
Universität Paderborn

Fakultät für
Elektrotechnik, Mathematik und Informatik

Studienarbeit

A Study of Evolutionary Algorithms
for the Satisfiability Problem

Henning Ellerweg
Brauerstrasse 1

33098 Paderborn

vorgelegt bei

Prof. Dr. Hans Kleine Büning
Dr. habil. Benno Stein

Paderborn, Oktober 2004

DECLARATION i

Declaration

Hereby I certify that this work is the result of my own investigations and
that to the best of my knowledge and belief it does not contain any material
previously published except those listed in the text and the bibliography.

Deklaration

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig erarbeitet
habe und sie nach besten Wissen und Gewissen keine bereits veröffentlichten
Materialien enthält, außer die im Text und Literaturverzeichnis genannten.

H. Ellerweg

October, 2004

ACKNOWLEDGEMENTS ii

Acknowledgements

I would like to thank Chuan-Kang Ting for his support and founded criticism,
which enabled me to write this work more comprehensible – by far more
comprehensible.

CONTENTS iii

Contents

1 Introduction 1

2 Foundations 1
2.1 The Boolean Satisfiability Problem 1
2.2 Complete Algorithms . 2
2.3 Incomplete Algorithms . 3

3 Evolutionary Algorithms 5
3.1 Basic Elements . 5
3.2 Types of Evolutionary Algorithms 10

3.2.1 Evolutionary Programming 10
3.2.2 Evolutionary Strategies 11
3.2.3 Genetic Algorithms . 11
3.2.4 Genetic Programming 11

4 Evolutionary Computation for SAT 12
4.1 Representations . 13

4.1.1 Bit-String Representation 13
4.1.2 MASKs . 15
4.1.3 Clausal Representation 17
4.1.4 Path Representation 18
4.1.5 Floating Point Representation 19
4.1.6 Fuzzy Representation 19

4.2 Selection . 20
4.3 Fitness Functions . 21

4.3.1 SAW . 21
4.3.2 Refining Functions . 23
4.3.3 SAW and Refining Functions 23

4.4 Genetic operators . 25
4.4.1 Crossover . 25
4.4.2 Mutation . 26
4.4.3 Local Search . 27

4.5 Parallel-GA . 28
4.6 Performance Evaluation . 28

5 Conclusion 29
5.1 Criticism on EA solving SAT 29
5.2 Further Research Possibilities 34

1 INTRODUCTION 1

1 Introduction

The satisfiability problem (SAT) is a classic NP-complete problem and has
been applied on practical problems like consistency check and circuit design.
The approaches to solve SAT can be divided into two categories: Complete
and incomplete methods. Complete methods include algorithms, based on
the Davis-Putnam procedure which are able to decide if a given formula
can be satisfied or not. Incomplete methods include evolutionary algorithms
based on the simulation of natural mechanisms and Darwins ”Survival of the
Fittest”. However they are not able to decide satisfiability because these
algorithms typically cannot ascertain if a given formula is satisfiable at all.

This paper intends to give an overview of evolutionary computation for the
satisfiability problem from its beginnings in 1989 (cf. [JoSp89]) until today.
Moreover the general effectiveness of evolutionary computation for SAT will
be discussed in the conclusion.

The paper is organized as follows: Section 2 gives a brief introduction to
the SAT problem, the Davis–Putnam procedure and incomplete methods.
Section 3.1 introduces a general structure of evolutionary algorithm and its
operation is described. Section 3.2 presents four subfields of evolutionary
computation. The focus of this paper is in section 4 presenting research ideas
and experiments for evolutionary satisfiability solvers. Finally a summary of
15 years of research is given in the conclusion in section 5.

2 Foundations

This section gives a brief introduction to the satisfiability problem. Fur-
thermore, the Davis-Putnam procedure is presented since it is a classical
example of a complete method. As an instance of an incomplete method
GSAT is introduced.

2.1 The Boolean Satisfiability Problem

The boolean satisfiability problem is formulated in the context of propo-
sitional logic formulas. Given a boolean formula F and a set of atoms
A = {a1, a2, . . . an} with ai ∈ F for 1 ≤ i ≤ n. The boolean satisfiabil-
ity problem is stated as follows:

Does there exist an atom truth assignment I, such that every
ai ∈ A is whether set to true or false and I satisfies F i.e.
F (I) = true.

2 FOUNDATIONS 2

Cook showed that this decision problem is an NP-complete problem [Co71].
A boolean formula F can be transformed into its logical equivalent conjunc-

tive normal form (CNF). A formula F is in CNF if F is a conjunction of
disjunctions and only atoms are allowed to be negated. Conjunctive normal
form can be computed by iterated application of DeMorgan’s Law and dis-
tributive law. However, the transformation to CNF may lead to an exponen-
tial increase of clauses. Consider a formula F = (a1∧b1)∨(a2∧b2)∨(a3∧b3).
After transformation to CNF F ′, F ′ has 23 clauses:

(a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a2 ∨ b3) ∧ (a1 ∨ b2 ∨ a3) ∧ (a1 ∨ b2 ∨ b3)∧
(b1 ∨ a2 ∨ a3) ∧ (b1 ∨ a2 ∨ b3) ∧ (b1 ∨ b2 ∨ a3) ∧ (b1 ∨ b2 ∨ b3)

k-CNF is a special case of CNF, where each clause contains at most k literals.
It was also shown that any boolean formula can be converted to a formula in
3-CNF for which the satisfiability problem is still NP-complete. In general
it is hardly possible to transform a given boolean expression into 2-CNF,
whereas 2-CNF is in P. The MAXSAT problem is derived from SAT and
CNF. It is an optimization problem and asks for an atom truth assignment
I such that a maximum number of clauses is satisfied. A more detailed
description about propositional logic and the satisfiability problem can be
found in in [BüLe94].

2.2 Complete Algorithms

A complete algorithm for SAT is an algorithm which can determine if a
formula is satisfiable or not. Many complete algorithms solving SAT are
based on the Davis-Putnam procedure [DaPu62]. Its pseudocode is presented
in figure 1.

Davis-Putnam(CNF-Formula α)
(1)if (α has no more clauses) return true

(2)if (α has an empty clause) return false

(3)if (∃ unit-clause ci ∈ α with literal li)
(4) return Davis-Putnam(α[li/1])
(5)ls ← choose a literal by some strategy s
(6)if (Davis-Putnam(α[ls/1]) = true)
(7) return true

(8)return Davis-Putnam(α[ls/0])

Figure 1: The Davis-Putnam Algorithm

2 FOUNDATIONS 3

This algorithm recursively searches for a satisfying truth assignment of the
atoms ai of α. To this end it sets a literal li to a truth value, for example li
is set to true. The chosen truth value alters the given formula. A clause cs

which contains a positive occurrence of li is deleted because of CNF and since
it is satisfied by li. All negative occurrences of li in clauses cu are deleted.
This leaves fewer literals in such a clause cu, so that less literals are able to
satisfy cu. Clauses are not altered by the truth assignment, if they do not
contain the set atom. This transformation is denoted by α[li/t], t a truth
value, which results in a formula with the properties described above.

Since α is in CNF, a satisfiable truth assignment is found if a reduced α

does not have any clause left, because then every clause of the initial formula
is satisfied by the current truth assignment. The recursion will not search
further if the formula contains a clause with no literals (an empty clause)
because this clause cannot be satisfied in such a search branch. This behavior
is guaranteed with lines (1)-(2).

A unit-clause is a clause containing only one literal. This literal has to be set
to the truth value which satisfies the clause. Otherwise an empty clause would
be generated and the search branch would be aborted in the next recursive
step. Thus Davis-Putnam may find a satisfiable truth assignment of α in a
search branch with satisfied unit-clauses. If no such clause exists, another
selection criterion – strategy s – must be provided to decide which literal is
set next. A lot of researches focus on the design of s because a well-designed
strategy can greatly improve the search in terms of needed recursions and
time. Nevertheless, if strategy s picks a literal and the resulting formula is
not satisfiable, the formula generated with the same literal but set to false
has to be searched. This ensures that this procedure is a complete algorithm.

2.3 Incomplete Algorithms

Incomplete algorithms for SAT are able to decide if a given formula is satisfi-
able by finding a satisfiable truth assignment. However, they cannot ascertain
unsatisfiability, since they have no means to detect contradictory formulas.
Nevertheless, the loss of completeness of incomplete methods is often com-
pensated by a speedup in comparison to complete methods, because the
procedure does not need to search a tree and is allowed to jump in the search
space.

One famous incomplete algorithms for SAT is GSAT, presented by Selman,
Levesque and Mitchell [SLM92]. Its pseudocode is given in figure 2. GSAT
starts its search with a randomly generated truth assignment for α. There-

2 FOUNDATIONS 4

GSAT(CNF-Formula α, MAX-FLIPS, MAX-TRIES)
(1)for i ← 1 to MAX-TRIES
(2) T ← a randomly generated truth assignment for α

(3) for j ← 1 to MAX-FLIPS
(4) if T satisfies α then return T
(5) v ← an atom such that a change in its truth
(5) assignment of T gives the largest increase of
(5) satisfied clauses in α, ties of largest increase
(5) are randomly broken
(6) T ← T with the inverse truth value of v
(7)return ‘no satisfying assignment found’

Figure 2: The GSAT Algorithm

after the greedy strategy attempts to maximizes satisfied clauses, which leads
the search to more promising regions of the search space by satisfying more
and more clauses. The increase may be equal to zero, so that the search is
able to perform sideway moves (cf. [SLM92]). If a satisfiable truth assign-
ment is found the search is halted and T is returned. Since this process is
not guaranteed to find a solution, it is terminated after MAX-FLIPS truth-

assignment-flips. Then the search starts again with a randomly generated
T . This process repeats until MAX-TRIES is exceeded and no solution was
found.

