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Abstract. Current text classification systems typically use term stems for rep-
resenting document content. Ontologies allow the usage of features on a higher
semantic level than single words for text classification purposes. In this paper we
propose such an enhancement of the classical document representation through
concepts extracted from background knowledge. Boosting, a successful machine
learning technique is used for classification. Comparative experimental evalua-
tions in three different settings support our approach through consistent improve-
ment of the results. An analysis of the results shows that this improvement is due
to two separate effects.

1 Introduction

Most of the explicit knowledge assets of today’s organizations consist of unstructured
textual information in electronic form. Users are facing the challenge of organizing,
analyzing and searching the ever growing amounts of documents. Systems that auto-
matically classify text documents into predefined thematic classes and thereby contex-
tualize information offer a promising approach to tackle this complexity. During the last
decades, a large number of machine learning methods have been proposed for text clas-
sification tasks [16]. Recently, especially Support Vector Machines [9] and Boosting
Algorithms [15] have produced promising results.

So far, however, existing text classification systems have typically used theBag-
of-Words modelknown from information retrieval, where single words or word stems
are used as features for representing document content. By doing so, the chosen learn-
ing algorithms are restricted to detecting patterns in the usedterminologyonly, while
conceptualpatterns remain ignored. Specifically, systems using only words as features
exhibit a number of inherent deficiencies:

1. Multi-Word Expressionswith an own meaning like“European Union” are chunked into
pieces with possibly very different meanings when treated separately like – in this example
– “union” .

2. Synonymous Wordslike “tungsten” and“wolfram” are mapped into different features.
3. Polysemous Wordsare treated as one single feature while they may actually have multiple

distinct meanings.
4. Lack of Generalization: there is no way to generalize similar terms like “gold” and “silver”

to their common hypernym “precious metal”.



While items 1 – 3 directly address issues that arise on the lexical level, item 4 rather
addresses an issue that is situated on a conceptual level. In this paper, we show how
background knowledge in form of simple ontologies can improve text classification
results by directly addressing these problems.

We propose a hybrid approach for document representation based on the common
term stem representation which is enhanced with concepts extracted from the used on-
tologies. For actual classification we suggest to use the AdaBoost algorithm which has
proven to produce accurate classification results in many experimental evaluations and
seems to be well suited to integrate different types of features. Evaluation experiments
on three text corpora, namely the Reuters-21578,OHSOMED andFAODOC collections
show that our approach leads to consistent improvements of the results. We also show
that in most cases the improvement can be traced to two distinct effects, one being
situated mainly on the lexical level and the generalization on the conceptual level.

This paper is organized as follows. We introduce some preliminaries, namely the
classical bag-of-words document representation and ontologies in section 2. A detailed
process for compiling conceptual features into an enhanced document representation
is presented in section 3. In section 4 we review the AdaBoost algorithm and its in-
ner workings. Evaluation Measures for text classification are reviewed in section 5. In
the following, experimental evaluation results of our approach are presented for the
Reuters-21578,OHSOMED, andFAODOC corpora under varying parameter combina-
tions. It turns out that combined feature representations perform consistently better than
the pure term-based approach. We review related work in section 7 and conclude with
a summary and outlook in section 8.

2 Preliminaries

The Bag-Of-Words ParadigmIn the common term-based representation, documents are
considered to be bags of terms, each term being an independent feature of its own. Let
D be the set of documents andT = {t1, . . . , tm} the set of all different terms occurring
in D. For each termt ∈ T in documentd ∈ D one can define feature values functions
like binary indicator variables, absolute frequencies or more elaborated measures like
TFIDF [14].

Typically, whole words are not used as features. Instead, documents are first pro-
cessed with stemming algorithms, e.g. the Porter stemmer for English [13]. In addition,
Stopwords, i.e. words which are considered as non–descriptive within a bag–of–words
approach, are typically removed.

OntologiesThe background knowledge we have exploited is given through simple on-
tologies. We first describe the structure of these ontologies and then discuss their usage
for the extraction of conceptual feature representations for text documents. The back-
ground knowledge we will exploit further on is encoded in acore ontology. For the
purpose of this paper, we present only those parts of our more extensive ontology defi-
nition [2] that we need within this paper.



Definition 1 (Core Ontology).A core ontology is a structureO := (C, <C) consisting
of a set C, whose elements are called concept identifiers, and a partial order<C on C,
called concept hierarchy or taxonomy.

