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Abstract. The accuracy of ad-hoc information retrieval (IR) systems
has plateaued in the last few years. At DFKI, we are working on so-
called collaborative information retrieval (CIR) systems which have the
potential to overcome the current limits. We focus on a restricted setting
in CIR in which only old queries and correct answer documents to these
queries are available for improving a new query. For this restricted setting
we propose new approaches for query expansion procedures. We show
how collaboration of individual users can improve overall information
retrieval performance.
In our first steps towards techniques, we proposed new algorithms for
query expansion in CIR systems. Now in this paper we focus on learning
similarity measures. We do not try to invent new similarity measures,
but learn weighting schemes to be applied to the standard cosine sim-
ilarity measure. After learning the new weightings we re-evaluate our
previously proposed CIR algorithms on standard IR test collections. It
turns out that retrieval performance of previously developed algorithms
is improved after learning the weightings for the involved similarity mea-
sure.

1 Introduction

In this section we introduce the research area of Collaborative Information Re-
trieval (CIR). We motivate and characterize the primary goals of this paper,
query expansion procedures for CIR and outline the structure and contents.

The ultimate goal in IR is finding the documents that are useful to the
information need expressed as a query. Much work has been done on improving
IR systems, in particular in the Text Retrieval Conference series (TREC). In
2000, it was decided at TREC-8 that this task should no longer be pursued
within TREC, in particular because the accuracy has plateaued in the last few
years [13]. We are working on new approaches which learn to improve retrieval
effectiveness from the interaction of different users with the retrieval engine.
Such systems may have the potential to overcome the current plateau in ad-hoc
retrieval.

CIR is a methodology where an IR system makes full use of all the additional
information available in the system, especially

– the information from previous queries
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– the relevance information gathered during previous search processes, inde-
pendent of the method used to obtain this relevance information, i.e., ex-
plicitly by user relevance feedback or implicitly by unobtrusively detected
relevance information.

Collaboration here assumes that users can benefit from search processes car-
ried out at former times by other users (although they may not know about
the other users and their search processes) as long as the relevance information
gathered from these previous users has some significant meaning.

Subject to these assumptions we expect that collaborative searches will im-
prove overall retrieval quality for all users.

We are aware of the problems of ”personalization” and ”context”, but in our
first steps towards techniques we avoid further complexity of CIR by ignoring
these challenges. ”Personalization” means that different users may have different
preferences on relevant documents, because of long-term interests; ”context”
means that different users may have different preferences on relevant documents,
because of short-term interests.

This paper is organized as follows: Section 2 describes related work in the
field of query expansion, section 3 introduces the vector space model and query
expansion procedures that have been developed for use in the vector space model.
Section 4 describes the method for learning similarity functions and describes
one of the functions in detail. Then section 5 describes the document collections
we have used for evaluating our new algorithms and describes the evaluation
methodology, section 6 describes the results of the evaluation. Finally section 7
summarizes this paper, draws some conclusions, and shows the essential factors
for improving retrieval performance in CIR.

2 Related Work

Usage of short queries in IR produces a shortcoming in the number of docu-
ments ranked according to their similarity to the query. Thus IR systems try to
reformulate the queries in a semi-automatic or automatic way. Several methods,
called query expansion methods (QE), have been proposed to cope with this
problem [3], [10]. These methods fall into three categories: usage of feedback
information from the user (e.g. interactive QE), usage of information derived
locally from the set of initially retrieved documents, and usage of information
derived globally from the document collection. The goal of all QE methods is
to finally find the optimal query which selects all the relevant documents. A
comprehensive overview of newer procedures is available from Efthimiadis in [6].
Another newer technique, called local context analysis (LCA), was introduced
by Xu and Croft in [15].

Newest procedures in the field of query expansion are dealing with query
bases, a set of persistent past optimal queries, for investigating similarity mea-
sures between queries (refer to Raghavan, Sever and Alsaffar et al. in [11], [12]
[2]). Wen et al. [14] are using query clustering techniques for discovering fre-
quently asked questions or most popular topics on a search engine. This query
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clustering method makes use of user logs which allows to identify the documents
the users have selected for a query. The similarity between two queries may be
deduced from the common documents the users selected for them ([4]). Cui et
al. [5] take into account the specific characteristics of web searching, where a
large amount of user interaction information is recorded in the web query logs,
which may be used for query expansion. Agichtein et al. [1] are learning search
engine specific query transformations for question answering in the web.