GSAT’s greedy strategy to flip a v with the largest increase of satisfied
clauses, has a major disadvantage. A formula can be designed in such a
way that the greedy mechanism is guided away from the solution. Consider
the formula given in figure 3.

(a1 ∨ ¬a2 ∨ a3) ∧ (a1 ∨ ¬a3 ∨ a4) ∧
(a1 ∨ ¬a4 ∨ ¬a2) ∧ (a1 ∨ a5 ∨ a2) ∧
(a1 ∨ ¬a5 ∨ a2) ∧ (¬a1 ∨ ¬a6 ∨ a7) ∧
(¬a1 ∨ ¬a7 ∨ a8) ∧ (¬a1 ∨ ¬a9 ∨ a10) ∧
(¬a1 ∨ ¬a10 ∨ a11) ∧ (¬a1 ∨ ¬a11 ∨ a12) ∧
(¬a1 ∨ ¬a12 ∨ a13) ∧ . . . ∧
(¬a1 ∨ ¬a98 ∨ a99) ∧ (¬a1 ∨ ¬a99 ∨ a6)

Figure 3: A SAT formula which is difficult for GSAT

3 EVOLUTIONARY ALGORITHMS 5

This formula is satisfied only if a1 is set to true1. The greedy strategy tends
to set a1 to false because this setting satisfies many clauses. Hence, a1 set to
false has a large increase of satisfied clauses and is therefore unable to find a
solution.

Selman and Kautz overcame these problems by their improvements to GSAT
[SeKa93]. They introduced clause weights for clauses. The weights are
adapted during search so that the greedy strategy favors other clauses af-
ter some time. Clause weights are initialized to 1 and after each try the
weight of a clause is increased by k if it is unsatisfied after MAX-FLIPS
flips. This has a desired effect that clauses remaining unsatisfiable for many
tries can collect more weights. In their experiments most often k = 1. The
greedy strategy then was adapted so that a clause ci with some weight wi

has an increased gain of wi, instead of 1, if satisfied. Referring to the exam-
ple described above the first 5 clauses will get so much weight during search
(provided that MAX-TRIES is big enough) that the greedy strategy will pick
atom a1 because it has the highest increase.

Selman and Kautz also introduced the average-in and random walk strategy
in [SeKa93] as well, both further improve the original GSAT. Another im-
provement to clause weights was proposed by Frank in [Fr96] where clause
weights are adapted after each truth-assignment-flip. Furthermore, Frank
implemented an adaptive strategy to increase k for the following reason. A
clause weight increase of 1 at the beginning of the search has high influence
because it doubles the clause weight. However, after some time an increase
of 1 is rather ineffective since clauses may already have high weights. A
brief list of other GSAT variants and improvements is given in [ScSo00] by
Schuurmans and Southey.

3 Evolutionary Algorithms

3.1 Basic Elements

The main concept of evolutionary algorithms is a computational model based
on Darwin’s theory: Survival of the fittest. For better understanding of the
functioning of evolutionary algorithms the pseudocode of a general EA is
given in figure 4 and its elements are described in the following.

1If a1 is set to false, then a2 must be set to true because of clauses c4 and c5. If a2 has
to be true then a3 and a4 has to be true because of clauses c1 and c2. Since a4 has to be
true a2 must be set to false (c3), which is a contradiction

3 EVOLUTIONARY ALGORITHMS 6

Evolutionary Algorithm(Problem π)
(1)Initialize a population φ according to π

(2)Calculate fitness of each individual ∈ φ according to π

(3)while (Terminating condition is not met) do

(4) Parents ← Selection(φ)
(5) Offspring ← Genetic Operators(Parents)
(6) Calculate fitness of each individual ∈ Offspring
(6) according to π

(7) φ ← Survival(φ, Parents, Offspring)

Figure 4: General Evolutionary Algorithm

The task of an EA is to solve a given problem π, which is most often, but not
limited to, an optimization problem. A typical example of an EA problem is
the MAXSAT problem, but it can even be as complex as the automatically
evolution of program code (cf. section 3.2.4). One can see from the given
pseudocode that population initialization and fitness calculation are both
problem dependent. However, EA search is performed by selection, genetic
operators and survival. All three are problem independent. Nevertheless, the
performance of selection and genetic operators can be improved by exploiting
domain knowledge (cf. 4.2, 4.4).

An evolutionary algorithm has a population, which is composed of one or
more individuals. An individual, also called chromosome, consists of genes,
which are the variables for an EA to alter during searching for a solution of
the given problem. A gene can be a single bit, a decimal, a floating point
number, a tree, or a part of program code. The important thing about a
chromosome is that it can be an encoding of a solution to the given problem.
An encoding maps a potential solution from the problem domain, called phe-

notype space, to a chromosome in the search space of an EA, called genotype

space. Every EA design has to undergo this representation issue. Consider
the following example:

Encoding table Vehicle Color HP Cylinders

00 Car red 50 4
01 Motorbike blue 100 6
10 Pick-up green 150 8
11 Truck orange 200 12

3 EVOLUTIONARY ALGORITHMS 7

A chromosome of this problem space is a concatenation of the 2-bit tuples
and could look like this:

10011101

The above bit-string represents a pick-up, because its first 2 bits are 10.
Furthermore, the pick-up has blue color (01), 200 HP (11), and 6 cylinders
(01). The population is usually randomly initialized, although there is no
reason why one should not use biased or pre-searched individuals.

The fitness function is the essential of the algorithm. It can be considered as
a mapping function from the genotype to the phenotype space and measures
the solution-quality of a chromosome. Assume that the solution of the vehicle
example is a orange truck with 8 cylinders and 200 HP. Then a fitness function
could return the number of matches encoded in a chromosome. According
to this fitness function, a (Pick-up, orange, 200, 8)-chromosome would have
a fitness of 3, while (Car, red, 50, 4) would score 0. The fitness function
acts as a means to differentiate individuals according to the extent of their
contribution to a solution. Therefore, it should not return binary values. It
is not always possible to derive a fitness function which leads to the global
optimum, but to a local one. However, its implementation can range from a
simple mathematical function to the execution of a simulation. The quality
of the fitness function determines how effective the search of an EA will be.

The selection of parents is used to obtain a computational model of survival
of the fittest. The fitter the individual in the population, the higher the
likelihood that it is selected to act as a parent. A common implementation
of survival of the fittest is the roulette wheel selection. This selection scheme
sets up a roulette wheel, such that for each individual an interval is reserved
on the wheel. The size of the interval is:

fitness(individual)
∑

population

fitness(individual)
,

so that individuals of higher fitness get more space. These intervals are
arrayed one to the other on the wheel. By picking a random number r,
0 ≤ r ≤ 1 exactly one of the intervals, i.e. an individual, is chosen. The
usage of a random number corresponds to the spinning of the roulette wheel.
Due to the design of the roulette wheel survival of the fittest is achieved,
because fitter chromosomes have more space (chance) on the wheel. Another
implementation is called tournament selection, which holds tournaments of n

individuals. The fittest wins the tournament and therefore becomes a parent.
Note that roulette wheel and tournament selection are both fitness propor-

tional selection schemes, since fitter individuals are favored. Other selection

3 EVOLUTIONARY ALGORITHMS 8

schemes are presented in Whitley’s overview [Wi01]. Often those selection
mechanisms are repeated until a desired number of parents are selected.

Once a set of parents is selected, the parents are mated to reproduce off-
spring. Mating is done by the application of genetic operators to the parents.
Since the operators are working on the chromosomes of a population and the
chromosomes possess a representation, the operators have to be designed
appropriate to the representation. The two most widely used operators are
crossover and mutation.

The idea of crossover is to take two or more parents (most often different to
each other to avoid clones) and recombine their genes to get new offspring.
The amount of offspring depends on the crossover scheme. A simple example
of so called one-point-crossover is depicted in the following:

Parent 1: 00110101
Parent 2: 10101010

Crossover point: between 4th and 5th bit

Offspring 1: 00111010
Offspring 2: 10100101

A crossover point is chosen randomly between two bits, thereby guaranteeing
that no clones are produced. Then the chromosomes of both parents are cut
at that point, such that 4 bit-string pieces are generated. The chromosome
Offspring 1 gets the left part of Parent 1 and the right part of Parent 2,
whereas Offspring 2 is set to the left part of Parent 2 and the right part of
Parent 1. In a nutshell, crossover rearranges pieces of chromosomes.

This scheme can be easily extended to the also popular two-point-crossover
(choose randomly two crossover points) or uniform-crossover (for each gene
choose randomly the parental source of inheritance). Since both parents are
encoding a part of the solution to a given problem, the recombination in form
of the offspring may then hold the solution.

The mutation operator is applied to a chromosome and changes one or more
randomly chosen genes. In terms of the crossover example, mutation would
flip a bit from 0 to 1 or vice versa. The result of such a flip can be a solution
to the problem.

Both described operators are able to generate an individual solving the given
problem. Therefore it suffices to use either crossover or mutation as sole
genetic operator. However, the use of crossover without mutation arises a

3 EVOLUTIONARY ALGORITHMS 9

problem. Consider a population of bit-strings as described in the crossover
example and suppose that for every chromosome in the population the last
bit has a value of 0. Then the crossover operator is not able to generate an
offspring which has a value of 1 in its last gene. If this bit is crucial for the
problem solving, an EA utilizing only crossover will never find a solution.
This phenomenon is known as genetic drift [RoPr99]. Therefore crossover is
most often used in combination with mutation to achieve a diverse popula-
tion, that is a population with many different chromosomes, and to recover
lost genes.

The utilization of genetic operators is usually controlled by stochastic means.
If crossover seems to be the driving force during the search, crossover should
get a high probability of usage and the same is true for mutation. The appli-
cation rate also needs to balance crossover’s exploitation of partial solutions
versus mutation’s exploration by flipping randomly chosen genes.