Definition 2 (Subconcepts and Superconcepts).If c1 <C c2 for anyc1, c2 ∈ C, then
c1 is a subconcept (specialization) ofc2 and c2 is a superconcept (generalization) of
c1. If c1 <C c2 and there exists noc3 ∈ C with c1 <C c3 <C c2, thenc1 is a direct
subconcept ofc2, andc2 is a direct superconcept ofc1, denoted byc1 ≺ c2.

These specialization/generalization relationships correspond to what we know as
is-a vs. is-a-special-kind-of, resulting in a hierarchical arrangement of concepts3. In
ontologies that are more loosely defined, the hierarchy may, however, not be as explicit
asis-a relationships but rather correspond to the notion ofnarrower-than vs.broader-
than4

According to the international standard ISO 704, we provide names for the concepts
(and relations). Instead of ‘name’, we here call them ‘sign’ or ‘lexical entries’ to better
describe the functions for which they are used.

Definition 3 (Lexicon for an Ontology).A lexicon for an ontologyO is a tupleLex :=
(SC , RefC) consisting of a setSC , whose elements are called signs for concepts (sym-
bols), and a relationRefC ⊆ SC × C called lexical reference for concepts, where
(c, c) ∈ RefC holds for all c ∈ C ∩ SC . Based onRefC , for s ∈ SC we define
RefC(s) := {c ∈ C|(s, c) ∈ RefC}. Analogously, forc ∈ C it is Ref−1

C (c) :=
{s ∈ SC |(s, c) ∈ RefC}. An ontology with lexicon is a pair(O, Lex) whereO is an
ontology andLex is a lexicon forO.

Ontologies for the experimental evaluationFor the purpose of actual evaluation in the
experiments, we have used three different resources, namely WordNet, the MeSH Tree
Structures Ontology, and theAGROVOC ontology.

Although not explicitly designed as an ontology,WordNet [12] largely fits into
the ontology definitions given above. The WordNet database organizes simple words
and multi-word expressions of different syntactic categories into so calledsynonym
sets (synsets), each of which represents an underlying concept and links these through
semantic relations. The current version 2.0 of WordNet comprises a total of 115,424
synsets and 144,309 lexical index terms. The noun category, which was the main focus
of our attention5, contains nearly 70 % of the total synsets, links from 114,648 index
terms to 79,689 synsets in a total of 141,690 mappings. The collection of index terms in
WordNet comprises base forms of terms and their exceptional derivations. The retrieval
of base forms for inflected forms is guided by a set of category-specific morphological

3 Note that this hierarchical structure is not necessarily a tree structure. It may also be adirected
acyclic graphpossibly linking concepts to multiple superconcepts at the same time.

4 In many settings this view is considered as a very bad practice as it may lead to inconsistencies
when reasoning with ontologies. However, this problem does not arise in the context of this
work.

5 Beside the noun category, we have also exploited verb synsets, however, without making use
of any semantic links,



transformations, which ensure a high precision in the mapping of word forms to index
words.

The MeSH Tree Structures Ontology is an ontology that has been compiled out of
the Medical Subject Headings (MeSH) controlled vocabulary thesaurus of the United
States National Library of Medicine (NLM). The ontology contains more than 22,000
concepts, each enriched with synonymous and quasi-synonymous language expres-
sions. The underlying hierarchical structure is in large parts consistent with real hy-
pernym relations but also comprises other forms of hierarchical arrangements. The on-
tology itself was ported into and accessed through the Karlsruhe Ontology and Semantic
Web Infrastructure (KAON) infrastructure6.

The third ontology that has been used is theAGROVOC Ontology, based onAGROVOC,
a multilingual agricultural thesaurus7 developed by the United Nations Food and Agri-
cultural Organization (FAO). In total, the ontology comprises 17,506 concepts from the
agricultural domain. The lexicon contains label and synonym entries for each concept
in English and six additional languages. The concept hierarchy in theAGROVOC ontol-
ogy is based onbroader-term relationships thus not necessarily on strict superconcept
relations in some cases.

3 Conceptual Document Representation

To extract concepts from texts, we have developed a detailed process, that can be used
with any ontology with lexicon. The overall process comprises five processing steps
that are described in this section.

Candidate Term DetectionDue to the existence of multi-word expressions, the mapping
of terms to concepts cannot be accomplished by querying the lexicon directly for the
single words in the document.

We have addressed this issue by defining a candidate term detection strategy that
builds on the basic assumption that finding the longest multi-word expressions that
appear in the text and the lexicon will lead to a mapping to the most specific concepts.
The candidate expression detection algorithm we have applied for this lookup procedure
is given in algorithm 18.

