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Abstract

With the goal of developing an argument search engine, a novel approach to
estimate the relevance of the arguments on the Web is proposed. Argument
relevance is a quality criterion which indicates how much an argument con-
tributes to a speci�c discussion. We model an argument as a conclusion and
a set of premises which support or attack the conclusion, all called argument
units. The approach relies on constructing an argument graph which repre-
sents the arguments and their relations on the Web. PageRank is then used to
score the argument units in the graph according to the attention they get as
premises. The relevance of an argument is then estimated using the PageRank
scores of their units. We use AIFdb to construct a ground-truth argument
graph and apply our approach to rank the arguments in it. Then, we evaluate
the rankings of a set of arguments by comparing them to rankings which are
generated by experts. The experiment reveals a positive Kendall's correlation
of 0.28. Starting from these results, we bring our approach to the Web by de-
veloping a cross-domain argument mining approach. A cross-domain argument
web corpus is constructed to represent three di�erent web domains. A domain
is any set of documents on the Web which share the same source or the topic.
The corpus is used to develop and evaluate the ability of the cross-domain
argument mining approach to carry their knowledge over di�erent collections
of documents on the Web. To evaluate the ability of the cross-domain ap-
proach to generalize over domains, We develop an in-domain approach which
is trained and tested on the same corpus. The e�ectiveness of both approaches
is found to be relatively close with regard to a minority baseline but indicates
the need for improvements.
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Chapter 1

Introduction

With the rapid expansion of the content on the web, it became an invaluable
source of information for billions of users around the globe. Contemporary
search engines continuously mine the web and provide the users with the most
relevant information for their queries. As the content of the web grows larger,
the information needs of search engine users expand both in complexity and
variety, making the task of mining the web even more complicated. An infor-
mation need can be seen as a topic about which a user desires to know more
[27].
Social media and debate forums enabled humans to discuss and debate about
controversial ideas, adding new type of content to the web known as argumen-
tative content. Argumentation can be de�ned as a process whereby arguments
are constructed, exchanged and evaluated in the light of their interactions with
other arguments. An argument is a set of premises advanced for or against
some conclusion (we give a general term argument unit for a premise or a con-
clusion). People engage in argumentation as an integral part of their daily-life,
usually to defend and exchange opinions. One type of information need, which
is highly required in this process, is the user's wish to �nd relevant arguments
to a conclusion or hypothesis he/she has, such as "we should ban homeworks".
The major challenge would be to mine the Web for arguments and then to
return to the user the subset of arguments which are more likely to convince
him/her of the acceptance or rejection of the conclusion he/she is searching
for. We refer to a search engine which will provide relevant arguments for a
user's hypothesis as argument search engine.
In recent years, we experienced the emergence of a new research area called
argument mining which aims to automatically detect the arguments of a doc-
ument, their structure and their relations. In a typical argument mining task,
a set of documents referred to as corpus is typically annotated manually by
humans to constitute what we call ground truth. Later, supervised machine
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CHAPTER 1. INTRODUCTION

learning classi�ers are trained and tested on the annotated corpora and then
applied in real world.
Machine learning is a �eld of computer science that enables programs to im-
prove over some task from experience with respect to an e�ectiveness measure.
E�ectiveness quanti�es the extent of which the output of an input instance is
correct in comparison to the annotated corpus. Usually, an input instance is
a span of text and the output is a class from a prede�ned set of classes (e.g.
argumentative and non-argumentative). A program which is trained on an
annotated corpus to predict the class of an input instance is called a classi�er.
To assess the e�ectiveness of such a classi�er, precision and recall measures are
used. For a speci�c class, precision p quanti�es the ratio of the input instances
which are correctly classi�ed with that class to the all classi�ed input instances
.
Earlier research on argument mining concentrated on classi�cation of textual
segments (e.g. sentences) into argumentative and non-argumentative ([30]
and [26]), classi�cation of the argumentative type of the argument units into
premise or conclusion ([23], [32] and [38]), and the classi�cation of the argu-
mentative relation between each pair of argument units into support, attack
or non-argumentatively related ([32], [41] and [33]). An argumentative relation
refers to a pair of argument units (a premise and a conclusion) and indicates
that the premise is supporting or attacking the conclusion. Each classi�cation
task is typically based on a single corpus in a k-fold cross-validation evaluation
setting, where the corpus is divided into k parts and the e�ectiveness of the
classi�er is evaluated on each fold after being trained on the other k-1 folds,
and then the total e�ectiveness measure is averaged over all folds.
The characteristics that distinguish good arguments have been investigated
since humans started to think how they can e�ectively persuade their com-
munities of a certain idea. Early work on persuasive argumentation goes back
to Aristotle [8] where he introduced the principles of successful persuasion in
public speaking. Further research has been done by Toulmin to introduce for-
mal models for good arguments [43], representing an argument as a conclusion,
supporting premises, warrants which justify the inference from the premises to
the conclusion, backing that serves to support the warrant and counter argu-
ment statement known as rebuttal.
Recently, the criteria of argument quality have been analyzed and divided
into: argument acceptability, argument relevance, and argument su�ciency
[10]. According to these criteria, a good argument should have premises that
are singly or in combination relevant to the conclusion, i.e. contribute to the
acceptance or the rejection of the conclusion, acceptable for a reasonable per-
son and su�cient as a ground to draw the conclusion. While most of these
criteria are studied theoretically, only argument acceptability has been mod-
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CHAPTER 1. INTRODUCTION