The described methods of crossover and mutation are blind, because they are
manipulating the chromosomes without considering the problem space. But
there are informed operators as well, which utilize problem domain knowl-
edge to improve the offspring reproduction process. Section 4 describes some
informed operators for the satisfiability problem space.

There is a lot of advanced literature which tries to improve the performance
of EAs by supplying other means of recombination. For example the gene
pool recombination by Mühlenbein and Voigt [MüVo95] or the utilization of
self-adapting crossover schemes by Spears [Sp95].

After the offspring is produced, the population for the next iteration is cal-
culated by a Survival function. This next generation can be composed by
applying different strategies to the whole population, the parents, and the
offspring. The offspring may displace the whole former population, but the
usage of elitism is also allowed. Elitism prevents the loss of discovered in-
dividuals with high fitness, so that inferior offspring is rejected for the new
population. After survival the whole process of selection, recombination, and
survival is carried out again, until some terminate condition is met.

A common problem in EAs is premature convergence caused by a popula-
tion consisting of many similar individuals. In an overearly stage of searching
the population is not diverse so that crossover is performed on very similar
chromosomes. Therefore mutation becomes the search’s driving force. In
other words, the population has converged to almost the same chromosomes,
but this convergence is premature because none of the chromosomes is near
the optimum. To counter this problem many algorithms maintain a diverse
population, e.g. by using a high mutation rate.

3 EVOLUTIONARY ALGORITHMS 10

One can see now how an EA is searching for a solution, namely searching the
genotype instead of the phenotype space by applying genetic operators on fit
individuals. Searching the genotype space is an advantage of an EA, because
it is able to search in another representation space of the problem. However,
this advantage comes at some cost. Since the search in the genotype domain
is not a complete one – because the genetic operators do not provide means
to accomplish that – the whole EA is an incomplete search method. There-
fore an artificial terminate condition has to be supplied to an evolutionary
algorithm. Such a condition is most often relying on a maximum number
of fitness evaluations or on a maximum number of constructed generations.
Thus the algorithm can be aborted with no solution found. For problems
where a solution can be identified by the fitness function, the search can be
terminated exactly when a solution is discovered.

The computational costs of an EA largely depends on the design of the fit-
ness function. More detailed introductions can be found in the papers by
Spears, De Jong, Bäck, Fogel and de Garis [SJBFG93] and Schoenauer and
Michalewicz [ScMi97].

3.2 Types of Evolutionary Algorithms

Presently the research field of evolutionary algorithms is commonly divided
into four research sectors: Evolutionary programming (EP), Evolutionary
Strategies (ES), Genetic algorithms (GA), and Genetic Programming (GP).
All four fields are briefly introduced in the following.

3.2.1 Evolutionary Programming

In 1966 Fogel et. al. (cf. [SJBFG93]) developed EP to evolve finite state
machines. Typically, individuals are designed fitting to the problem without
using a genotype space. Thus EP chromosomes are a model of the pheno-
type space, e.g. an EP algorithm for real-valued problem optimization would
use real-valued genes composed in a real-valued vector, whereas traveling-
salesman problems could be represented with ordered lists. EP does not use
any selection scheme to separate fitter from less fit individuals because the
whole population is used to produce the next generation. Only mutation
(which is problem specific due to the problem specific representation) is ap-
plied to each of the parents. If population size is N , parents and offspring
together have size 2N . The 2N chromosomes form the successor generation
by using a probabilistic elitism strategy. Thus it is more likely that individ-
uals with high fitness are inserted in the next generation than individuals
with bad fitness (cf. [SJBFG93]).

3 EVOLUTIONARY ALGORITHMS 11

3.2.2 Evolutionary Strategies

1973 Rechenberg introduced ES utilizing a population composed of only one
real-valued chromosome and therefore mutation is used as sole genetic oper-
ator. Schwefel extended the population to multiple individuals. Nowadays
two different types of ES exist, namely:

• (µ + λ)-ES

• (µ, λ)-ES

The terms in brackets stand for µ parents reproducing λ offspring. The
difference between both is denoted by delimiter ‘+’ or ‘,’ representing the
survival scheme. The symbol ‘+’ represents the elitism strategy on both
generations (elitism applied to the sum of parents and offspring) whereas ‘,’
denotes that the best individuals in offspring will form the next generation,
and because of that, λ ≥ µ has to be valid. The real-valued gene mutation is
often implemented by using a Gaussian mutation utilizing standard deviation
σ (cf. [ScMi97]).

3.2.3 Genetic Algorithms

Holland introduced GA with bit-string encoding in 1975. Typically GA use
bit-string encodings, but in recent publications also problem-specific repre-
sentations are used (see below). Most often GA rely on fitness proportional
selection utilizing roulette wheel or tournament selection. Mutation and
crossover are usually performed but crossover is considered as the driving
force of evolutionary search (cf. [ScMi97]). The original GA is not provided
with an elite strategy so that a successor generation could have a deteriora-
tion in fitness.

3.2.4 Genetic Programming

GP was introduced by different authors solving different problems but their
work was reconciled with the generic term GP (cf. [SJBFG93]). The task
of GP is to evolve program code. Koza, for an instance, used a set of LISP
S-expressions as genes. Usually one of these expressions is a compound-
statement and/or an if-then-else-statement such that S-expressions can be
combined in a chromosome of varying size. The initial population is com-
posed of random programs. Parents are chosen by tournament selection
which are then recombined with a crossover operator. Note that the swap-
ping of S-expressions generates a valid S-expression, i.e. a valid program (cf.
[ScMi97]). The fitness of such a program is evaluated by simulation, because

4 EVOLUTIONARY COMPUTATION FOR SAT 12

it has to be verified how good the evolved program can solve the problem.
In general, GP is a more complex subtype compared to the other three evo-
lutionary algorithms.

A GP example: An ant is able to go forward, turn left, turn right, detect
adjacent food sources, pick up food, and return home. In addition this GP
uses a compound, an if statement, and logic operators. The first generation
may have the two programs as sketched in figure 5.

1.

if-statement
®
­

©
ª³³³³³³³³)

if
?

then
PPPPPPPPq
else

not
®
­

©
ª return home

®
­

©
ª pick up food

®
­

©
ª

?
detect adjacent food

®
­

©
ª

2.

compound
®
­

©
ª³³³³³³³³³)

PPPPPPq

move forward
®
­

©
ª compound

®
­

©
ª

©©©©©©¼

HHHHHHj

move forward
®
­

©
ª turn right

®
­

©
ª

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z

Crossover
of subtrees

Figure 5: Genetic Programming Example

Performing a crossover could result in the program as depicted in 6.

After several generations the ant may be programmed in such a way that
it looks for food and carries it back home. It can be very time-consuming
to simulate these evolved programs to get a fitness value. Nevertheless, fit-
ness values are needed since survival and fitness proportional selection are
employed.

4 Evolutionary Computation for SAT

The intention of this section is to give an overview of EA research solving
satisfiability problems. Because of the amount of publications this section
is divided in some parts. At first, different kinds of representations and

4 EVOLUTIONARY COMPUTATION FOR SAT 13

if-statement
®
­

©
ª³³³³³³³³)

if
?

then
PPPPPPPPq
else

not
®
­

©
ª compound

®
­

©
ª

£
£

£
£

£
£
£°

B
B
B
B
B
B
BN

move forward
®
­

©
ª turn right

®
­

©
ª

pick up food
®
­

©
ª

?
detect adjacent food

®
­

©
ª

Figure 6: Genetic Programming Example

their representation dependent fitness functions and genetic operators are
introduced. Thereafter a brief discussion of another approach to selection for
the bit-string representation (see below) is given, followed by an examination
of fitness functions introduced in the context of SAT. Finally improvements
to genetic operators are reviewed and a parallel implementation of GA is
sketched.

4.1 Representations

4.1.1 Bit-String Representation

De Jong and Spears’ work [JoSp89] is one of the first published genetic algo-
rithm explicitly designed to solve SAT. In their article they concentrated on
a GA processing boolean formulas, not necessarily in CNF. In addition, they
gave remarks on how to design a fitness function for CNF formulas which
became popular in the aftermath. Therefore both fitness functions are pre-
sented here.

For representation they chose a bit-string of length N , where N is the num-
ber of atoms of the formula. Each single bit refers to the truth assignment of
exactly one atom. If a bit is set to 0 (resp. 1) the atom is evaluated to false

(resp. true). Such a bit-string corresponds to an interpretation of a boolean
formula (cf. [BüLe94]) and consequently it can be verified if this bit-string
satisfies the formula or not.

De Jong and Spears claimed in their article:

”It is hard to imagine a representation much better suited for use

4 EVOLUTIONARY COMPUTATION FOR SAT 14

with GAs: it is fixed length, binary, and context independent in
the sense that the meaning of one bit is unaffected by changing
the value of other bits . . . ” ([JoSp89])

However this representation does not capture any intrinsic relations between
variables and clauses as e.g. clausal representation [Ha95] or the path repre-
sentation [GoVo97].

For choosing a fitness function appropriate to the established representation
De Jong and Spears proposed several possibilities. Using the boolean formula
itself can be discarded immediately, because its results are binary. As afore-
mentioned, such a binary fitness function is not advantageous for EAs (cf.
section 3.1 page 7). Alternatively they rely on the following fitness function
f , which is computed after calculating the formula’s truth values induced by
the current bit-string.

f(true) = 1

f(false) = 0

f(¬α) = 1 − f(α)

f(α ∨ . . . ∨ ω) = max {f(α), . . . , f(ω)}

f(α ∧ . . . ∧ ω) = avgx {f(α), . . . , f(ω)} ,

with avgx denoting the average function to the power of x.

Nevertheless they encountered several difficulties with the presented function
f , because logically equivalent formulas may have different fitness values due
to the computation of the average function2. For this reason they tried to
come up with a fitness function which complies with such a property, but
they had no success. Due to this failure De Jong and Spears aimed at a
fitness function holding true for truth invariance that is:

f(chromosome) = 1 ⇒ formula(chromosome) = true

This property could not be established either for general boolean formulas.
However, this problem was overcome by applying De Morgan’s law to the
given formula in a preprocessing step such that only variables are allowed to
be negated (cf. [JoSp89]).