3 Basics and Terminology

In this section we introduce the vector space model (VSM) which is employed
in our work. We introduce the pseudo relevance feedback method for query
expansion and two of our newly developed methods for CIR.

Vector Space Model Documents as well as queries are represented in a com-
mon way using a set of terms. Terms are determined from words of the docu-
ments, usually during preprocessing phases (e.g. stemming and stopword elim-
ination). In the following a term is represented by ti, 1 ≤ i ≤ M , where M is
the number of terms in the document collection.

The vector space model assigns weights to terms in queries and in documents
and represents them as M dimensional vectors

dj = (w1j , w2j , ..., wMj)T , 1 ≤ j ≤ N, (1)
qk = (w1k, w2k, ..., wMk)T , 1 ≤ k ≤ L, (2)

where T indicates the transpose of the vector, wij or wik is the weight of term ti
in document dj or query qk, N is the number of documents and L is the number
of queries contained in the document collection.

The result of the execution of a query is a list of documents ranked according
to their similarity to the given query. The similarity sim(dj , qk) between a doc-
ument dj and a query qk is measured by the cosine of the angle between these
two M dimensional vectors:

sim(dj , qk) =
dT

j · qk

‖dj‖ · ‖qk‖ , (3)

where ‖ · ‖ is the Euclidean norm of a vector. In the case that the vectors are
already normalized (and hence have a unit length) the similarity is simply the
dot product between the two vectors dj and qk.

Query Expansion by Pseudo Relevance Feedback (PRF) After retrieval
of the list of documents (in a first stage) highly ranked documents are all assumed
to be relevant [15] and their terms (all of them or some highly weighted terms)
are used for expanding the original query. Then documents are ranked again
according to their similarity to the expanded query.

In this work we employ a variant of pseudo relevance feedback described by
Kise et al. [9]. In our comparison with the newly developed methods, we will use
the PRF method.
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Let E be the set of document vectors given by

E =
{

dj

∣∣∣∣
sim(dj , qk)

max1≤i≤N{sim(di, qk)} ≥ θ

}
(4)

where qk is the original query and θ is a threshold parameter of the similarity.
Then the sum Dk of the document vectors in E, Dk =

∑
dj∈E dj is used as

expansion terms for the original query. The expanded query vector q′k is obtained
by

q′k = qk + α
Dk

‖Dk‖ (5)

where α is a parameter for weighting the expansion terms. Then the documents
are ranked again according to their similarity sim(dj , q

′
k).

Parameters θ in Equation 4 and α in Equation 5 are tuning parameters. Dur-
ing evaluation best parameter value settings have been obtained by experiment
and those which give the highest average precision were selected for comparison
against other methods.

Query Expansion by Methods developed for CIR In our approaches we
use global relevance feedback which has been learned from previous queries; this
is in contrast to local relevance feedback which is produced during execution of
an individual query. All our new query expansion procedures work as follows:

Existing old queries
new query
Nearest neighbors

Fig. 1. Motivation for CIR
methods: usage of the nearest
neighbors

– for each new query to be issued compute the
similarities between the new query and each
of the existing old queries

– select the old queries having a similarity to
the new query which is greater than or equal
to a given threshold

– from these selected old queries get the sets of
relevant documents from the ground truth
data

– from this set of relevant documents compute
some terms for expansion of the new query

– use this terms to expand the new query and issue the new expanded query

The algorithmic description is given here:
for each new query q do

compute the set S = {qk| sim(qk, q) ≥ σ, 1 ≤ k ≤ L}
compute the sets RDk = {dj |qk ∈ S ∧ dj is relevant to qk}
compute the expanded query q′ = cirf(q, S,RDk)

end

where S is the set of existing old queries qk with a similarity of σ or higher
to the new query q, RDk are the sets of the documents being relevant to the
queries qk and cirf is a function for query expansion.

The goal now is to find suitable functions cirf which can be efficiently com-
puted and which maximize the effectiveness of the new query q′ in terms of recall
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and precision. As is shown in figure 1 our approach is searching for neighbors
of the new query. If suitable neighbors of a query q within a given distance are
found, we try to derive information about the documents which are relevant to
q from its nearest neighbors.

These functions introduce a new level of quality in the IR research area:
while the term weighting functions such as tf-idf only work on documents and
document collections, and relevance feedback works on a single query and uses
information from their assumed relevant and non-relevant documents only, CIR
now works on a single query, and uses the information of all other queries and
their known relevant documents.