eled computationally. We call the automatic evaluation of argument quality
argument analysis.
Dung [15] de�ned a mathematical representation of the acceptability of argu-
ments by considering an argument accepted if all the arguments attacking it
are rejected and considering it rejected if it has at least an attacking argument,
which is accepted. It is easy to notice that argument acceptability is orthogo-
nal to argument relevance, because an argument can be accepted but still not
relevant to a proposition a user has.
Motivated by the idea of an argument search engine, in my thesis I investi-
gated the following research questions: how to model argument relevance
computationally on the Web? Argument relevance is the most important
quality criteria for an argument search engine, since it matches the concept
of relevance in regular web pages. In [45] we suggested a framework to assess
the relevance of arguments by using PageRank. Originally, PageRank is used
in information retrieval to assess the objective relevance of a web page, by
using the number and quality of the referring web pages [31]. Analogously and
based on argument attack/support relations, we estimated the relevance of an
argument, hypothesizing that a conclusion is more relevant, the more it is used
as premise by other arguments.
To evaluate this idea, I built an argument graph from existing argument maps
on AIFdb [25]. An argument map is a set of arguments and the attack/support
relations between. AIFdb is a database which allows for the storage and re-
trieval of arguments in a standard format. It has 50,000 argument units, 57
corpora and about 10,000 argument maps.
The constructed argument graph contains all the arguments on AIFdb and the
attack/support relations between them, after merging the duplicate argument
units across di�erent argument maps. Next, I used PageRank to estimate
the arguments' relevance in the constructed graph. Later on, we compared
the rankings produced by PageRank with rankings produced by experts. We
found that there is a positive correlation between the annotated ranking and
PageRank scores, which outperforms several intuitive baselines.
These positive results in assessing argument relevance motivated me to realize
our approach on the Web. The Web, characterized by its scale and heterogene-
ity, constituted a challenge to the existing argument mining approaches. The
main reason is that most of the developed argument mining classi�ers are usu-
ally tested and trained on one corpus in a supervised settings. Consequently,
they tend to capture domain-speci�c properties which makes it ine�ective on
other domains. We call this di�culty, which an argument mining classi�er
faces, the domain-e�ect. A domain is a set of documents that share a common
characteristic (e.g topic or source). Due to its increasing growth in terms of
size and content in the last two decades, the Web covers now a plethora of
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CHAPTER 1. INTRODUCTION

domains. This leads us to the second research question of how to domain-
robustly mine the Web for arguments ? Domain-robustness of a classi�er
can be understood as the ability of a classi�er to generalize over domains. To
guarantee domain-robustness while developing our argument mining approach
on the Web, I conducted a cross-domain experiment whereby the e�ective-
ness of our argument mining classi�ers was tested on one corpus, after being
trained on the other corpora. To evaluate the e�ectiveness of our classi�ers
in guaranteeing domain-robustness, we carried out an in-domain experiment
where we trained and tested our classi�ers on the same corpus, thus excluding
the domain-e�ect. The corpora which were chosen for the experiments include
Araucaria [39], WebDiscourse [19] and AIFdb (without Araucaria) [25].
The three corpora were annotated with argument units and argumentative re-
lations and constituted our cross-domain argument web corpus. We labeled the
sentences in each corpora with the type argumentative and non-argumentative,
representing a real or a fake argument unit. Similarly, we labeled ordered
pairs of argument units in the corpora with related or non-related indicat-
ing a holding or a nonexistent argumentative relation between the pair. In
the cross-domain and in-domain experiments, we developed classi�ers to dis-
tinguish whether a sentence is argumentative or non-argumentative. We call
such a classi�er an argument unit classi�er. In addition, we developed clas-
si�ers to identify whether an ordered pair of argument units are related or
no-related. We call such a classi�er an argumentative relation classi�er. The
count of the sentences in our corpus which are labeled with the type argumen-
tative is smaller in size than those labeled with the type non-argumentative
which makes it hard for a classi�er to distinguish them. Therefore, we focused
while evaluating our argument unit classi�ers on the argumentative class. For
the same reason, we concentrated on the related class in the evaluation of the
classi�ers which will be developed to predict the class of an argumentative
relation. We refer to each class as the positive class.