The advantage of avgx with x > 1 is that ∧-clauses are getting a higher
fitness value if they are more nearly true. But a too big x would result in

2f(a1 ∧ (a2 ∧ a3)) 6= f((a1 ∧ a2) ∧ a3) e.g. x = 1, a1 set to 0, a2 and a3 set to 1 then
f(a1 ∧ (a2 ∧ a3)) = 0.5 6= 0.75 = f((a1 ∧ a2) ∧ a3)

4 EVOLUTIONARY COMPUTATION FOR SAT 15

a behavior similar to a min function, which would only give binary results
again. The authors empirically discovered a threshold of x = 2, since a higher
value of x results in more needed fitness evaluations.

Considering boolean formulas in CNF, De Jong and Spears proposed to use a
fitness function corresponding to the MAXSAT problem. Fitness calculation
according to the MAXSAT problem is defined as follows:

fMAXSAT (chromosome) =
∑

clauses ci

T (ci, chromosome)

with

T (ci, chromosome) =

{
1 if ci is satisfied by chromosome
0 otherwise

fMAXSAT is used very often for evolutionary algorithms solving satisfiability,
because it is easy to implement. In addition, it establishes truth invariance
since if all clauses are satisfied the formula is satisfied as well. Note that
fMAXSAT yields the same fitness value for individuals which satisfy a differ-
ent set of clauses. Thus an EA is not able to discern between chromosomes
with the same fitness. However, it is of importance to distinguish between
such chromosomes because not all of them may lead to better areas of the
search space (cf. [GoVo97]).

Both fitness functions may run into difficulties solving SAT efficiently. Con-
sider the formula depicted in figure 3 page 4. Recall that this formula can
only be satisfied if a1 is set to 1. Chromosomes with bit a1 set to 0 have a high
fitness value because a high percentage of the formula is satisfied. Therefore
it is more likely that fitness proportional selection chooses two chromosomes
both having bit a1 set to 0. For such chromosomes, it is not possible to find
a solution by applying solely crossover. If mutation alters bit a1 after such a
crossover is performed, a solution may be found though. However, note that
the clauses containing ¬a1 are of a design such that they form a logical im-
plication chain. Crossover of chromosomes with bit a1 set to 0 cannot evolve
the implication chain of the given formula, because these fitness functions
do not indicate the need to evolve this chain since the clauses are already
satisfied.

4.1.2 MASKs

Hao and Dorne [HaDo94a] introduced the MASK method, which uses a bit-
string representation as well, but it is extended by a non-fixed value ‘*’.

4 EVOLUTIONARY COMPUTATION FOR SAT 16

During evolution only these non-fixed values are altered and become fixed.
A MASK-chromosome of length N , N is the number of atoms, is defined as:

F1 . . . Fk W1 . . . WN−k,

where Fi is a fixed value of 0 or 1 and Wj is a wildcard ‘*’. The population
is initialized with a set of 2m masks, m > 0, and the first m positions of
each mask are initialized to the binary numbers between 0 and 2m − 1. For
example if N = 8,m = 2 the initial population looks like this:

{00∗6, 01∗6, 10∗6, 11∗6}

Fitness evaluation is based on the fitness function by De Jong and Spears,
but is extended to handle the wildcards. To this end Hao and Dorne use
a set RGS3 of randomly initialized bit-strings without wildcards. For their
experiments then, they use a fitness function defined as

fmask(m) = avg
x∈RGS

{f(m[i/xi])},

where f is the fitness function introduced by De Jong and Spears and m[i/xi]

is the resulting bit-string if every wildcard of m at any position i is replaced
by the corresponding ith value of bit-string x ∈ RGS. Depending on the size
of RGS the fitness of a mask is the average of many fitness evaluations per-
formed by f . Note that by using this fitness function a boolean expression
underlies the same restrictions as they are described in section 4.1.1.

Selection takes the better (fitter) half of the evaluated population, the rest
is discarded. As a genetic operator a divide operator is introduced which
generates two offspring per mask by setting the first wildcard W1 to 0 resp.
1, therefore reestablishing a population of size 2m. This process is repeated
until all wildcards are fixed. If such a fully instantiated mask has a fitness of
1, it is a solution due to the use of f . In fact Hao and Dorne stop evolving
the population if a mask’s wildcards matched with a bit-string from RGS is
a solution.

Hao and Dorne gave a detailed comparison between De Jong and Spears’ GA
and their MASK Method in [HaDo94b]. The MASK method clearly outper-
formed the GA in terms of needed number of fitness evaluations. As reasons
for this behavior Hao and Dorne claim that the recombination of different
high fitness chromosomes is not effective for finding a solution. This is be-
cause the assumption that recombination of ‘good’ solution parts (encoded

3Randomly generated bit-strings

4 EVOLUTIONARY COMPUTATION FOR SAT 17

in the representation) forms a ‘better’ solution is wrong in terms of SAT
(cf. [HaDo94b]). Another reason is that a mask is covering a subtree in the
search space, whereas a bit-string is exactly one branch of it. Crossover and
mutation produce jumps of such a branch, while the dividing procedure in
combination with a fitness function utilizing RGS is more search alike.

4.1.3 Clausal Representation

Hao’s clausal representation [Ha95] is an alternative to standard bit-string
representation. This encoding tries to use inherent information of CNF ex-
pressions and is therefore restricted to them. The clausal representation is
not composed by one gene per atom, but by smaller bit-strings for each
clause. A clause’s bit-string has k bits if the clause is of size k. Moreover,
such a bit-string is only allowed to be instantiated to values such that the
clause is satisfied by these values. Consider the following formula:

(a1 ∨ ¬a2 ∨ a3) ∧ (¬a1 ∨ ¬a2 ∨ a3)

Then the clauses’ bit-strings are permitted to have the following values:

(a1 ∨ ¬a2 ∨ a3) ⇒ {000, 001, 011, 100, 101, 110, 111}

(¬a1 ∨ ¬a2 ∨ a3) ⇒ {000, 001, 010, 011, 100, 101, 111}

A k-clause has 2k − 1 valid instantiations. Such a bit-string is locally con-
sistent with its clause, but it may cause global inconsistence. Consider the
example formula from above and suppose the formulas bit-string is set to

001 ⊕ 101,

where ⊕ denotes the concatenation of both bit-strings. This string causes
a variable inconsistency, because 001 requires a1 to be set to 0, but 101
necessitates a1 to be set to 1. If there is no inconsistency a satisfying solution
is discovered, because of the restricted instantiation of clause bit-strings.

Hao suggested four different fitness functions all following the same idea:
Minimizing the number of inconsistent variables. Crossover and mutation are
designed in such a way that they do not create local / clause inconsistencies.
He also introduced a simple local search procedure to direct the search to
promising areas. For the starting population Hao recommended to use 2k−1
individuals for k-CNF, since then all possible clause instantiations could be
distributed among the chromosomes.

In the end he provided neither any performance evaluation for his clausal

4 EVOLUTIONARY COMPUTATION FOR SAT 18

representation nor is there any successor work using clausal representation.
A problem arises from the size of clausal representation, since it usually needs
much more bits compared to standard bit-string representation. Thereby it
increases the genotype search space. For example, hard random boolean
formulas have more clauses than atoms because of the transition phase at
4.3 clause to variable ratio (cf. [SML96]). Thus a chromosome of clausal
representation for a hard random k-SAT formula has 4.3∗k more genes than
a bit-string representation chromosome.

4.1.4 Path Representation

Gottlieb and Voss [GoVo97] proposed a path representation, which is simi-
lar to Hao’s clausal representation. Path representation assumes a boolean
expression in CNF. The basic idea is to choose one atom from each clause
and instantiate it, such that the clause is satisfied. Since variables can occur
in different clauses, variable inconsistencies may occur. Note that no incon-
sistency signifies a solution. A path chromosome may have the following
design:

¬a1

a2

¬a3

¾

½

»

¼
c1

¡
¡

¡
a1

¬a3

¬a4

¾

½

»

¼
c2

@
@

@

¬a1

a2

a4

¾

½

»

¼
c3

a2

a3

a4

¾

½

»

¼
c4

Thus a chromosome of this path would be represented by:

(¬a3, a1, a4, a4),

which is valid a solution. Another chromosome for this example formula
could be (¬a3, a1, a4, a3), which has a variable inconsistency i.e. a3. There-
fore the authors established a fitness function favoring less inconsistencies
in a chromosome. Crossover for path representation is similar to uniform-
crossover. It takes two chromosomes as input and processes each gene but
exchanges genes only under some preset probability4. Then, the current gene
is checked if gene a of parent A inflicts fewer inconsistencies in A than the
corresponding gene b of parent B in B. If so, b is set to a otherwise a is set
to b. Mutation, on the other hand, processes every clause by constructing a
random set of possible values for that clause. The mutation procedure picks
the value that causes the fewest inconsistencies.

4This probability check is not applied in uniform-crossover

4 EVOLUTIONARY COMPUTATION FOR SAT 19

Gottlieb and Voss experimented with this design and compared it to the
standard bit-string version. The results indicate that their design needs more
fitness evaluations until a satisfying assignment is found. Moreover it has a
worse success rate finding a solution.

4.1.5 Floating Point Representation

Leaving the realm of discrete bits, Bäck, Eiben and Vink [BEV98] proposed a
floating point representation. The conception of floating point representation
is to replace each literal x by a floating point variable xf in the interval
[−1, 1], with −1 meaning false and 1 resembling true. The design of the
fitness function follows the structure of the given formula. A positive literal x

is replaced by (xf−1)2 and negative ones by (xf +1)2. The boolean operators
∨ and ∧ are simulated by ∗ resp. +. Consider the following example:

(a ∨ ¬b ∨ c) ∧ (b ∨ c ∨ ¬d) ∧ (a ∨ ¬d),

which results to a floating point fitness function:

ffloat = (af−1)2(bf +1)2(cf−1)2+(bf−1)2(cf−1)2(df +1)2+(af−1)2(df +1)2

A solution is found if all variables xf become an appropriate solution value
of 1 (resp. −1) and the assignment results in ffloat = 0. The fitness function
ffloat can be viewed as a continuous optimization problem.

