JOHN BURROWS: DELTA

A MEASURE OF STYLISTIC DIFFERENCE

Robert Paßmann

September 22, 2015

Arbeitsgruppe 2: **Who wrote the web?** Sommerakademie der Studienstiftung in La Colle-sur-Loup

TABLE OF CONTENTS

- 1. The Delta Procedure
- 2. Reproducing the Approach
- 3. Conclusion

THE DELTA PROCEDURE

IN EASY WORDS...

We have a database of authors with some of their texts
a sample text of unknown authorship
We want to order the authors by likelihood of authorship

- Therefore, measure the difference of a sample text and an author by a single value *Delta*.
- The most likely author will be the one with the least delta.

HOW DOES IT WORK? AN EXAMPLE

	A	В	<u>C</u> <u>D</u>		F	F G		I J		L
1			Main s	et	Milton		Paradi:	se Lost		
2							count			30
3							sum			31.489
4							mean (= "delta")		1.050
5							stdev			0.770
6			Mean	Stdev	Scores	z-scores	Scores	z-scores	Diff.	Abs. diff.
7	1	the	4.242	0.630	4.719	0.757	4.091	-0.239	-0.996	0.996
8	2	and	3.770	0.501	4.407	1.272	4.165	0.789	-0.483	0.483
9	3	of	1.821	0.315	2.420	1.905	2.769	3.015	1.110	1.110
10	4	a	1.601	0.430	0.893	-1.645	0.696	-2.103	-0.458	0.458
11	5	to(i)	1.419	0.272	1.247	-0.634	1.289	-0.480	0.154	0.154
12	6	in(p)	1.358	0.189	1.554	1.035	1.720	1.916	0.881	0.881
13	7	his	1.154	0.323	1.062	-0.284	1.532	1.171	1.454	1.454

J. F. Burrows, "Delta: a measure of stylistic difference and a guide to likely authorship", Literary and Linguistic Computing 17, pp. 267–287, 2002a.

HOW DOES IT WORK?

- 1. For every text in the database, calculate the relative frequency or scores $f_{t_i}(w)$ of every (tagged) word w in the text.
- 2. Calculate the means $\mu_{a_i}(w)$, $\mu(w)$ and standard deviations $\sigma_{a_i}(w)$, $\sigma(w)$ of the scores with respect to authors (a_i) and the whole database.
- 3. Calculate the z-scores for every word of every author in the database:

$$Z_{a_i}(w) = \frac{\mu_{a_i}(w) - \mu(w)}{\sigma(w)}$$

- 4. For the sample text s, calculate the mean frequencies $f_s(w)$ and their z-scores with respect to the mean frequencies in the whole database.
- 5. Calculate the delta for every author as:

$$\Delta_s(a_i) = \frac{1}{|M|} \sum_{w \in M} |z_s(w) - z_{a_i}(w)|$$

6. Finally, compare the deltas of the different authors.

EXPERIMENTS AND RESULTS

Burrows tested the method as follows:

- Using a main database of 25 english authors of the late seventeenth century
- He tested 200 english poems of 15 authors
 - · 12 of 15 authors are in the database
 - $\boldsymbol{\cdot}$ no poem is contained in the database

His observations were:

- The delta method works better than expected
- · It works for closed- and open-class problems
- · Great method for reducing the field of likely candidates
- It works best for longer texts (> 1500 words)
- The method might fail for texts which are uncharacteristic for their authors or are far separated in time

EXPERIMENTS AND RESULTS (II)

	Poems	sorted by	length, sl	howing a	uthors' ra	nks (ex 25)
	1–500	501-	1001-	1501–	2001-	Totals
	100	40	20	20	20	200
150 words						
1st	27	18	13	17	19	94
1st–2nd	40	26	14	18	20	118
1st–5th	67	32	18	20	20	157
06:10	15	8	2	0	0	25
11:15	10	0	0	0	0	10
16:20	5	0	0	0	0	5
21:25	3	0	0	0	0	3

J. F. Burrows, "Delta: a measure of stylistic difference and a guide to likely authorship", Literary and Linguistic Computing 17, pp. 267–287, 2002a.

EXPERIMENTS AND RESULTS (III)

	Poems so	rted by le	ength, show	ving autho	rs' ranks (ex 25)
	1-500	501-	1001-	1501–	2001-	Totals
	%	%	%	%	%	%
150 words						
1st	27.0	45.0	65.0	85.0	95.0	47.0
1st-2nd	40.0	65.0	70.0	90.0	100	59.0
1st-5th	67.0	80.0	90.0	100	100	78.5
06:10	15.0	20.0	10.0	0	0	12.5
11:15	10.0	0	0	0	0	5.0
16:20	5.0	0	0	0	0	2.5
21:25	3.0	0	0	0	0	1.5

J. F. Burrows, "Delta: a measure of stylistic difference and a guide to likely authorship", Literary and Linguistic Computing 17, pp. 267–287, 2002a.