Methods Description. Due to lack of space we describe the methods infor-
mally very short. For detailed description and evaluation we point the reader to
the referenced papers and articles.

Query Similarity and Relevant Documents. Method QSD ([7]) uses the relevant
documents of the most similar queries for query expansion of a new query. The
new query is rewritten as a sum of selected relevant documents of existing old
queries, which have a high similarity to the new query, i.e.,

q′ = q +
|S|∑

k=1

σk
RDk

‖ RDk ‖ , (6)

where |S| is the number of selected queries, σk are the similarities sim(qk, q) ≥ σ
(σ is the threshold value) and RDk are the sets of relevant documents.

Query Linear Combination and Relevant Documents. Method QLD ([8]) uses
the relevant documents of the most similar queries, which are used in re-writing
the new query as a linear combination of the most similar queries. This query
expansion method reconstructs the new query as a linear combination of existing
old queries. Then the terms of the relevant documents of these existing old
queries are used for query expansion, i.e.,

q′ = q +
|S|∑

k=1

λ̃k
RDk

‖ RDk ‖ , (7)

where the λ̃k are parameter for weighting the expansion terms. The λ̃k are
computed as follows: in most cases we cannot represent the new query q exactly
as a linear combination of the old queries qk, i.e., q =

∑|S|
k=1 λkqk will not have a

solution for the coefficients λk. This equation is equivalent to a system of linear
equations Qλ = q, where Q = (q1, q2, . . . , q|S|) is a matrix of M rows and |S|
columns and λ = (λ1, λ2, . . . , λ|S|)T is a column vector consisting of |S| elements.
Because Q is normally singular (M À |S|) and there is no solution to the system,
we find a vector λ̃ so that it provides a closest fit to the equation in some sense.
Our approach is to minimize the Euclidean norm of the vector Qλ − q, i.e we
solve

λ̃ = argminλ‖Qλ− q‖ (8)

where λ̃ = (λ̃1, λ̃2, . . . , ˜λ|S|)T is called the least squares solution for the system
Qλ = q.



6 Armin Hust

Limiting Factors in CIR Performance Similarities of Queries to Docu-
ments. One of the limiting factors for CIR retrieval performance is the similarity
between the query and its non-relevant documents (as it is for non-CIR retrieval
performance).
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Fig. 2. CRAN: distribution of query simi-
larities

Inter-Query Similarities. In our
considerations for usage of similari-
ties between different queries for re-
trieval performance improvements,
we decided to analyze the inter-que-
ry similarities. We did not expect
to have queries having highly cor-
related similarities as we would ex-
pect in real world applications.
Indeed, the histograms show very
low inter-query similarity for most
of the text collections. Figure 2 dis-
plays the distribution of the inter-
query similarity, excluding those
similarities which are 0. Also the
mean and the median value as well

as the variance and the standard deviation are indicated in the graph. The
vertical lines are: the mean similarity (solid line), and the values of the mean
similarity ± the standard deviation (dotted lines).
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documents

Overlap of Relevant Documents. An-
other limiting factor for our CIR methods
is some ”overlapping” in relevant docu-
ments for different queries. We define the
overlap of relevant documents as follows:
Let qk, ql ∈ Q, k 6= l be two different
queries. Let RDk and RDl be the sets of
documents which are relevant to queries
qk and ql respectively. Then the overlap of
relevant documents for these two queries
is the number of documents in the set
Okl = RDk ∩ RDl = {dj | dj ∈ RDk ∧
dj ∈ RDl}. We expect retrieval perfor-
mance improvements if the overlap of rel-
evant documents is high.

4 Learning Similarity Functions

The motivation for learning similarity functions arises from the achieved perfor-
mance improvements of our query expansion methods QSD and QLD.

Similarity between queries as it is used up to now is solely based on syntactical
elements. Although we have used some normalization and cleaning operations
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(stemming and stop-word-elimination) there is no further processing beyond the
syntactical level. Similarity between two queries is high if they use the same
words. Similarity is low if they use different words.