The population is initialized with random values ∈ [−1, 1] and the authors
rely on rounding to −1 resp. 1 during the evolutionary process to check
if a solution was found. Since the authors implemented this approach for
evolutionary strategies (cf. section 3.2.2), they used mutation as sole ge-
netic operator. Mutation uses standard deviation σ, which is bounded by
a maximum value of 3.0 and Bäck et. al. applied three types of recombi-
nation called discrete recombination, global intermediate recombination and
intermediate recombination. Later experiments have shown that the floating
point representation using ES performs worse than a GA, which is referred
to SAWEA [BEV98].

4.1.6 Fuzzy Representation

Pedrycz, Succi and Shai [PSS02] extended the floating point representation
to a fuzzy representation. The authors follow Bäck et. al. ([BEV98]) intent
to transform the discrete search space of boolean formulas to a continuous
search space by utilizing fuzzy sets and fuzzy logic. An advantage of fuzzy
logic is that this representation preserves the logic characteristics of boolean
formulas.

4 EVOLUTIONARY COMPUTATION FOR SAT 20

With this idea they propose a whole class of fitness functions, since they
claim that any fuzzy s/t-norm functions with this representation, where the
s-norm implements the ∨-operator and the t-norm acts as the ∧-operator.
This gives the advantage that there are many developed s/t-norms, which
could be examined for their impact on EAs solving SAT.

In their experiments, each boolean variable is implemented as a 32-bit gene
representing floating point numbers ranging from 0 to 1. Population is ini-
tialized with random bits. The authors used one-point-crossover so that
crossover is able to split a 32-bit gene. Note that such a split creates a new
floating point number around the crossover cut point. Thus, this crossover
also explores the search space and is not solely exploiting solution parts of
different individuals. For each 32-bit gene mutation flips exactly one of the
32 bits.

An interesting problem arises in their experiments. With increasing size of
boolean variables, more and more genes do not converge to a truth value
of 0 or 1, but to 0.5. The authors proposed a recursive version of a GA to
overcome this problem. The evolutionary search is aborted if a maximum
number of generations is achieved. Then all variables which converged to 0
or 1 are fixed and the search starts again and evolves only non-fixed vari-
ables. However, there is no more research using fuzzy representation and the
authors did not provide a performance comparison, so that the potential of
fuzzy representation remains unclear.

Concluding the discussion of representation, there are several different ap-
proaches for chromosome encoding, but recent research is mainly using the
standard bit-string representation. The reason for this is that the other meth-
ods have been proved to be inferior or no comparable results were presented
at all.

4.2 Selection

In addition to common selection schemes like roulette wheel or tournament
selection, Hao, Lardeux and Saubion [HLS03] extended the selection proce-
dure by means of Hamming distance in bit-string representation. The Ham-
ming distance for two bit-strings is defined as the total number of different
bits. Thus two equal bit-strings have a Hamming distance of 0, whereas two
bit-strings which differ in every single bit have a Hamming distance of the
length of the string.

The selection scheme proposed by Hao et. al. works as follows: A set of

4 EVOLUTIONARY COMPUTATION FOR SAT 21

potential chromosomes is selected by fitness proportional selection. Addi-
tionally, any two chromosomes in the potential set must have a Hamming
distance ≥ d. This forms the selected set. During search d is automatically
adapted, but unfortunately the authors did not provide details about their
implementation of this adaption mechanism.

The achieved effect is to guarantee population diversity, if d is chosen big
enough. Furthermore different parts of a solution are exchanged faster, just
because the bit-strings are chosen under the constraint of Hamming distance.

But this approach has a disadvantage. Suppose a solution space of exactly
two possibilities, namely only 0s and only 1s for some N-bit-string. Fitness
proportional selection favors strings which have many 1s or 0s. Adding the
Hamming distance with sufficiently large d will result in a parent pair, where
one is largely composed of 0s and the other of 1s. Performing a crossover on
these strings is likely to be not successful for that solution space.

There is a trade-off between classical fitness proportional selection schemes
and Hao’s extension to them. As aforementioned a classical scheme may
encounter the problem of premature convergence (cf. section 3.1 page 9).
By utilizing the Hamming distance this procedure increases the population’s
diversity, thus preventing premature convergence. This is, because crossover
is performed on individuals with a large Hamming distance which results in
offspring with a large Hamming distance as well. This maintains a diverse
population and counters population convergence. However, Hao’s extension
may not converge to a solution at all, as was argued by example above.

4.3 Fitness Functions

The performance of an EA can be improved by a well designed fitness func-
tion, since selection plays an important role on evolutionary computation.
Some fitness functions were already presented in the course of this article be-
cause fitness functions are closely related to representation. All the following
functions use bit-string representation and assume CNF.

4.3.1 SAW

Eiben and van der Hauw [EvdH97] developed an EA which uses stepwise-
adaptation-of-weights (SAW) i.e.

wi = wi + ∆w,

where wi denotes a weight. The stepwise-adaption is typically implemented
with the given assignment and a given value ∆w which is applied periodically
during the search.

4 EVOLUTIONARY COMPUTATION FOR SAT 22

Accordingly Eiben’s EA is often referred to SAWing-EA or SAWEA. Es-
sentially SAWEA makes use of the weighing mechanism used by GSAT (cf.
section 2.3), which increases the weight of unsatisfied clauses after some time.
Thus the SAWEA fitness function of an individual i is defined as:

fSAW (i) = w1f(i, c1) + . . . + wNf(i, cN) =
N∑

k=1

wkf(i, ck)

where wk ≥ 1 denotes a weight and

f(i, ck) =

{
1 if ck is satisfied by i
0 otherwise

Initially the weights are set to 1, so that fSAW = fMAXSAT . For ∆w Eiben
et. al. used

∆w = 1 − f(x∗, ci),

with x∗ the current best chromosome in the population. Thus a weight wi

of a clause ci is increased by 1 if the current best chromosome x∗ does not
satisfy ci; ∆w increases the weights of unsatisfied clauses. High weights are
produced by clauses which are not satisfied for long time periods. The fitness
function will prefer satisfied clauses with high weights.

Eiben and van der Hauw adapted the weights every 250 fitness calculations
and experimented with different GA settings to find the best GA for SAW. In
the end they discovered that a (1, λ∗)-ES (cf. 3.2.2) performs best. The value
of λ∗ was determined empirically and differs for varying amounts of boolean
variables. Since population has size 1, crossover cannot be performed, but
mutation can. The authors introduced the MutOne operator, which mutates
one randomly chosen gene. All in all (1, λ∗) schemata means: take the only
possible parent, apply MutOne λ∗ times to reproduce at most λ∗ different
offspring, and select the best of these for the next generation.

The authors also experimented with a (1 + λ)-ES to avoid precalculating λ∗

for different boolean expressions, because λ∗ is fine-tuned to special boolean
expressions. For this setup the authors claim that the GA behaves insensitive
to the setting of λ, if compared to (1, λ) (cf. [EvdH97]).

The performance of SAWEA was improved by de Jong and Kosters [JoKo98].
They use (1, λ∗)-ES variant but supply another mutation operator, which is
very similar to local search. This operator works as follows: A chromosome
c in offspring is randomly chosen. Furthermore, a set of randomly chosen
clauses is generated. If each clause in this set is satisfied by c, then do

4 EVOLUTIONARY COMPUTATION FOR SAT 23

nothing. Otherwise pick a random variable of an unsatisfied clause and flip
its corresponding bit such that it satisfies the clause. Experimental results
reveal that this approach outperforms SAWEA. The authors refer to it as
Lamarckian Structural Error Assignment SAW (Lamarckian SEA-SAW)5.

4.3.2 Refining Functions

Gottlieb and Voss [GoVo98] presented the concept of refining functions. They
tried to overcome the problem that fMAXSAT often yields the same value
for different bit-strings (cf. section 4.1.1 page 15). The authors suggest
to implement a refining function r which is used in combination with an
ordinary fitness function, e.g. fMAXSAT . This gives a refined fitness function
of a chromosome x:

fref (x) = ff (x) + αr(x),

where α > 0 is an influence level of the refining function r, r : {0, 1}n → [0, 1)
and ff a fitness function. If α is set to zero, fref behaves like the regular
fitness function ff , whereas if α → ∞, that function is dominated by r.
Gottlieb and Voss showed that the influence level α can be easily adapted
during the search such that ff tries to find a solution. But if it gets stuck
the influence level α is increased, such that the search is directed to another
area (cf. [GoVo98]).

For SAT they propose four different refining functions and choose ff =
fMAXSAT . Two of the presented refining functions are counting literal oc-
currences. Thus, both exploit the problem space of SAT. The third refining
function is problem independent, because it only operates on the bit-strings
of the population. This method adapts itself during the search by counting
how long a bit is set to the same value. After a number of generations, there
might be a high valued bit and a flip of that bit is favored. This directs the
search to another area of the search space. The fourth refining function is
self-adapting as well by utilizing the same mechanism as the third refining
function. It additionally exploits domain knowledge of SAT by biasing the
search to produce bit-strings which satisfy more clauses.