The algorithm works by moving a window over the input text, analyze the win-
dow content and either decrease the window size if unsuccessful or move the window
further. For English, a window size of 4 is sufficient to detect virtually all multi-word
expressions.

Syntactical PatternsQuerying the lexicon directly for any expression in the window
will result in many unnecessary searches and thereby in high computational require-
ments. Luckily, unnecessary search queries can be identified and avoided through an
analysis of the part-of-speech (POS) tags of the words contained in the current window.
Concepts are typically symbolized in texts withinnoun phrases. By defining appropriate

6 seehttp://kaon.semanticweb.org/
7 seehttp://www.fao.org/agrovoc/
8 The algorithm here is an improved version of one proposed in [17].



Algorithm 1 The candidate expression detection algorithm
Input: documentd = {w1, w2, . . . , wn},

Lex = (SC , RefC) and window sizek ≥ 1.
i ← 1
list Ls

index-term s
while i ≤ n do

for j = min(k, n− i + 1) to 1 do
s ← {wi . . . wi+j−1})
if s ∈ SC then

save s inLs

i ← i + j
break

else ifj = 1 then
i ← i + j

end if
end for

end while
return Ls

POS patterns and matching the window content against these, multi-word combinations
that will surely not symbolize concepts can be excluded in the first hand and different
syntactic categories can be disambiguated.

Morphological TransformationsTypically the lexicon will not contain all inflected
forms of its entries. If the lexicon interface or separate software modules are capable
of performing base form reduction on the submitted query string, queries can be pro-
cessed directly. For example, this is the case with WordNet. If the lexicon, as in most
cases, does not contain such functionalities, a simple fallback strategy can be applied.
Here, a separate index of stemmed forms is maintained. If a first query for the inflected
forms on the original lexicon turned out unsuccessful, a second query for the stemmed
expression is performed.

Word Sense DisambiguationHaving detected a lexical entry for an expression, this
does not necessarily imply a one-to-one mapping to a concept in the ontology. Although
multi-word-expression support and pos pattern matching reduce ambiguity, there may
arise the need to disambiguate an expression versus multiple possible concepts. The
word sense disambiguation (WSD)task is a problem in its own right [8] and was not the
focus of our work.

In our experiments, we have used three simple strategies proposed in [7] to process
polysemous terms:

– The ‘ ‘all” strategy leaves actual disambiguation aside and uses all possible concepts.
– The ‘ ‘first” strategy exploits WordNet’s capability to return synsets ordered with respect to

usage frequency. This strategy chooses the most frequent concept in case of ambiguities.
– The ‘ ‘context” strategy performs disambiguation based on the degree of overlap of lexical

entries for the semantic vicinity of candidate concepts and the document content as proposed
in [7].



GeneralizationThe last step in the process is about going from the specific concepts
found in the text to more general concept representations. Its principal idea is that if a
term like ‘arrythmia’ appears, one does not only represent the document by the concept
corresponding to ‘arrythmia’, but also by the concepts corresponding to ‘heart disease’
and ‘cardiovascular disease’ etc. up to a certain level of generality. This is realized by
compiling, for every concept, all superconcept up to a maximal distanceh into the con-
cept representation. Note that the parameterh needs to be chosen carefully as climbing
up the taxonomy too far is likely to obfuscating the concept representation.

4 Boosting

Boosting is a relatively young, yet extremely powerful machine learning technique. The
main idea behind boosting algorithms is to combine multipleweak learners– classifica-
tion algorithms that perform only slightly better than random guessing – into a powerful
composite classifier.

Although being refined subsequently, the main idea of all boosting algorithms can
be traced to the first practical boosting algorithm, AdaBoost [4], which we will con-
centrate on in this paper. AdaBoost and related algorithms have proved to produce ex-
tremely competitive results in many settings, most notably for text classification [15].
At the beginning, the inner workings of boosting algorithms were not well understood.
Subsequent research in boosting algorithms made them rest on a well developed theo-
retical framework and has recently provided interesting links to other successful learn-
ing algorithms, most notably to Support Vector Machines, and to linear optimization
techniques [11].

AdaBoost The idea behind “boosting” weak learners stems from the observation that
it is usually much easier to build many simple “rules of thumb” than a single highly
complex decision rule. Very precise overall decisions can be achieved if these weak
learners are appropriately combined.

