Addison Wesley, 1999.

3. H. Bast and D. Majumdar. Why spectral retrieval works. In Prooced-

ings of ACM SIGIR, 2005.
4. C.J. Crouch and B. Yang. Experiments in automatical statistical

thesaurus construction. In Proc. of the 15th ACM SIGIR Conference

on Research and Development in Information Retrieval, 1992.

5. S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A.
Harshman. Indexing by latent semantic analysis. J.Soc.Inform.Sci.,
41(6):391–407, 1990.

6. S.T. Dumais, G. Furnas, T.K. Landauer, and S. Deerwester. Using
latent semantic analysis improve information retrieval. In Proceed-

ings of CHI’88: Conference Human Factors in Computing, pages
281–285, 1988.

7. G. Golub and C. Reinsch. Handbook for Automatic Computation
II, Linear Algebra. Springer-Verlag, New York, 1971.

8. M.E. Lesk. Word-word associations in document retrieval systems.
American Documentation, 20(1):8–36, 1969.

9. M.E. Maron and J.L. Kuhns. On relevance, probabilistic indexing
and information retrieval. Association for Computing Machinery,
1960.

10. J. Minker, G.A. Wilson, and B.H. Zimmerman. An evaluation of
query expansion by the addition of clustered terms for a document
retrieval system. Information Storage and Retrieval, 8(6):329–348,
1972.

11. The O’reilly dataset. http://www.dis.uniroma1.it/˜laura/.
12. C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent

semantic indexing: A probabilistic analysis. J. Comput. Systems

Sciences, 61(2):217–235, 2000.
13. Y. Qiu and H. Frei. Concept based query expansion. In Proc. of

the 16th ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 160–169, 1993.
14. Y. Qiu and H. Frei. Improving the retrieval effectiveness by a simi-

larity thesaurus. Technical Report 225, ETH Zurich, 1994.
15. G. Salton and C. Buckley. Term-weighting approaches in information

retrieval. Information Processing & Management, 24(5):513–523,
1988.

16. K. Sparck Jones and E.O. Barber. What makes an automatic key-
word classification effective. Journal of the American Society for

Information Sciences, 22(3):166–175, 1971.
17. Text REtrieval Conference. http://trec.nist.gov/.
18. E.M. Vorhees. The Effectiveness and Efficiency of Agglomerative

Hierarchic Clustering in Document Retrieval. PhD thesis, Cornell
University, 1986.