4.3.3 SAW and Refining Functions

In a later work Gottlieb and Voss [GoVo00] incorporate the SAW mecha-
nism to their refining functions. They define a new refining function r for a

5Note that the SEA-SAW operator is similar to the random walk strategy, another
searching strategy for GSAT ([SeKa93])

4 EVOLUTIONARY COMPUTATION FOR SAT 24

chromosome x as:

r(x) =
1

2







1 +

N∑

i=1

K(xi)vi

1 +
N∑

i=1

|vi|







,

where K(0) = −1, K(1) = 1. The authors adapted vi with SAW by:

vi = vi − K(x∗)
∑

k∈Ui(x∗)

wk,

where x∗ is the currently fittest individual, Ui(x
∗) is the set of unsatisfied

clauses in which atom i occurs, and wk is equivalent to the description of
SAW (cf. section 4.3.1). Note that wk is also adapted during the search.
In comparison to SAWEA’s weight adapting method, the weights vi are ad-
ditionally powered by the cardinality of the unsatisfied clauses containing
variable i. The authors also discuss a special case of this refining function
using constant weights for wi = 1 .

Regarding the success rate6, this procedure, called RFEA2+, is state-of-the-
art for GAs solving SAT. The setting of RFEA2+ is:

• Bit-string encoding

• Population size 4

• RFEA2+ fitness function

• Tournament selection size 2

• Lamarckian SEA-SAW mutation operator

• Steady-state replacement7

Note that RFEA2+ utilizes a small population in comparison to De Jong and
Spears’ first SAT solving GA which uses 100 chromosomes. Also note that
no crossover is used, although crossover is regarded as GA’s driving search
force (cf. section 3.2.3). Performance evaluation are given in section 4.6

6Success rate is the percentage of experimental runs where a solution was found.
7Steady-state replacement is a scheme which discards worse fitness chromosomes and

deletes individuals occurring twice in the population

4 EVOLUTIONARY COMPUTATION FOR SAT 25

4.4 Genetic operators

The performance of evolutionary computation can be enhanced if domain
knowledge and / or self-adapting methods are used. Some operators of this
kind have already been introduced such as the Lamarckian SEA-SAW mu-
tation in section 4.3.1. This section concentrates on research which focuses
on crossover and mutation.

4.4.1 Crossover

Classical crossover schemes vary from one-point-crossover to uniform-cross-
over, which were presented in section 3.1. But these blind crossover operators
are commonly considered as inefficient for evolutionary computation for SAT.
Park wrote:

The performance results indicate that for large and difficult 3SAT
instances, cross-over fails to be effective, and genetic search is
consistently outperformed by simulated annealing. ([Pa95])

Also Gottlieb et. al. argue:

. . . this indicates that crossover is not dominant, and that local
search steps are essential. ([GMR02])

Hence, there are crossovers which exploit domain knowledge by utilizing local
search [HLS02]. Supposing CNF and bit-string representation, the authors
introduced an improvement function:

impi = |Si| − |Ui|,

with Si (Ui) the set of satisfied (unsatisfied) clauses if gene i is flipped.

Through impi Hao et. al. defined two groups of 2-parent-crossover functions
generating only one offspring. The first group is composed of crossovers using
the best value computed by impi. Since impi is calculated for every gene i,
the i with the best improvement value is used for the offspring. The second
group of crossovers is designed to preserve satisfied clauses. For unsatisfied
clauses impi is used to find a good candidate who can satisfy those clauses.
An example of a crossover belonging into this group is given below.

The authors evaluated different crossovers from both groups and the re-
sults demonstrate that a crossover of the second group performed best. This
crossover works as follows: For each clause cj which is satisfied by both par-
ents X, Y , take those genes v contained in cj for which Xv = Yv and cj

4 EVOLUTIONARY COMPUTATION FOR SAT 26

satisfied by v holds. This preserves satisfied clauses. For a clause cj which
is not satisfied by both parents, compute a gene v with a maximal k, where
k = impi(X)+impi(Y), for all genes i occurring in cj. The inverted v is used
for the offspring. This results in the biggest gain of satisfied clauses in the
offspring. Finally this crossover initializes the genes which are not processed
to random values.

A disadvantage of this biased crossover is higher computational costs owing
to the frequent usage of improvement function impi.

4.4.2 Mutation

Several mutation operators were already introduced in this paper. For ex-
ample, mutation operators for non-bit-string representations e.g. mutation
using standard deviation (section 4.1.5). For bit-string representation, blind
mutation like flip (section 2.3) or MutOne (section 4.3.1) were described.
Furthermore Lamarckian SEA-SAW mutation was introduced, which utilizes
local search. In addition to these, GASAT [HLS02] implements mutation
with a mechanism based on TABU-Search.

GASAT uses crossover as described in the preceding section, and its muta-
tion uses the improvement function impi as well. Mutation utilizes a FIFO
set T , where T is bounded by a maximum size γ. Genes are placed into T

if they are forbidden to be flipped. For each mutation, T is initially empty.
The mutation works as follows: Choose gene v with

v = max
i

(impi(x)) for all i 6∈ T,

where x is the chromosome to be mutated. The resulting v is a gene that is
allowed to be flipped and will cause the largest improvement if flipped. After
this calculation, v is flipped. If the resulting chromosome has a better fitness
the flip is kept. Then v is placed into T and eventually displaces an oldest
stored gene j. This mutation process is repeated until a maximum number
of flips is reached (cf. [HLS02]).

This procedure does not accept lower-fitness solutions so that only fitness
improvements ≥ 0 are possible. By establishing T , mutation cannot imme-
diately revert to a former state. Therefore the search is forced to explore a
different part of the search space. Nevertheless, the size of γ poses a problem,
because a small γ will enable this mutation to revert to a former state too
fast. Hence, the search may return to the same local optimum repeatedly.
A too big value for γ hinders mutation to run efficiently, because only a few
genes are allowed to be altered. Note that this mutation operator uses impi

4 EVOLUTIONARY COMPUTATION FOR SAT 27

and fitness evaluations frequently. Therfore GASAT’s mutation operator is
computational expensive.

4.4.3 Local Search

An evolutionary algorithm is also called a Hybrid-EA, if it incorporates local
search operations besides crossover and / or mutation. A typical example of
a local search procedure is GSAT’s greedy strategy (cf. 2.3).

Marchiori and Rossi [MaRo99] introduced a flip heuristic for local search in a
standard GA with bit-string representation, uniform-crossover and mutation
for CNF formulas. Flip heuristic is performed after the genetic operators
and computes the increase of satisfied clauses by flipping a gene. Hence, the
authors named this GA as FlipGA.

For each offspring, the flip heuristic flips every gene and determines if this
flip yields an increase ≥ 0 of satisfied clauses. If there is an increase, the
flip is accepted and the increase is added to a zero initialized variable called
gain. After the whole chromosome is traversed, the search is restarted from
the first gene if gain > 0, otherwise the local search is halted.

This process was further improved by an adaptation mechanism called ASAP
by Rossi, Marchiori and Kok ([RMK00]). In addition to FlipGA a chromo-
some set T of size K is established, which stores only individuals with the
same best fitness. If an individual evolves with a higher fitness value than the
current best individuals in T , the set is emptied and the newly generated best
fitness individual is put into it. Chromosomes with the same fitness value are
added to T and lower fitness individuals are ignored. If the set reaches its
maximum capacity K, the contained chromosomes are compared bitwise and
all genes are frozen except those having the same value in all chromosomes.
Frozen genes are not altered by mutation or the flip heuristic. The search
is carried on normally until a better fitness individual is discovered. This
discovery empties T except the newly discovered chromosome and all genes
are allowed to be flipped again8.

The intention of this adaptation mechanism forces the search to explore an-
other area of the search space, as the search got stuck on a local optimum.
Since only non-frozen genes are altered, only equally set variables are allowed
to be flipped. Therefore the common characteristics among the best fitness
individuals are modified, which may be the reason that the search got stuck
on a local optimum.

8The genes are not frozen anymore

4 EVOLUTIONARY COMPUTATION FOR SAT 28

4.5 Parallel-GA

A parallel implementation of a genetic algorithm solving SAT was done by
Folino, Pizzuti and Spezzano [FPS98]. They introduced a method called CG-
WSAT. CGWSAT is a cellular GA incorporating local search WSAT [SKC94]
which is a variant of GSAT.

CGWSAT uses a 2-dimensional toroidal grid of cells such that every cell
has eight neighbors (north, north-east, east, south-east, south, south-west,
west, north-west). Folino et. al. used a population size of 320 which cor-
responds to 320 cells evolving in parallel. Each cell contains exactly one
chromosome and can only perform crossover with the fittest of its adjacent
neighbors. 2-point crossover is used. Mutation is only applied under some
preset probability and follows the WSAT procedure. The fitness function
is set to f = #Clauses − fMAXSAT . The authors expect that subpopula-
tion of similar characteristics can evolve due to the neighborhood-restricted
crossover operation. Moreover they state that if crossover probability is set
to 0 CGWSAT is in fact a parallel version of WSAT.

4.6 Performance Evaluation

Unfortunately there is no publication about performance evaluation which
covers all the presented concepts. Furthermore, the discussed articles seldom
use comparable test suites of boolean formulas. Therefore, this section is
based on the performance evaluation proposed by Gottlieb, Marchiori and
Rossi [GMR02] who concentrated on recent EA for SAT developments.

The authors used random 3-SAT boolean formulas of different problem sizes
i.e. number of boolean atoms N . A transition phase valued 4.3 is used in
these formulas. For detailed specifics of the test suites refer to [GMR02].
Gottlieb et. al. measured success rate (SR), i.e. the percentage of runs that
achieve a solution, and the average number of flips to solution (AFS) as eval-
uation criteria. Multiple runs were carried out per formula. WSAT, a GSAT
variant, is also listed in the performance tables in figure 7 for comparing
evolutionary computation with incomplete methods.

The results indicate that evolutionary computation for SAT is competitive
against incomplete methods like WSAT. Furthermore, it seems that using
domain-knowledge can improve the search, because SAWEA, which uses only
blind operators, performs worse. However, note that WSAT typically does
not need as many AFS as the other approaches, especially with increasing
number of atoms N .