This idea is reflected in the output of the boosting procedure: for AdaBoost the
aggregate decisions are formed in anadditive modelof the form:

f̂(x) = sign(
T∑

t=1

αt ht(x))

with ht : X → {−1, 1}, αt ∈ R, whereαt denotes the weight of the ensemble
memberht in the aggregate decision and where the output valuesf̂(x) ∈ {1,−1}
denote positive and negative predictions respectively. In such a model, AdaBoost has to
solve two questions: How should the set of base hypothesesht be determined ? How
should the weightsαt determined, i.e. which base hypotheses should contribute more
than others and how much ? The AdaBoost algorithm, described in algorithm 2 aims at
coming up with an optimal parameter assignment forht andαt.

AdaBoost maintains a set of weightsDt over the training instancesx1 . . . xi . . . xn.
At each iteration stept, a base classifier is chosen that performs best on theweighted
training instances. Based on the performance of this base classifier, the final weight



Algorithm 2 The AdaBoost algorithm.
Input: training sampleStrain = {(x1, y1), . . . , (xn, yn)}

with (xi, yi) ∈ X× {−1, 1} andyi = f(xi),
number of iterationsT .

Initialize: D1(i) = 1
n

for all i = 1, . . . , n.
for t = 1 to T do

train base classifierht on weighted training set
calculate the weighted training error:

εt ←
n∑

i=1

Dt(i) Iyi 6=ht(xi) (1)

compute the optimal update step as:

αt ← 1

2
ln

1− εt

εt
(2)

update the distribution as:

Dt+1(i) ← Dt(i) e−αt yi ht(xi)

Zt
(3)

whereZt is a normalization factor to ensure that
∑n

i=1 Dt+1(i) = 1
if εt = 0 or εt = 1

2
then

break
end if

end for
Result: composite classifier given by:

f̂(x) = sign
(
f̂soft(x)

)
= sign

(
T∑

t=1

αtht(x)

)
(4)

parameterαt is calculated in equation (2) and the distribution weightsDt+1 for the
next iteration are updated. The weight update in equation (3) assigns higher weights to
training instances that have been misclassified, while correctly classified instances will
receive smaller weights in the next iteration. Thereby, AdaBoost kind of “focusing in”
on those examples that are more difficult while the weight each base classifier receives
in the final additive model depends on its performance on the weighted training set at
the respective iteration step.

Weak Lerners for AdaBoostIn theory, AdaBoost can be used withany base learner
capable of handling weighted training instances. Although the base classifiers are not
restricted to belong to a certain classifier family, virtually all work with boosting algo-
rithms has used the very simple class ofdecision stumpsas base learners.

In this presentation, we focus on simple indicator function decision stumps of the
form:



h(x) =
{

c if xj = 1
−c else.

with c ∈ {−1, 1}. A decision stump of this form takes binary features (e.g. word or
concept occurrences) as inputs. The indexj identifies a specific binary feature whose
presence either supports a positive classification decision, i.e.c = 1 or a negative deci-
sion, i.e.c = −1.

5 Evaluation Metrics

A standard set of performance metrics is commonly used to assess classifier perfor-
mance which we will review shortly in this section.

Classification MetricsGiven a set of test documentsS = {x1, . . . , xn} with binary
labels{y1, . . . , yn} whereyi ∈ {−1, 1} codes the membership in a class in question.
Given further a classifier̂f trained on an independent training set withf̂(x) ∈ {−1, 1}
indicating the binary decisions of the classifier. Then the test sample can be partitioned
into setsS = S+ ∪ S−, i.e. the set of positive and negative test documents. These
partitions can be decomposed further intoS+ = TP ∪FN andS− = FP ∪TN with:
TP = {xi ∈ S|f̂(xi) = 1 ∧ yi = 1}, FP := {xi ∈ S|f̂(xi) = 1 ∧ yi = −1},
TN := {xi ∈ S|f̂(xi) = −1 ∧ yi = −1} andFN := {xi ∈ S|f̂(xi) = −1 ∧ yi = 1}
called the sets of documents classifiedtrue positive, false positive, true negativeand
false negative, often referred to as the classification contingency table.