 

existing old queries 

new query 

nearest neighbors 
after learning 

Fig. 4. Motivation for Learning
Similarities: area of nearest neigh-
bors changes dramatically

The same information need can be expres-
sed in different queries, having a low sim-
ilarity, although they are querying for the
same facts and thus may have the same rele-
vant documents. However, the methods de-
veloped up to now only use the inter-query
similarity on the syntactical level, they do
not consider the information need of the
user. Figure 4 illustrates the proposed ef-
fect of learning, where the area of nearest
neighborhood may change dramatically if
the newly learned similarity functions are
applied. In this way we can identify queries
as nearest neighbors of a new query, even if they are far away (according to the
standard cosine-similarity) from the new query.

The Learning Problem We now formulate the learning of similarity functions
as a minimization problem.

We measure the similarity of sets of relevant documents by

dsimkl := sim(rdk, rdl), (9)

where sim(·, ·) is defined in Equation 3, and rdi are the summarized and centered
document vectors consisting of the relevant documents of query qi, i.e.,

rdi =
1

|RDi|
∑

dj∈RDi

dj (10)

and the similarity between queries by

qsimkl(x) := sim(g(x, qk), h(x, ql)) (11)

where x is a vector of weights to be applied against the queries qk and/or ql with
some functions g and h, each returning an M -dimensional vector which can be
fed into the standard cosine similarity measure described in Equation 3.

The motivation for learning the weights for similarity functions is as follows:
If the similarity between two different vectors rdk, rdl is high, then the similarity
between the two queries qk, ql having these document vectors assigned as relevant
documents should be high. If the similarity between vectors rdk, rdl is low, then
the similarity between the corresponding two queries should be low. This directly
leads to the functions fkl, 1 ≤ k, l ≤ L to be minimized as

fkl(x) = qsimkl(x)− dsimkl (12)

and considers all pairs of queries. Let F be a vector-valued function consisting of
L2 functions, where each of these functions uses an M dimensional input vector
x, i.e.,
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F : RM → RL2

(x1, x2, · · · , xM )T 7→ (f11(x), f12(x), · · · , fkl(x), · · · , fLL(x))T (13)

Then we can state our learning problem as

x̂ = (x̂1, x̂2, · · · , x̂M )T = argminx‖F (x)‖2 = argminx

L∑

k,l=1

fkl(x)2 (14)

i.e., we are searching for a vector x̂ that minimizes the Euclidean norm of the
function F .

The Similarity Functions The goal is to find reasonable functions qsimkl(x)
which give us significant performance improvements for IR whilst having a mod-
erate computational complexity both in the learning process as well as during
the application of the similarity measure in the query expansion methods QSD
and QLD.

We have developed 9 reasonable functions. Due to lack of space we describe
only one of them here.

Similarity Function F2 We first define the component-wise multiplication of
the individual components of two vectors, denote it by ∗̇ and use it in infix-
notation: ∗̇ : Rn × Rn → Rn

x∗̇y = (x1, x2, · · · , xn)T ∗̇(y1, y2, · · · , yn)T = (x1y1, x2y2, · · · , xnyn)T

Then we define the new similarity function using the weights to be learned and
denote it by a superscript

qsim2
kl(x) = sim(qk, x∗̇ql) (15)

leading to our minimization problem

x̂ = argminx

L∑

k,l=1

(qsim2
kl(x)− dsimkl)2 (16)

5 Experimental Design

We use standard document collections and standard queries and questions pro-
vided by the SMART project and the TREC conferences. In addition we use
some special collections that we have generated from the TREC collections to
show special effects of our algorithms. In our experiments we used the following
10 collections:
– the SMART collections ADI, CACM, CISI, CRAN, MED and NPL.
– the TREC QA (question answering) collection prepared for the Question

Answering track held at the TREC-9 conference, the QA-AP90 collection
containing only those questions having a relevant answer document in the
AP90 (Associated Press articles) document collection, the QA-AP90S col-
lection (extracted from the QA-AP90 collection) having questions with sim-
ilarity of 0.65 or above to any other question, and the QA-2001 collection
prepared for the Question Answering track held at the TREC-10 conference.
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On the one hand by utilizing these collections we take advantage of the
ground truth data for performance evaluation. On the other hand we do not
expect to have queries having highly correlated similarities as we would expect
in a real world application. So it is a challenging task to show performance
improvements for our methods.

Preparation of the Text Collections Terms used for document and query
representation were obtained by stemming and eliminating stopwords. Then doc-
ument and query vectors were created according to the so called tf-idf weighting
scheme, where the document weights dij are computed as

dij =
√

fij · idfi (17)

where fij is the raw frequency of term ti, idfi is the inverse document frequency
log N

ni
of term ti, and the query weights qik are computed as

qik =
√

fik (18)

where fik is the raw frequency of term ti in a query qk.