5 CONCLUSION 29

Comparative Result 1 [GMR02]
Algorithm N = 30 N = 40 N = 50 N = 100

SR AFS SR AFS SR AFS SR AFS

SAWEA 1.00 34015 0.93 53289 0.85 60743 0.72 86631
RFEA2+ 1.00 2481 1.00 3081 1.00 7822 0.97 34780
FlipGA 1.00 25490 1.00 17693 1.00 127900 0.87 116653
ASAP 1.00 9550 1.00 8760 1.00 68483 1.00 52276
WSAT 1.00 1631 1.00 3742 1.00 15384 0.80 19680

Comparative Result 2 [GMR02]
Algorithm N = 40 N = 60 N = 80 N = 100

SR AFS SR AFS SR AFS SR AFS

SAWEA 0.89 35988 0.73 47131 0.52 62859 0.51 69657
RFEA2+ 1.00 2951 0.99 19957 0.95 49312 0.79 74459
FlipGA 1.00 14320 1.00 127520 0.73 29957 0.62 20319
ASAP 1.00 16644 1.00 184419 0.72 46942 0.61 34548
WSAT 1.00 5472 0.94 20999 0.72 30168 0.63 21331

Figure 7: Performance Evaluation

5 Conclusion

Section 4 described evolutionary computation for SAT. Many of these recent
developments rely on local search, similar to GSAT’s greedy stategy. Hence,
people wonder:

Does the EA framework provide a contribution to SAT solvers?

This topic is discussed in the following.

5.1 Criticism on EA solving SAT

The first GA solving SAT by De Jong and Spears [JoSp89] is a classical GA
applying population, fitness function and blind genetic operators. However,
it is empirically proven that blind genetic operators are not as efficient as
applying domain knowledge exploiting operators (cf. section 4.4.1). A rea-
son for this is, that EAs with only blind genetic operators are stochastic
search processes since they rely on randomly-chosen crossover and mutation
points. To illustrate how the search is influenced by parameter settings and
its stochastic search means, consider the following example:

5 CONCLUSION 30

Assume a GA using population size P = 10, one-point-crossover applied with
probability pc = 0.8, one gene mutation applied with probability pm = 0.2
and a chromosome size of n = 100. The focus is on the probability of finding
a solution by applying crossover and mutation. Therefore, assume that this
GA has already run for some time. The current generation contains two
chromosomes ci and cj such that the application of both genetic operators
can lead to a satisfiable truth assignment. For simplicity ci and cj have 2k
different bits which have to be recombined to form a solution. For ci k bits
are in the first half of the chromosome and for cj k bits are in the second half.
Furthermore, mutation has to alter exactly one gene to find the solution e.g.
recovering a lost gene. Then we have:

1. Fitness proportional selection selects ci and cj with some probability
ps.

2. Crossover must be performed and has to choose the right spot for split-
ting. This has a probability of pc = 8

10
∗ l

100
. Consider the following

chromosome design of ci and cj with k = 2:

cj

ci
last

1st

..........................
︸ ︷︷ ︸

l

l is the number of genes between the last needed gene of ci and the
1st needed gene of cj. If k = 1 the expectancy is 50. But this value
decreases with an increasing of k. Also note that in many cases the 2k
different bits are not distributed in distinct parts.

3. Performing the right mutation has a probability of pm = 2
10

∗ 1
100

.

The probability of finding a solution directly is:

ps ∗
8l

1000
∗

2

1000

This equation depends on parameters l and ps. For the sake of seeing num-
bers set l = 50 and ps = 0.5. Then the given equation results in a probability
of 0.0004 to find a satisfying truth assignment directly by blind crossover and
mutation. Note that the chromosome configuration may improve after a un-
successful execution of either crossover or mutation, e.g. one of the offspring
has k + x, x < k, of the needed genes. However, it is also possible that
the chromosome get worse, e.g. crossover does not recombine any of the 2k

5 CONCLUSION 31

needed genes into one individual, or mutation alters a gene which is crucial
for a solution.

Park [Pa95] discussed the general effectiveness of blind genetic operators for
SAT. He decomposed a bit-string encoded GA into three forms: Crossover-
Mutation-Selection, Crossover-Selection, and Crossover-Mutation. He exper-
imented with these three settings and with varying probabilities of genetic
operators. Park concluded that:

The MAX-SAT results . . . suggest that for large and difficult
problem instances, the building-block hypothesis may be an in-
adequate characterization, rendering cross-over’s role marginal . . .
([Pa95])

The building block hypothesis states that parts of a solution are code blocks
at different locations in different parents. These code blocks can be assem-
bled by crossover, such that an improved solution is built by recombining
the partial solutions of the code blocks. Park showed with his experiments
that crossover plays no important role for genetic search and inferred that
the building block hypothesis is inappropriate for SAT.

Thus, a result of evolutionary computation for SAT research is that blind
genetic operators do not provide ‘good’ means to solve SAT except they can
support random jumps in the search space.

To improve the search process, researchers enhanced genetic operators by
utilizing domain knowledge or some mechanisms to guide the search e.g.
TABU-Search (cf. section 4.4.3). But if such techniques are used, then the
question arises if EA’s additional procedure contribute to the search.

The main differences between GSAT and an EA using local search are (1) ge-
netic operators, (2) population, and (3) fitness function. In addition different
representation possibilities were presented in this paper. However, only the
bit-string representation is commonly used since other representations seem
to perform less well (cf. section 4.1). Also note, that some of the presented
representations, e.g. clausal or path representation, could be combined with
a GSAT algorithm9. Therefore, other representations despite the bit-string
are not considered in the following.

(1) Blind genetic operators are stochastic search means. Experiments have
shown that blind crossover is not able to recombine building blocks into

9e.g. take clausal representation and change GSAT’s greedy strategy to minimize vari-
able inconsistencies

5 CONCLUSION 32

one individual. Furthermore there is also no informed crossover oper-
ator having the ability to recombine the population’s building blocks
into a solution. Hence, mutation is the search’s driving force. However,
blind mutation is still a random search process. But using an informed
mutation operator means applying some GSAT similar strategy since
it operates on only one individual. Therefore, genetic operators seem
to do not provide a contribution to the search.

(2) Population provides means of parallel search space exploration. This is
because crossover, which is the only genetic operator working on mul-
tiple chromosomes, is ineffective. Hence, mutation searches the pop-
ulation’s individuals so that multiple individuals are searched at the
same time / in parallel. Note that population provides means to par-
allelize other (incomplete) methods, e.g. CGWSAT (cf. section 4.5).
However, such a parallelization is similar to a GSAT algorithm running
on multiple processors at the same time, because no solution parts are
interchanged during the parallel search.

Algorithms like SAWEA or RFEA2+ consider only the best individ-
ual in the population for learning the solving difficulty of a clause. To
this end global clause weights are applied. Since fitness proportional
selection is used, these weights affect not only the solving process of
the best individual – from which the weights were derived from – but
of all chromosomes. Thus the whole population is forced to the same
search space area to which the best individual is lead to. Therefore
the population becomes less diverse in the course of time, such that
premature convergence may be a consequence.

If global clause weights are bad for the search process of a whole popu-
lation, then the usage of local clause weights for each chromosome are
an option. However, this alternative suggests that a population is only

an implementation of parallel search, because of ineffective crossover
and local learning strategies.

Nevertheless, a global strategy like clause weights may accelerate the
search process for some search configurations. Consider a diverse pop-
ulation and some clause weights setting derived from a best individual.
Then the best individual may find a solution because of the clause
weight guidance. But another individual may find a satisfying truth
assignment as well, because of the same guidance although it is diverse.
It is unclear if such coincidental solutions occur often or infrequently.

(3) A main part of EA search lies within the usage of the fitness function, but

5 CONCLUSION 33

note that the fitness proportional selection concept is similar to GSAT’s
greedy strategy. The fitness function guides the search by selecting
individuals which seem promising for crossover to combine different
solution parts. Yet, it was argued that crossover does not contribute
to the search. However, fitness function is still useful especially for
(µ, λ)- and (µ + λ)-ES where fitter individuals are chosen for the next
generation. The purpose of selecting fitter individuals is to lead the
search to a solution, but this is essentially greedy.

Therefore, a fitness function should be designed carefully, such that the
greedy selection process is led to a solution. This forms

The Fitness Dilemma:

Does an increase of fitness lead to the global optimum, i.e.
the (only) solution?

Researchers often used fMAXSAT for this guidance, thereby relying on
the number of already satisfied clauses. However, a fitness increase cal-
culated by fMAXSAT does not necessarily lead to a SAT solution, e.g.
because of variable constraints as described in section 2.3.

Thus, an EA using local search like GSAT and fitness proportional
selection is a twofold greedy algorithm. GSAT’s local search tries to
satisfy a maximum number of clauses and fitness selection chooses fitter
chromosomes. Note, that if fMAXSAT is used for the fitness function,
both greedy strategies rely on the same fitness landscape. Furthermore,
fMAXSAT forms a typical hillclimber problem. Thus, the combination
of greedy local search and fitness proportional selection do not address
the hillclimber problem since both strategies are based on fMAXSAT .
A better approach solving this problem would be to use two different
fitness landscapes. Such a combination could ‘smooth’ the fMAXSAT

landscape, such that the global optimum can be found more easily.

But there is also theoretical discussion on the usefulness of fMAXSAT .
Rana and Whiteley [RaWh98] do a Walsh analysis of MAXSAT prob-
lems and experimentally show the deceptiveness of fMAXSAT . They
state:

This behavior indicates that the problems are not only de-
ceptive, but there are also many equally good regions for
a genetic algorithm to explore. If there were biases in the
schemata, the genetic algorithm would have converged con-

5 CONCLUSION 34

sistently to specific regions of the search space for the same
problem. Yet the convergence behavior appears to be almost
random. ([RaWh98])

However, the performance evaluation of RFEA2+ given in section 4.6
indicates that the combination of both greedy mechanisms is indeed
a contribution to incomplete SAT solvers, hence the good results of
RFEA2+. But this may be due to the well designed fitness function
of RFEA2+. RFEA2+’s refining function enables the search to escape
from local optima. Thus, the reason for the good performance is due
to the refining function. Therefore RFEA2+’s fitness function may im-
prove the performance of GSAT and if so, it would indicate that greedy
fitness proportional selection is not a contribution for SAT search.