REPRODUCING THE APPROACH

AN IMPLEMENTATION OF THE DELTA METHOD

- · Implemented in Python 3.4
- · Using NLTK library for tagging
- · Algorithm is implemented in three classes
- Every Text is written by an Author of our Database
- These classes have methods to perform the calculations

PROBLEMS DURING REPRODUCTION

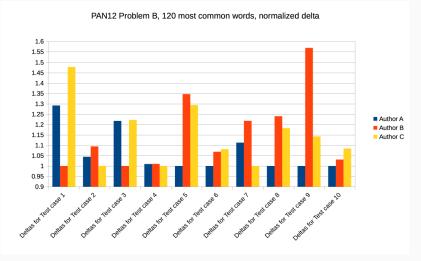
- What does the main database consist of? PAN12
- When do the deltas indicate that there is too less difference such that further investigation is needed?

RESULTS (I)

	Sum	of A,	В (3 а	utho	rs)											
Rank / Words	40		60		80		100		120		150		0		Sum	
1 st	10	0.83	12	1.00	12	1.00	12	1.00	12	1.00	12	1.00	10	0.83	80	0.95
2 nd	2	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	1	0.92	3	0.99
3 rd	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	1	1.00	1	1.00
4th-5th	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00
6 th -10 th	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00
10 th -14 th	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00
	12		12		12		12		12		12		12		84	

Rank / Words	40		60		80		100		120		150		0		Sum	
1 st	12	0.75	14	0.88	14	0.88	13	0.81	13	0.81	13	0.81	14	0.88	93	0.83
2 nd	3	0.94	2	1.00	1	0.94	3	1.00	2	0.94	2	0.94	2	1.00	15	0.96
3 rd	1	1.00	0	1.00	1	1.00	0	1.00	1	1.00	1	1.00	0	1.00	4	1.00
4th-5th	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00
6 th -10 th	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00
10 th -14 th	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00
	16		16		16		16		16		16		16		112	

RESULTS (II)


	Sum	of I,J	(14 a	utho	rs)											
Rank / Words	40		60		80		100		120		150		0		Sum	
1 st	20	0.71	24	0.86	24	0.86	24	0.86	25	0.89	25	0.89	23	0.82	165	0.84
2 nd	1	0.75	0	0.86	1	0.89	2	0.93	1	0.93	1	0.93	1	0.86	7	0.88
3 rd	2	0.82	1	0.89	2	0.96	0	0.93	1	0.96	1	0.96	1	0.89	8	0.92
4 th -5 th	4	0.96	0	0.89	0	0.96	1	0.96	0	0.96	0	0.96	1	0.93	6	0.95
6 th -10 th	0	0.96	2	0.96	0	0.96	0	0.96	0	0.96	0	0.96	1	0.96	3	0.96
10 th -14 th	1	1.00	1	1.00	1	1.00	1	1.00	1	1.00	1	1.00	1	1.00	7	1.00
	28		28		28		28		28		28		28		196	

	Sum	of all														
Rank / Words	40		60		80		100		120		150		0		Sum	
1 st	42	0.75	50	0.89	50	0.89	49	0.88	50	0.89	50	0.89	47	0.84	338	0.86
2 nd	6	0.86	2	0.93	2	0.93	5	0.96	3	0.95	3	0.95	4	0.91	25	0.93
3 rd	3	0.91	1	0.95	3	0.98	0	0.96	2	0.98	2	0.98	2	0.95	13	0.96
4th-5th	4	0.98	0	0.95	0	0.98	1	0.98	0	0.98	0	0.98	1	0.96	6	0.97
6 th -10 th	0	0.98	2	0.98	0	0.98	0	0.98	0	0.98	0	0.98	1	0.98	3	0.98
10 th -14 th	1	1.00	1	1.00	1	1.00	1	1.00	1	1.00	1	1.00	1	1.00	7	1.00
	56		56		56		56		56		56		56		392	

PROBLEMS DURING REPRODUCTION

- · What does the main database consist of? PAN12
- When do the deltas indicate that there is too less difference such that further investigation is needed?

LET'S HAVE A CLOSER LOOK...