In the cross-domain experiment, our argument unit classi�ers achieved a
positive precision of 0.43, in comparison to 0.56 in the in-domain experiment.
Additionally, Our argumentative relation classi�ers accomplished a precision
of 0.33 in the cross-domain experiment in comparison to a precision of 0.48 in
the in-domain experiment. The relatively close e�ectiveness of the classi�ers
in both experiments indicates a positive result of for our approach to develop
a cross-domain argument mining approach. Nevertheless, it indicates the in-
adequacy of the existing approaches, which rely solely on existing corpora for
training classi�ers, to extract the arguments on the Web.

This thesis is structured as follows: In Chapter 2 we give an overview of
machine learning and argument modeling. Additionally, we list the research
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CHAPTER 1. INTRODUCTION

related to argument analysis and argument mining. In Chapter 3 we introduce
our approach to construct an argument graph from the Web and to estimate
argument relevance and elaborate on the process in which we built an argument
graph from AIFdb for the evaluation of our PageRank for argument relevance.
In Chapter 4 we explain how we modeled arguments on the Web and the
process of creating our cross-domain argument web corpus that we used later on
to develop our domain-robust argument mining approach. Finally, in Chapter
5 we summarize the content of this thesis and give an outlook on further work.
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Chapter 2

Background

Argumentation which is a verbal activity for which the goal consists of convinc-
ing the listener or the reader of the acceptability of a standpoint by means of
a constellation of propositions justifying or refuting the proposition expressed
in the standpoint [44], has been studied since the early work of Aristotle. It
has been heavily investigated from di�erent point of views, such as logic, psy-
chology, philosophy, linguistics and computer science.
Recent work on argumentation in computational linguistics is concentrated
on argument mining, which aims at the automatic extraction of arguments
and their structure from a document. The emergence of this �eld was mainly
motivated by previous work by Toulmin [43] on the modeling of persuasive
arguments. An argument model is an abstraction from the language level to a
more formal level, where the constituting units of an argument, their relations
and their types are described. An argument model is crucial for the mining
of arguments since it speci�es the granularity of the constituting units (e.g.
on sentence level), the types of the argument units and their relations. An
approach for argument mining extracts the argument units and the relations
of an argument as speci�ed by the used argument model. These speci�cations
are also essential for an analysis of the quality of an argument and especially
for this work since, as described in Chapter 1, our approach relies on a struc-
tural analysis of the arguments to assess their relevance.
The in�uential work of Toulmin [43] was followed by more research in the di-
rection of �nding what are the criteria of a good argument, such as [10] and
[17]. In addition, the advancements in technology in the 20th century and the
wider understanding and developments in machine learning contributed to the
recent progress in argument mining.
Machine learning, is a �eld which enables algorithms to improve over one task
with experience with regard to an e�ectiveness measure. In argument mining,
such a task can be the classi�cation of the type of an argument unit, and an
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CHAPTER 2. BACKGROUND

experience for this task can be an example of an argument unit labeled with
its correct type. To use machine learning algorithms in argument mining, a
corpus, which is a set of documents, is usually utilized to provide the machine
learning algorithm with the required set of experiences to learn the task. A
corpus is usually created by letting experts, students or normal humans man-
ually locate the arguments in a set of documents. This is usually done by
creating annotations to specify the argument units and the relations between
them according to a prede�ned argument model. An annotation is a span of
text labeled with some meta data, e.g. the type of an argument unit. Later
on, the extent of consensus between the annotators over the annotations is
calculated since di�erent annotators can annotate the same segment with a
di�erent type value. A low consensus indicates the di�culty of the task and
consequently a lower e�ectiveness by any machine learning algorithm in learn-
ing the task is expected. In this chapter, I will �rst introduce a brief overview
of machine learning. Later on, I will brie�y discuss existing argument mod-
els and state their main di�erences to our suggested argument model. Next,
I will introduce a brief background about argument analysis which aims at
the automatic evaluation of argument quality. Subsequently, I will summarize
related work to argument mining, highlighting the main motivation and the
di�erences to my approach. Finally, I will report on existing corpora, which
are annotated with arguments to give the user an idea why and how I created
a new corpus as described in Chapter 4.