The discussion above suggests that the EA framework is not a contribu-
tion to SAT solvers. This is because crossover is not able to recombine
the building blocks of a solution, population only provides means of parallel
searching, and the concept of fitness function is similar to greedy strate-
gies of GSAT variants. Nevertheless the combination of solution-seeking and
local-optimum-escaping functions like RFEA2+ seems promising for further
research.

However, the SAT fitness landscape itself is complicated. Michalewicz [Mi95]
divides a constrained search space in feasible and infeasible parts as sketched
in figure 8.

He says:

In solving optimization problems we search for a feasible opti-
mum. ([Mi95])

But SAT is essentially a binary function, such that a feasible part of the
search space corresponds to a solution. Especially a function with only one
possible solution has only one feasible ‘dot’ in the search space. The trans-
formation of SAT to the optimization problem MAXSAT is not effective,
because the MAXSAT fitness landscape is deceptive. However, local opti-
mum escaping techniques as applied in RFEA2+ perform well with fMAXSAT .
Nevertheless, crossover and population seem to lack the ability to contribute
to SAT search.

5.2 Further Research Possibilities

RFEA2+’s fitness function has to be analyzed in usage with a GSAT algo-
rithm, such that the influence of fitness proportional selection can be verified.

5 CONCLUSION 35

feasible

search space F

search space U

infeasible

search space S

a

b

c
d

e

f

g

h

i

jk

X

chromosome (a − k)

global optimum (X)

Figure 8: Constrained Search Space

To this end GSAT’s greedy strategy has to be replaced by RFEA2+’s fitness
function. Performance comparison between both may be able to provide a
good indication, if the greedy selection process is a contribution.

For further research it would also be interesting to see if it is possible to
learn the solution dependencies (building blocks) of a given formula. This
may be possible with an extension of the SAW principle. In addition to clause
weights, variable weights may be of importance, perhaps even clause-variable
weights.

The commonly used bit-string representation is similar to the Davis-Putnam
algorithm, because it focuses on the formula’s atoms. Searching with this
representation causes unsatisfied clauses, which have to be minimized for a
solution. Another approach is to use a representation for clauses like clausal
representation or path representation. These may generate atom truth as-
signment inconsistencies, which have to be minimized to find a solution, as
well. However, since hard random SAT instances have a transition phase of
4.3, the maximum number of inconsistencies is smaller than the maximum
number of unsatisfied clauses. Therefore, the smaller number of inconsisten-

5 CONCLUSION 36

cies may be a better subject for local search performed by a GSAT variant
or an EA.

Furthermore the effects of global clause weights on a population of chromo-
somes should be analyzed regarding the frequency of solution individuals,
which are affected by weights derived from some other individual.

REFERENCES 37

References

[BEV98] T. Bäck, A. Eiben, M. Vink, A Superior Evolutionary Algorithm

for 3–SAT, In International Conference on Evolutionary Programming,
in cooperation with IEEE Neural Networks Council, 1998

[BüLe94] H. Kleine Büning, T. Lettmann, Aussagenlogik: Deduktion und

Algorithmen, B. G. Teubner, 1994

[Co71] S. Cook, The complexity of theorem-proving procedures, In Proceed-
ings of the third Annual ACM Symposium on Theory of Computing,
151–158, 1971

[DaPu62] M. Davis and H. Putnam, A computing procedure for quantification

theory, Journal of the ACM, 483–497, 1962

[EvdH97] A. Eiben, J. van der Hauw, Solving 3–SAT by GAs Adapting

Constraint Weights, In Proceedings of The IEEE Conference on Evo-
lutionary Computation, IEEE World Congress on Computational Intel-
ligence”, 1997

[FPS98] G. Folino, C. Pizzuti, G. Spezzano, Combining cellular genetic algo-

rithms and local search for solving satisfiability problems, In Proceedings
of the Tenth IEEE International Conference on Tools with Artificial In-
telligence, 192–198, 1998

[Fr96] J. Frank, Weighting for Godot: Learning heuristics for GSAT, In Pro-
ceedings of AAAI96, 338–343, 1996

[GoVo97] J. Gottlieb, N. Voss, Representations, Fitness Functions and Ge-

netic Operators for the Satisfiability Problem, Artificial Evolution –
Third European Conference, Springer, 1997.

[GoVo98] J. Gottlieb, N. Voss, Improving the Performance of Evolutionary

Algorithms for the Satisfiability Problem by Refining Functions, Parallel
Problem Solving from Nature, 755-764, 1998

[GoVo00] J. Gottlieb, N. Voss, Adaptive Fitness Functions for the Satisfiabil-

ity Problem, Proceedings of the 6th International Conference on Parallel
Problem Solving from Nature, 621–630, 2000

[GMR02] J. Gottlieb, E. Marchiori, C. Rossi, Evolutionary Algorithms for

the Satisfiability Problem, In Evolutionary Computation, 35–50, 2002

REFERENCES 38

[HaDo94a] J. Hao, R. Dorne, A New Population-Based Method for Satisfia-

bility Problems, European Conference on Artificial Intelligence, 135–139,
1994

[HaDo94b] J. Hao, R. Dorne, An empirical comparison of two evolutionary

methods for satisfiability problems, Proceedings of IEEE International
Conference on Evolutionary Computation, 450–455, 1994

[Ha95] J. Hao, A Clausal Genetic Representation and its Evolutionary Pro-

cedures for Satisfiability Problems, In Artificial Neural Nets and Genetic
Algorithms: Proceedings of the International Conference in Ales, 1995

[HLS02] J. Hao, F. Lardeux, F. Saubion, A Hybrid Genetic Algorithm for

the Satisfiability Problem, First International Workshop on Heuristics,
2002

[HLS03] J. Hao, F. Lardeux, F. Saubion, Evolutionary Computing for the

Satisfiability Problem, In EvoWorkshops 2003, 258-267, 2003

[JoSp89] K. De Jong, W. Spears, Using Genetic Algorithms to Solve NP-

Complete Problems, In Proceedings of the Third International Confer-
ence on Genetic Algorithms, 124-132, 1989

[JoKo98] M. de Jong, W. Kosters, Solving 3–SAT using adaptive sampling,
In Proceedings of the Tenth Dutch/Belgian Artificial Intelligence Con-
ference, 221-228, 1998

[MaRo99] E. Marchiori, C. Rossi, A Flipping Genetic Algorithm for Hard

3-SAT Problems, In Proceedings of the Genetic and Evolutionary Com-
putation Conference, 393–400, 1999

[Mi95] Z. Michalewicz, Heuristic Methods for Evolutionary Computation

Techniques, In Journal of Heuristics, Vol.1, No.2, 177–206, 1995

[MüVo95] H. Mühlenbein and H. Voigt, Gene pool recombination in genetic

algorithms, In Osman and Kelly [1484], 53–62, 1995

[Pa95] K. Park, A comparative study of genetic search, In Proceedings of the
Sixth International Conference on Genetic Algorithms, 512-519, 1995

[PSS02] W. Pedrycz, G. Succi, O. Shai, Genetic-fuzzy approach to the

Boolean satisfiability problem, In IEEE Transactions On Evolutionary
Computation, 519-525 (2002)

REFERENCES 39

[RaWh98] S. Rana, D. Whitley, Genetic Algorithm Behavior in the

MAXSAT Domain, In Proceedings of the Fifth International Confer-
ence on Parallel Problem Solving from Nature, 785–794, 1998

[RMK00] C. Rossi, E. Marchiori, J. Kok, An adaptive evolutionary algo-
rithm for the satisfiability problem, In Proceedings of the 2000 ACM
symposium on Applied Computing, 463–469, 2000 Year of Publication:
2000

[RoPr99] A. Rogers, A. Pruegel-Bennett, Genetic Drift in Genetic Algorithm

Selection Schemes, IEEE Transactions on Evolutionary Computation,
1999

[SJBFG93] W. Spears, K. De Jong, T. Bäck, D. Fogel, H. de Garis, An

Overview of Evolutionary Computation, In Proceedings of the European
Conference on Machine Learning, 442–459, 1993

[ScMi97] M. Schoenauer, Z. Michalewicz, Evolutionary Computation, In
Control and Cybernetics, 307–338, 1997.

[ScSo00] D. Schuurmans, F. Southey, Local Search Characteristics of Incom-

plete SAT Procedures, In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence, 297–302, 2000

[SeKa93] B. Selman, H. Kautz, Domain-Independent Extensions to GSAT:

Solving Large Structured Satisfiability Problems, In Proceedings of the
International Joint Conference on Artificial Intelligence 1993

[SKC94] B. Selman, H. Kautz, B. Cohen, Noise strategies for local search, In
Proceedings of the 12th National Conference on Artificial Intelligence,
337–343, 1994

[SLM92] B. Selman, H. Levesquem D. Mitchell A New Method for Solving

Hard Satisfiability Problems, In Proceedings of the Tenth National Con-
ference on Artificial Intelligence, 440-446, 1992

[SML96] B. Selman, D. Mitchell, H. Levesque, Generating Hard Satisfiability

Problems, In Artificial Intelligence 81, 1996

[Sp95] W. Spears, Adapting Crossover in Evolutionary Algorithms, In Pro-
ceedings of the Fourth Annual Conference on Evolutionary Program-
ming, 367–384, 1995

REFERENCES 40

[Wi01] D. Whitley, An Overview of Evolutionary Algorithms: Practical Is-

sues and Common Pitfalls, Journal of Information and Software Tech-
nology, 817–831, 2001