Properties of the Text Collections Table 1 lists statistics about the collec-
tions after stemming and stopword elimination has been carried out; statistics
about some of these collections before stemming and stopword elimination can
be found in Baeza-Yates [3] and Kise et al. [9].

ADI CACM CISI CRAN MED NPL QA QA- QA- QA-
AP90 AP90S 2001

size(MB) 0.1 1.2 1.4 1.4 1.1 3.8 28.2 3.7 3.7 20.1
number of documents 82 3204 1460 1400 1033 11429 6025 723 723 4274
number of terms 340 3029 5755 2882 4315 4415 48381 17502 17502 40626
mean number of terms 17.9 18.4 38.2 49.8 46.6 17.9 230.7 201.8 201.8 220.5

per document (short) (short) (med) (med) (med) (short) (long) (long) (long) (long)
number of queries 35 52 112 225 30 93 693 353 161 500
mean number of terms 5.7 9.3 23.3 8.5 9.5 6.5 3.1 3.2 3.5 2.7

per query (med) (med) (long) (med) (med) (med) (short) (short) (short) (short)
mean number of relev. 4.9 15.3 27.8 8.2 23.2 22.4 16.4 2.8 3.2 8.9

documents per query (low) (med) (high) (med) (high) (high) (med) (low) (low) (med)

Table 1. Statistics about the test collections

Methodology of Evaluation The numerical methods used for function mini-
mization do not guarantee that they will find a global minimum of the function.
However they will find a local minimum in an area surrounding the initial start
value. Thus we did the same experiment several times with different initial val-
ues.

The result of each experiment was the vector x̂. We then fed these values into
the QSD and QLD methods using the similarity measure qsim2

kl(x) as defined
in Equation 15 for the query expansion methods.

The evaluation follows the ”leave one out” technique used in several areas
such as document classification, machine learning etc. From the set of L queries
contained in each text collection we selected each query one after the other and
treated it as a new query ql, 1 ≤ l ≤ L. Then for each fixed query ql we used the
algorithm as described in section 3. Of course the now fixed query ql itself does
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not take part in the computation of the query expansion. We varied parameters
of the algorithms according to suitable values, and selected those parameters
where highest performance improvements (in terms of average precision over all
queries) were achieved.

6 Results
The methods are denoted by adding the name of the learned similarity function
to the basic name, i.e., QSDF2 denotes the QSD method after learning similarity
function F2 using the similarity measure qsim2

kl(x) as defined in Equation 15.

Interpolated Average Precision Table 2 shows the interpolated average pre-
cision obtained by using the best parameter values for different methods. For each
collection the best value of average precision is indicated by bold font, the sec-
ond best value is indicated by italic font. In those cases, where our new methods
outperform the PRF method, the value is underlined.

ADI CACM CISI CRAN MED NPL QA QA- QA- QA-
AP90 AP90S 2001

VSM 0.375 0.130 0.120 0.384 0.525 0.185 0.645 0.745 0.643 0.603
PRF 0.390 0.199 0.129 0.435 0.639 0.224 0.685 0.757 0.661 0.614
QSD 0.374 0.237 0.142 0.428 0.503 0.184 0.727 0.810 0.786 0.603
QSDF2 0.433 0.293 0.184 0.463 0.525 0.202 0.753 0.818 0.796 0.604

QLD 0.369 0.227 0.171 0.436 0.507 0.185 0.734 0.812 0.789 0.603
QLDF2 0.436 0.286 0.182 0.465 0.525 0.196 0.754 0.818 0.798 0.604

Table 2. Interpolated average precision in CIR methods

Significance Testing Significance tests were applied to the results. Table 3
shows the results. Each row contains the results of two tests, i.e., test method
X against method Y and vice versa.
– The indicator ++ (+) shows that method X is performing better than

method Y at significance level α = 0.01 (α = 0.05).
– The indicator o shows that there is low probability that one of the methods

is performing better than the other method.
– The indicator −− (−) shows that method Y is performing better than

method X at significance level α = 0.01 (α = 0.05).