2.1 Overview of Machine Learning

Most of the research done in the �eld of argument mining is based on machine
learning algorithms. Machine learning is a �eld of computer science that en-
ables algorithms (classi�ers) to improve over some task (learn) from experience
with respect to an e�ectiveness measure [28]. In contrary to classi�cation where
the output predicted by a classi�er for an input vector is discrete, in Regression
the predicted output for a given input vector as a continuous value. Machine
learning can be divided into supervised and unsupervised learning. As will
be explained in a later section, a typical task in argument mining is to clas-
sify a text segment into a class from a prede�ned set of classes (e.g. premise
or conclusion). For this task, we call the text segment as input instance. In
unsupervised learning, a classi�er obtains the required knowledge to perform
such a task by discovering patterns in given unlabeled input instances. On
the other hand in supervised learning, a classi�er is confronted with a set of
input instances labeled with di�erent classes to acquire that knowledge. Both
approaches aim to generalize over a given set of input instances and their asso-
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CHAPTER 2. BACKGROUND

ciated classes, called ground truth, to be able to classify unseen input instances
into the correct output. To simulate this contrast in supervised learning, the
given input instances and class pairs are divided into training and testing sets.
A classi�er has access to the class of the input instances only in the training
set, while its e�ectiveness is measured on the training set by comparing its
output to the associated class of the input instance in the ground truth. The
e�ectiveness of a classi�er quanti�es its ability to predict the correct class of
an input instance with regard to the ground truth.

Let us assume that a set of n input instances labeled with k class D =
(x1, y1), ...(xn, yn) is given where xi represents an input instance and yi rep-
resents its class. let Di be the set of the input instances labeled with the ith
class. A supervised classi�er depends on two functions to perform its task:

• model formation function: a function which projects the input instances
into a model space where interesting aspects of the input instances are
quanti�ed by means of a computer. Notice that a computer doesn't
denote a regular machine but an abstract mathematical function that
computes interesting features of such an object.These easily measurable
properties called features represents the dimensions of the model space.
Features are particular instances of a Feature Type. A feature type for
example can be bag-of-words where each feature means the frequency of
a word. We call the projection of an input instance into the model space
as feature vector.

• model function: which maps all the feature vectors in the model space
to the all possible classes.

Depending on the classi�er type, the model function is designed to assume one
hypothesis from a hypothesis space. A hypothesis is a formal representation
that maps a feature vector into its class. Usually, the classi�er type states also
how the hypothesis space should be searched in a way that guarantees high
e�ectiveness and tractability. The classi�er type which we will use in this work
is Random Forest which is a set of Decision Tree classi�ers. Decision Tree is
a classi�er type whose model function assumes a hypothesis that is designed
as a tree of nodes. Each node represents a decision which forks to a successor
node depending on the possible value of a speci�c feature. The leaves of the
tree decides for the class of the input instance.

All of the classi�ers developed in this thesis are limited to two classes (e.g.
argumentative vs non-argumentative). Usually, one class is called the positive
class and the other class is called the negative class, depending on which class
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CHAPTER 2. BACKGROUND

is of interest for us. Given a testing set, a classi�er separates its instances into
positives and negatives. We call all the positives which were labeled as positive
in the ground truth as true positives (TP), while we call are all others as false
positives (FP). Similarly, we call all negatives which were labeled as negative
in the ground truth as true negatives (TN), while we call all other negatives
as false negatives (FN).
To evaluate the e�ectiveness of a classi�er, Precision and Recall measures are
used. For a given positive class, precision p quanti�es the ratio of positives
that are classi�ed correctly to all the classi�er input instances, while recall r
refers to the ratio of all positive instances that were correctly classi�ed to the
all positive instances in the ground truth. Formally :

p =
|TP|

(|TP|+ |FP|)

r =
|TP|

(|TP|+ |FN|)

Generally, achieving either high precision or high recall is very easy, e.g.
perfect recall can be obtained by always producing the positive class. If both
measures are desired their harmonic mean can be computed, called the F1-
score (F).