- test cases 4, 6, 8 and 10 are not of authors from the database
- \cdot with a threshold at 1.10, we have a success rate of 8/10

AN IDEA TO SOLVE THE OPEN-CLASS PROBLEMS

- · choose a reasonable threshold x
- · normalize all deltas with respect to the minimum delta value, i.e.

$$\delta_i = \frac{\Delta_{\rm s}(a_i)}{\Delta_{\rm min}}$$

- if there is no *i* with $\delta_i \in [1, x)$ then output a_i
- otherwise further investigation is needed (output none)

RESULTS OF THE OPEN-CLASS PROBLEMS (I)

				numl	er of	corre	ct ca	ses (i	e. co	rrect	autho	r or co	rrect	none)	
	Prob	lem B		3 aut	hors	2 trai	ning 1	files e	ach),	6/10	test c	ases	#test	10	
Threshold / V	40		60		80		100		120		150		0		
1.01	5	0.50	6	0.60	8	0.80	6	0.60	7	0.70	7	0.70	5	0.50	0.63
1.025	5	0.50	8	0.80	8	0.80	7	0.70	7	0.70	8	0.80	5	0.50	0.69
1.05	5	0.50	8	0.80	8	0.80	8	0.80	8	0.80	9	0.90	5	0.50	0.73
1.1	7	0.70	8	0.80	8	0.80	7	0.70	8	0.80	7	0.70	6	0.60	0.73
1.2	7	0.70	8	0.80	7	0.70	5	0.50	6	0.60	6	0.60	5	0.50	0.63
		0.58		0.8		0.8		0.7		0.7		0.7	,	0.52	

				numl	ber of	corre	ct ca	ses (i	.e. co	rrect	autho	r or co	rrect	none))
	Prob	lem D		8 aut	hors	(2 trai	ning	files e	ach),	8/17	test c	ases	#test	17	
Threshold / V	40		60		80		100		120		150		0		
1.01	6	0.35	8	0.47	9	0.53	7	0.41	8	0.47	6	0.35	10	0.59	0.45
1.025	7	0.41	9	0.53	9	0.53	9	0.53	7	0.41	7	0.41	11	0.65	0.50
1.05	8	0.47	9	0.53	10	0.59	9	0.53	9	0.53	9	0.53	10	0.59	0.54
1.1	8	0.47	8	0.47	11	0.65	9	0.53	12	0.71	14	0.82	9	0.53	0.60
1.2	10	0.59	9	0.53	12	0.71	10	0.59	11	0.65	11	0.65	9	0.53	0.61
		0.46		0.5	i	0.6		0.5		0.6		0.6	i	0.58	

RESULTS OF THE OPEN-CLASS PROBLEMS (II)

				numb	er of	corre	ct ca	ses (i	.e. co	rrect	autho	r or co	rrect	none)	
	Prob	lem J		14 au	thors	(2 tra	aining	files	each), 14/1	.6 test	t case)	#test	16	
Threshold / V	40		60		80		100		120		150		0		
1.01	11	0.69	13	0.81	13	0.81	13	0.81	14	0.88	14	0.88	14	0.88	0.82
1.025	10	0.63	13	0.81	13	0.81	14	0.88	14	0.88	14	0.88	12	0.75	0.80
1.05	9	0.56	12	0.75	14	0.88	13	0.81	14	0.88	13	0.81	7	0.44	0.73
1.1	9	0.56	11	0.69	14	0.88	14	0.88	14	0.88	12	0.75	3	0.19	0.69
1.2	10	0.63	10	0.63	10	0.63	9	0.56	10	0.63	10	0.63	2	0.13	0.54
		0.61		0.7		0.8		0.8		0.8		0.8		0.48	
	#15 c	correct	40/1	.2, 60	1.2, 8	0/1.0	5, 80/	1.1, 80	0/1.2,	100/1	.1, 10	0/1.2,			
				120/a	II, 150)/1.05,	, 150/	1.1, 1	50/1.2	, 0/all					
	#16 c	correct	40/1	.2, 60	1.05,	60/1.:	1, 60/	1.2, 8	0/1.02	5, 80/	1.05, 8	80/1.1,	80/1.	2	
				100/1	.025,	100/1	.05, 1	00/1.1	L, 100	/1.2, 1	.20/all	, 150/a	II, 0/al	1	

CONCLUSIONS

Regarding the Delta method and the tests with PAN12 data

- · Delta works good to reduce large sets of possible authors
- · Sometimes Delta has no clue

Regarding Burrow's paper, i.e. the reproduction

- It was not possible to reproduce Burrow's example because of missing information (How did he form his database?)
- It was necessary to find a way to deal with open-class problems
- It can be confirmed that Delta is useful for reducing the set of possible authors