methods ADI CACM CISI CRAN MED NPL QA QA- QA- QA-
X Y AP90 AP90S 2001

PRF VSM + ++ ++ ++ ++ ++ ++ + o ++
QSD PRF o o o o −− −− ++ ++ ++ −−

QSDF2 PRF ++ ++ ++ + −− − ++ ++ ++ −−
QSDF2 QSD + ++ ++ ++ o + ++ + o o
QLD PRF o o ++ o −− −− ++ ++ ++ −−

QLDF2 PRF ++ + ++ + −− −− ++ ++ ++ −−
QLDF2 QLD ++ ++ o ++ o o ++ o o o

Table 3. Paired t-test results for significance levels α = 0.05 and α = 0.01
Relative Performance Improvements Table 4 shows the relative perfor-
mance improvements for different methods. The ratio of improvement is com-
puted as follows: let X be the average precision obtained by one of the methods
and let Y be the average precision obtained by another method. Then the ratio
is calculated by ratio = X−Y

Y . A positive value for the ratio indicates an im-
provement of method X over method Y , a negative value indicates a degradation
in average precision from method X to Y .
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methods ADI CACM CISI CRAN MED NPL QA QA- QA- QA-
X Y AP90 AP90S 2001

QSD PRF -4.0% +18.8% +9.8% -1.7% -21.3% -17.8% +6.1% +6.9% +18.8% -1.8%
QSDF2 PRF +10.9% +47.0% +42.2% +6.3% -17.9% -9.7% +10.0% +8.0% +20.4% -1.7%
QSDF2 QSD +15.5% +23.7% +29.6% +8.2% +4.3% +9.9% +3.6% +1.0% +1.3% +0.1%
QLD PRF -5.5% +14.1% +32.3% +0.1% -20.7% -17.2% +7.2% +7.2% +19.3% -1.8%

QLDF2 PRF +11.9% +43.5% +40.8% +6.8% -17.8% -12.5% +10.1% +7.9% +20.6% -1.6%
QLDF2 QLD +18.3% +25.7% +6.5% +6.7% +3.6% +5.7% +2.7% +0.7% +1.1% +0.2%

Table 4. Average precision improvement in different methods

Analysis of the Results From the average precision analysis we see that the
QSDF2 method and the QLDF2 method perform best and second best in most
cases. In all cases they also perform better than the basic method before learning.

For the MED and NPL text collections, the basic methods QSD and QLD
do not perform better than the PRF method, nor do any of the methods after
learning. We think that, in the case of the MED collection, this effect comes from
the missing overlap of relevant documents, and in the case of the NPL collection
from the high similarity of non-relevant documents to the queries.

In all but in one case we observe performance improvements after learn-
ing compared to the basic methods without learning. The highest performance
improvement achieved is +40.3% (for the CACM collection). Only for the QA-
2001 collection we observe a performance degradation for one method of -0.1%
after learning; it should also be noted that for this collection the performance
improvements achieved after learning are the lowest of all collections.

7 Conclusions

We have studied learning methods for improving retrieval performance in a re-
stricted CIR environment where information about relevant documents from
previous search processes carried out by several users is available for the current
query.

Specifically, we developed, evaluated and analyzed new algorithms for query
expansion, since query expansion methods are known to be successful in improv-
ing retrieval performance.

Results of the newly developed methods are encouraging. Retrieval perfor-
mance improvements were achieved in most cases. For some text collections no
significant retrieval performance improvements could be achieved, neither in the
basic methods nor in applying the methods after learning similarity functions.
We identified three essential factors for retrieval performance improvements:
– similarity between queries, also called inter-query similarity: we can not

achieve performance improvements, if there are no pairs of queries with high
similarities

– similarity of queries to their relevant documents and non-relevant documents:
precision decreases, if non-relevant documents are ranked higher than rele-
vant documents

– the overlap of relevant documents for pairs of queries: if there is no or low
overlap in relevant documents, there are no document terms which are used
for query expansion
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We think that the first factor is the most important for our CIR methods.
Best performance improvements have been achieved in text collections where
the inter-query similarity is high, although the overlap in relevant documents is
not high. Low or no retrieval performance improvements were achieved in those
cases were the inter-query similarity is on average low.

For text collections, where similarity of queries to their non-relevant docu-
ments is high on average, we achieved low performance improvements.

For text collections, where the overlap of relevant documents is low or where
no overlap in relevant documents exists, we did not achieve performance im-
provements, neither in the basic methods nor in the methods that have been
applied after learning.
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