Based on these definitions, different evaluation measures have been defined [18].
Commonly used classification measures in text classification and information retrieval
are theclassification error, precision, recall and theFβ measure:

1. Classification Error

err(f̂ ,S) :=
|FP |+ |FN |

|TP |+ |FP |+ |TN |+ |FN | . (5)

2. Precision

prec(f̂ ,S) :=
|TP |

|TP |+ |FP | . (6)

3. Recall

rec(f̂ ,S) :=
|TP |

|TP |+ |FN | . (7)

4. F1 measure

F1(f̂ ,S) :=
2 prec(f̂ ,S) rec(f̂ ,S)

prec(f̂ ,S) + rec(f̂ ,S)
. (8)



Ranking Metrics The ensemble classifiers produced by AdaBoost are capable of re-
turning a real-valued output̂fsoft(x) ∈ [−1, 1]. The magnitude|f̂soft(x)| reflects the
“confidence” of the classifier in a decision and allows to rank documents. Consequently,
a parameterized classifier̂fk can be defined that returnŝfk(x) = 1 if f̂soft(x) ranks
among the first k documents and̂fk(x) = −1 otherwise. On this basis, values for preci-
sion and recall can be calculated and tuned with respect to different values ofk. When
precision and recall coincide at somek, this value is called the break-even point (BEP).
It can be shown that this is necessarily the case atk = |S+|9.

Micro- and Macro AveragingTo average evaluation results over binary classifications
on the per-class level, two conventional methods exist. Themacro-averagedfigures are
meant to be averages on the class level and are calculated as simple averages of the
scores achieved for the different classes. In contrast,micro-averagedfigures are com-
puted by summing the cells of per-class contingency tables together and then computing
performance scores based on these global figures. These can consequently be seen as
averages on the document level.

Statistical Significance TestsStatistical significance tests are useful in order to verify
to which extent the claim of an improvement can be backed by the observations on the
test set. For the experiments we report in this paper, we focused on two statistical sig-
nificance tests, a sign test (“S-test”) and a paired t-test (“T-test”) on an improvement
of individual F1 scores for the different classes that have been evaluated in each ex-
periment described in detail in [19]. Following common statistical practice, we have
required a significance levelα = 0.05 is required for claiming an improvement to be
significant. The significance level ofα = 0.01 was used for the claim that an improve-
ment wasvery significant.

6 Experiments

The focus of our evaluation experiments was directed towards comparing whether Ad-
aBoost using the enhanced document representation would outperform the classical
term representation.

6.1 Evaluation on the Reuters-21578 Corpus

A first set of evaluation experiments was conducted on the well-known Reuters-21578
collection. We used the “ModApte” split which divides the collection into 9,603 training
documents, 3,299 test documents and 8,676 unused documents.

9 This follows from the fact that if there arem negative documents among the first|S+| docu-
ments in the ranked list, there must also be exactlym positive examples in the remainder of
the list, thus:FPk = FNk = m, which guarantees precision and recall to be equal according
to the formulas given above.



Experimental SetupIn the first stage of the experiment, terms and concepts were ex-
tracted as features from the documents in the training and test corpus. For terms, the
feature extraction stage consisted of the stages described in section 2, namely chunk-
ing, removal of the standard stopwords for English defined in the stopword list from the
SMART system containing 571 words10 and stemming using the porter stemming algo-
rithm, resulting in a total number of 17,525 distinct term features. Conceptual features
were then extracted for noun and verb phrases using WordNet as background ontology.
Different sets of concept features were extracted based on varying parameters for dis-
ambiguation strategy and maximal hypernym distance ranging from 10,259 to 27,236
distinct concept features.

In the next stage of the experiment, classification was performed using AdaBoost.
We performed binary classification on the top 50 categories containing the highest num-
ber of positive training documents. The number of boosting iterations for training was
fixed at 200 rounds for all feature combinations.

ResultsAs a general finding, the results obtained in the experiments suggest that Ad-
aBoost typically achieves better classification for both macro- and micro-averaged re-
sults when used with a combination of term-based and concept-based features. Table
1 summarizes the results of the experiments for different feature types with the best
values being highlighted. The relative gains on theF1 value, which is influenced both
by precision and recall, compared to the baseline show that in all but one cases the
performance can be improved by including conceptual features, peaking at an relative
improvement of 3.29 % for macro-averaged values and 2.00 % for micro-averaged val-
ues. Moderate improvements are achieved through simple concept integration, while
larger improvements are achieved in most cases through additional integration of more
general concepts.

The results of the significance tests allow us to conclude that these improvements are
significant in at least half of the cases. In general, the improvements of macro-averaged
F1 are higher than with micro-averaging which seems to suggest that the additional
concepts are particularly helpful for smaller classes.

6.2 Evaluation on theOHSOM ED Corpus

A second series of experiments was conducted using theOHSOMED collection, initially
compiled by Hersh et al. [6]. It consists of titles and abstracts from medical journals,
each being indexed with multiple MeSH descriptors. We have used the 1987 portion of
the collection containing a total of 54,708 entries. Two thirds of the entries were ran-
domly selected as training documents while the remainder was used as test set, resulting
in a training corpus containing 36,369 documents and a test corpus containing 18,341
documents.

Experimental SetupTerm stems were extracted as with Reuters-21578 resulting in a
total number of 38,047 distinct features. WordNet and the MeSH Tree Structures On-
tology were used to extract conceptual features. For WordNet, noun and verb phrases

10 seeftp://ftp.cs.cornell.edu/pub/smart/english.stop



macro-averaged (in percentages)
Feature Type Error Prec Rec F1 BEP
term 00.6580.5966.3072.75 74.29
term & synset.first 00.6480.6667.3973.43 75.08
term & synset.first.hyp5 00.6080.6769.5774.71 74.84
term & synset.first.hyp10 00.6280.4368.4073.93 75.58
term & synset.context 00.6379.9668.5173.79 74.46
term & synset.context.hyp500.6279.4868.3473.49 74.71
term & synset.all 00.6480.0266.4472.60 73.62
term & synset.all.hyp5 00.5983.7668.1275.14 75.55

micro-averaged (in percentages)
Feature Type Error Prec Rec F1 BEP
term 00.6589.1279.8284.21 85.77
term & synset.first 00.6488.7580.7984.58 85.97
term & synset.first.hyp5 00.6089.1682.4685.68 85.91
term & synset.first.hyp10 00.6288.7881.7485.11 86.14
term & synset.context 00.6388.8681.4685.00 85.91
term & synset.context.hyp500.6289.0981.4085.07 85.97
term & synset.all 00.6488.8280.9984.72 85.69
term & synset.all.hyp5 00.5989.9282.2185.89 86.44

Table 1.Evaluation Results for Reuters-21578.

were considered while for the MeSH Tree Structures Ontology, only noun phrases were
considered.

For WordNet, the same disambiguation strategies were used as in the Reuters-21578
experiments. For the MeSH Tree Structures Ontology, only the “all” strategy was used
due to the observation that polysemy problems occur extremely rarely with this ontol-
ogy as descriptor terms are most naturally unique. For both ontologies, different de-
grees of depth were used for hypernym or superconcept integration, resulting in a total
of 16,442 to 34,529 synset features and 11,572 to 13,663 MeSH concept features.

On the documents of theOHSOMED dataset — as on Reuters-21578 — binary
classification with AdaBoost was performed on the top 50 categories that contained
the highest number of positive training documents. To cope with the on average larger
number of features and the much higher number of documents compared to the Reuters-
21578 corpus, the number of boosting iterations for all experiments with theOHSOMED

collection was set to 1000 rounds.

ResultsDifferent runs of the classification stage were performed based on the different
features, leading to often substantially different results. Again, the general finding is
that complementing the term stem representation with conceptual features significantly
improves classification performance.

Table 2 summarizes the macro- and micro-averaged results. The relative improve-
ments for theF1 scores compared to the term stem baseline are depicted in figure 6.2
for WordNet as background knowledge resource. These range from about 2% to a maxi-



macro-averaged (in percentages)
Feature Type Error Prec Rec F1 BEP
term 00.5352.6035.7442.56 45.68
term & synset.first 00.5253.0836.9843.59 46.46
term & synset.first.hyp5 00.5253.8238.6645.00 48.01
term & synset.context 00.5252.8337.0943.58 46.88
term & synset.context.hyp500.5154.5539.0645.53 48.10
term & synset.all 00.5252.8937.0943.60 46.82
term & synset.all.hyp5 00.5253.3338.2444.42 46.73
term & mesh 00.5253.6537.5644.19 47.31
term & mesh.sc1 00.5252.9137.5943.95 46.93
term & mesh.sc3 00.5252.7738.0644.22 46.90
term & mesh.sc5 00.5252.7237.5743.87 47.16

micro-averaged (in percentages)
Feature Type Error Prec Rec F1 BEP
term 00.5355.7736.2543.94 46.17
term & synset.first 00.5256.0737.3044.80 47.01
term & synset.first.hyp5 00.5256.8438.7646.09 48.31
term & synset.context 00.5256.3037.4644.99 47.34
term & synset.context.hyp500.5158.1039.1846.81 48.45
term & synset.all 00.5256.1937.4444.94 47.32
term & synset.all.hyp5 00.5256.2938.2445.54 46.73
term & mesh 00.5256.8137.8445.43 47.78
term & mesh.sc1 00.5256.0037.9045.20 47.49
term & mesh.sc3 00.5255.8738.2645.42 47.45
term & mesh.sc5 00.5255.9437.9445.21 47.63

Table 2.Evaluation Results forOHSOMED.

mum of about 7 %. The relativeF1 improvements when using the MeSH Tree Structure
Ontology, were on the 3% to 5% level in all cases.

The statistical significance tests revealed that in virtually all cases, these improve-
ments can be claimed to be significant and actually even very significant in most cases.

Again, the integration of conceptual features improved text classification results.
The relative improvements achieved onOHSOMED are generally higher than those
achieved on the Reuters-21578 corpus. This makes intuitively sense as the documents
in the OHSOMED corpus are taken from the medical domain. Documents from this
domain typically suffer heavily from the problems described in section 2, especially
synonymous terms and multi-word expressions. But this is only a first effect. The even
better results achieved through hypernym integration with WordNet indicate that also
the highly specialized language is a problem that can be remedied through integration
of more general concepts.

A comparison between WordNet and the MeSH Descriptor Ontology is hard. On
the one hand, without generalization, the domain specific MeSH Tree Structures On-
tology is able to achieve slightly better results. Taking into account that the extraction
was here bases solely on noun phrases and that WordNet’s coverage is much broader,



Fig. 1. Relative Improvements ofF1 Scores onOHSOMED for combined Term-Synset Features
vs. Term Stems.

this is a positive surprise. On the other hand, WordNet achieves much better results
when generalization comes into play. In contrast to WordNet, superconcept integration
for MeSH does not really improve the results and varying levels of superconcept inte-
gration lead to similar or even worse results. Apparently, thebroader-term relation of
the MeSH thesaurus is indeed not well suited to improve the results. Also note that in
contrast to the Reuters-21578 experiments, “context” word sense disambiguation strat-
egy performs best in combination with hypernym integration. Apparently, it is easier to
disambiguate polysemous words in the medical context.

6.3 Evaluation on theFAODOC Corpus

The third and last series of experiments uses a collection of documents from the FAO
Document Online Catalogue (FAODOC)11, managed by the United Nations Food and
Agricultural Organization. TheFAODOC database houses articles and other publica-
tions from the agricultural domain together with metadata information, including sub-
ject and category elements.

Experimental SetupThe FAODOC collection contains English, French and Spanish
HTML documents. All documents are indexed with one or multiple category codes,
each of which refers to one of 115FAODOC subject categories. In the experiments,
only the subset of 1,501 English documents has been used where each of the categories
has at least 50 positive documents, resulting in 21 distinct subject categories. From
the total number of 1,501 documents, the first 1,000 documents were used for training
while the remainder of 501 documents were held out as test set. TheFAODOC dataset
is very different from the other datasets encountered so far. Besides being taken from

11 seehttp://www4.fao.org/faobib/index.html



macro-averaged
Feature Type Error Prec Rec F1 BEP
term 06.8745.4727.1133.9736.93
term & agrovoc 06.6650.9628.6336.6639.84
term & agrovoc.sc106.7649.2627.4835.2839.40
term & agrovoc.sc306.7949.0830.4137.5541.69

micro-averaged
Feature Type Error Prec Rec F1 BEP
term 06.8750.4431.2238.5744.29
term & agrovoc 06.6652.9132.4640.2448.01
term & agrovoc.sc106.7651.7532.6040.0046.77
term & agrovoc.sc306.7951.4731.3638.9747.73

Table 3.Results onFAODOC

a different domain, the total number of documents is much smaller. The documents in
the FAODOC dataset are typically much larger in size, ranging from 1.5 kilobytes to
over 600 kilobytes, which is also reflected in the resulting feature representations with
68,608 word stems. Besides the extraction of term stems as usual, conceptual features
were extracted again, this time using theAGROVOC ontology as background knowledge
resource. For both types of features, the documents were first converted from HTML to
plain text, then proceeding in the same way as with the documents in the other corpora.

As in the other experiments, each of the 21 different labels resulted in a binary clas-
sification run of its own, each time using AdaBoost as learning algorithm with decision
stump classifier based on the binary feature weights as base learners. The chosen num-
ber of 500 boosting iterations is based on a trade-off between the smaller number of
training documents on the one hand and a typically larger size per document on the
other. In all experiments, the results on the 21 individual labels were eventually macro-
and micro-averaged.

Results Different runs of the classification stage were performed based on different
features: term stems and again combinations of both types of features.

Table 3 summarizes the results of the experiments with theFAODOC for the differ-
ent feature representations, evaluation metrics and averaging variants. For each perfor-
mance metric, the best result is highlighted. Again, combinations of terms and concepts
as features also achieve considerable improvements over the classic term stem repre-
sentation in all scores, most notably with respect to precision.

Figure 2 undermines the good performance of the term and ‘agrovoc’ concept rep-
resentation achieving an impressive relative improvement of 10.54 % on the macro-
averagedF1 value compared to the ‘term’ representation. The relative improvement on
the micro-averagedF1 lies at 4.33 %.

As with OHSOMED, one observes a heavy discrepancy between the macro- and
micro-averaged scores. Again, macro-averaged performance gains are higher than those
for micro-averaging, which makes sense taking into account the fairly unequal category
sizes. In contrast to the other experiments, the amount of deviation however varies con-



Fig. 2. Bar Chart Illustration of the Relative Improvements ofF1 Scores on all 21FAODOC

Categories for combined Term-Concept Representations vs. ‘term’. All numbers are percentages.

siderably among the different feature representations. Furthermore, the question which
superconcept integration depth leads to the best improvement cannot be answered easily
because the effects vary between micro- and macro-averaging. We attribute the strong
variation in the results to the fact that random effects are much likelier compared to
the other experiments as the number of training and test documents was considerably
smaller.

7 Related Work

Representing document content through metadata descriptions is a well-known task
in the semantic web context, also known as annotation[5]. Typically, however, this is
a semi-automatic task that aims at precise metadata descriptions and not at creating
features for machine learning algorithms.

To date, the work on integrating semantic background knowledge into text classi-
fication or other related tasks is quite scattered. Much of the early work with semantic
background knowledge in information retrieval was done in the context ofquery ex-
pansiontechniques [1]. Feature representations based on concepts from ontological
background knowledge were also used in text clustering settings [7] where it could be
shown that conceptual representations can significantly improve text cluster purity and
reduce the variance among the representations of related documents.

Recent experiments with conceptual feature representations for text classification
are presented in [17]. These and other similar published results are, however, still too
few to allow insights on whether positive effects can be achieved in general. In some
cases, even negative results were reported. For example, a comprehensive comparison
of approaches based on different word-sense document representations and different



learning algorithms reported in [10] ends with the conclusion of the authors that“the
use of word senses does not result in any significant categorization improvement”.

Alternative approaches for conceptual representations of text documents that are
not based on background knowledge compute kind of “concepts” statistically. Very
good results with a probabilistic variant of LSA known as Probabilistic Latent Seman-
tic Analysis (pLSA) were recently reported in [3]. The experiments reported therein
are of particular interest as the classification was also based on boosting combined
term-concept representation, the latter being however automatically extracted from the
document corpus using pLSA.

8 Conclusions

In this paper, we have proposed an approach to incorporate concepts from background
knowledge into document representations for text document classification. A very suc-
cessful ensemble learning algorithm, AdaBoost, was proposed to perform the final clas-
sifications based on the classical word vector representations and the conceptual fea-
tures. Boosting Algorithms, when used with binary feature representations, scale well
to a large number of dimensions that typically occur when superconcepts are used as
well. At the same time, AdaBoost is capable of integrating heterogenous features that
are based on different paradigms without having to adjust any parameters in the feature
space representation.

Experiments on three different datasets clearly showed that the integration of con-
cepts into the feature representation clearly improves classification results. The absolute
scores achieved on Reuters andOHSOMED are highly competitive with other published
results and the reported relative improvements appear to be statistically significant in
most cases. A comparative analysis of the improvements for different concept integra-
tion strategies revealed that two separate effects lead to these improvements. A first
effect that can be mainly attributed to multi-word expression detection and synonym
conflation is achieved through the basic concept integration. A second effect building
on this initial improvement is attributed to the use of the ontology structures for gener-
alization through hypernym retrieval and integration.

Outlook The experiments that have been conducted show that the presented approach
appears to be promising in most settings. However it has also become obvious that
the results depend on the specific constellation of parameters. These include — most
importantly — the choice of the appropriate ontology. Further research and experiments
should investigate how the specific choice and setup of the used ontologies can lead
to even better results and wether other concept extraction strategies lead to a further
improvement in classification performance.

Further attention should also be paid to the setup of the classification algorithm as
the general nature of AdaBoost would allow to integrate more advanced weak learners.
Such weak learners might also exploit background knowledge even more directly.
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