F =
2 · p · r
p+ r

All these measures concentrate on one positive class, giving it more impor-
tance than the other negative class. When all classes are of equal importance,
accuracy (a) is used. Accuracy estimates the ratio of correct decisions taken
by the classi�er to the all taken decisions.

a =
|TP|+ |TN|

|TP|+ |TN|+ |FP|+ |FN|

Alternatively, F1-scores can be weighted over classes. Micro-f1 weights
the F1-scores of a class by the count of the input instances labeled with that
class in the testing split. On the other hand, Macro-f1 weights the F1-scores
of all classes equally. Provided that Fi is the F1-score of the class i, the
micro-averaged F1-score and the macro-averaged F1-score can be calculated
as follows:

Macro-f1 =

∑|D|

i=1 Fi

k

Micro-f1 =

∑|D|

i=1 Fi · |Di|

|D|
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Usually during evaluation, the given labeled input instances are divided in
multiple splits into di�erent training and testing sets. In each split, the testing
sets are usually exclusive and equal in size, i.e. no common input instances
exists among them. The e�ectiveness of a classi�er is measured over the test-
ing set for each split, after it is trained on its corresponding training set. This
evaluation setting is usually called k-fold cross-validation where a fold stands
for a testing set and k is the count of the splits. The used e�ectiveness measure
is then averaged over all splits.

All the aforementioned e�ectiveness measures rely on a ground truth, usu-
ally created by humans, to assess the extent of which a classi�er is able to
perform a task in the real world. Given a ground truth, a baseline is usually
used to assess the di�culty of the task and the novelty and the need for a
sophisticated machine learning classi�er. A baseline is a lower bound of e�ec-
tiveness achieved by a trivial approach, such as counting the number of words
in an input instance. Token n-grams represents the percentage of every 1-N
possible sequences of tokens.

In Regression, however, the predicted value of an input instance is con-
tinuous, i.e. a rational number. Typically, the model function is �t over the
ground truth which represents the relation of the input-output pairs. The �t-
ting is done by minimizing the average error between the output predicted by
the function and the output associated with the input in the ground truth. A
regression algorithm then predicts an output ei for a given input instance xi.
In regression, the e�ectiveness is estimated in terms of a mathematical error.
Mean Absolute Error (MAE) measures the average distance between an algo-
rithm's predicted output and the actual output in the ground truth. Mean
Squared Error (MSE) measures the average square of the distance between
an algorithm's score predictions and the actual scores in the ground truth.
Provided a set of n input-output instances D = (x1, y1), (x2, y2)....(xn, yn):

MAE =
1

n
·
n∑
i=1

|yi − ei|

MSE =
1

n
·
n∑
i=1

(yi − ei)
2

2.2 Argument Modeling

As discussed in the introduction, we aim in this thesis at estimating the rele-
vance of the arguments on the Web. The relevance of an argument represents
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CHAPTER 2. BACKGROUND

the bene�t it brings to a debate or a discussion. Argumentation occurs in
everyday life between two or more sides who have di�erent views on a contro-
versial topic. The dialectical view of argumentation represents it as a process,
whereby a proponent and an opponent exchange their conclusions and the rea-
sons behind them over the topic. Another view on argumentation focuses on
arguments as the products of this process.

To analyze the quality of arguments usually an argument model is employed.
An argument model abstracts from the language level to a higher level where
the main units of the argument, their relations and their types are described.
The type of an argument unit speci�es the way it contributes to the persua-
sive strength of the argument from which the argument unit is part of, e.g.
premise. The argumentative relations between the argument units of an ar-
gument represents the interactions between them that drive the persuasion of
the argument. According to the argument model, an argumentative relation
has a source and a target which speci�es the �ow of the interaction between
them. Additionally, an argumentative relation has a type that implies the role
it plays in the persuasive strength of the argument. The argument model can
specify the types of the source and the target for an argumentative relation
with a speci�c type to hold. For example, a support relation can exist between
a source with the type premise and a target with the type conclusion and not
the other way around. We call the argument unit types, the argumentative
relations and their types used in an argument the argument structure.
On the language level, an argument model may describe the argument units
and the argumentative relations as annotation categories, labeled with their
types as metadata. An annotation is a span of text that represent a speci�c
concept and labeled with some meta data, such as a tag or a reference to
another annotation. An annotation category is a class of annotations which
denote the same concept, e.g. "Title". We call this technical representation
of an argument model on the language level as annotation scheme. As we will
see in Subsection 2.5, an annotation scheme is of high importance during the
creation of a corpus since it provides the required technical details to annotate
the document with arguments.
Toulmin [43] was the �rst who modeled arguments mainly to evaluate their
quality. The in�uential model of Toulmin formed a comprehensive abstraction
of arguments on which di�erent models and simpli�cations were based. Toul-
min's model covers both the view of the argument as an individual product
and as a part of a dialectical process.
As shown Figure in 2.1, Toulmin [43] de�ned six argument unit's types:

• Data: the facts or evidence used to prove the argument
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• Claim: the conclusion of the argument

• Warrant: the general hypothetical logical unit that justi�es the inference
from the data to the claim

• Quali�er: units that limit the strength of the argument or propose the
conditions under which the argument is true

• Rebuttal: a counter-arguments or an argument unit that indicates cir-
cumstances when the general argument doesn't hold true

• Backing: an argument unit that supports the warrant (i.e. an argument
that doesn't necessarily justify the conclusion but does support the ac-
ceptability of the warrant

The rebuttal is used usually to state an exception to the generalization intro-
duced by the warrant. Typically, an author tries to anticipate potential critics
against his argument and try to preempt it by explicitly mentioning exceptions
where the argument doesn't hold. This can be seen as a re�ection of the di-
alectical aspect of argumentation in Toulmin's model. Even though Toulmin's
model can be seen as an ideal model to represent arguments, the arguments
exchanged in everyday life rarely contain most of the units described in Toul-
min's model. Usually, an author of an argument drops the warrant since it is
implicit or doesn't mention a rebuttal since he/she couldn't formulate one. A
more coverage of the units in Toulmin's model can be expected in more formal
domains such as law or scienti�c text.
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Figure 2.1: Toulmin's model

Since the focus of this thesis is to mine arguments on the Web and to
analyze their relevance and owing to the heterogeneity of the Web, we opted
for a simpler model as I will introduce in Subsection 4.3. In their work on
annotating argument structure in the domain of essays, Stab and Gurevych
[40] introduced a novel model to represents the arguments in argumentative
essays. The argument model consists of argument units and the argumentative
relations between them. In comparison to Toulmin's model, this model explic-
itly de�nes an annotation scheme which includes two annotation categories:
argument unit and argument relation. For the argument units, the annotation
scheme speci�es the a granularity of the argument units in an essay which is
any sequence of words. These technical details are important since Stab and
Gurevych [40] used this argument model to create a corpus from a set of es-
says after manually annotating the arguments in the essays with the argument
model. As shown in Figure 2.2, Stab and Gurevych [40] introduced three
argument unit types:

• Premise: an evidence which underpins the validity of a conclusion

• Claim: A conclusion that is either true or false and shouldn't be accepted
by the reader without additional support

• Major Claim: the author's stance with respect to the prompt against
which the essay is written (also called thesis)
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Compared to this model, our suggested model doesn't include a Major Claim
argument unit type. The main reason is that while the author of an essay is
inclined to state his thesis against the prompt, the argumentation which takes
place on the Web doesn't necessarily be guided with a prompt. This makes it
di�cult to distinguish between a regular conclusion and a thesis in terms of
generality. Another di�erence between our model and this model is that we
de�ne the granularity of an argument unit to be the sentence level. While this
model's assumption of the argument units' granularity is more general, our
decision not to choose a more �ne-grained granularity is mainly for e�ciency.
In this work, we aim to mine arguments from the Web with the goal of as-
sessing their relevance. Owing to the tremendous size of the Web, opting for
a more �ne-grained granularity like the clause level to de�ne the boundaries
of argument units in requires parsing all the documents on the Web, which
is rather a computationally expensive task. Similar to our model, Stab and
Gurevych [40] used argumentative relations which indicate either a support or
an attack relation between either:

• a Premise and a Premise

• a Premise and a Claim

• a Premise and a Major Claim

• a Claim and a Major Claim

Argumentative relations constitute the main component of the structure of an
argument. They models the inference or the refutation between the premises
and the conclusion of an argument as a directed edge. Similarly, in our model
we use argumentative relations to model the argument structure; however, we
don't distinguish between an attack or a support relation. The main reason is
that our approach estimates the relevance of an argument based on the amount
of the involvement of its premises in di�erent arguments regardless whether
the premise was used in an attack or a support relation.
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Premise
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Figure 2.2: An argument model to represent arguments in the argumentative essays
domain

2.3 Argument Analysis

What makes a good argument is a question which has been studied thoroughly
in the �eld of logic and humanities. In his book [8], Aristotle introduced what
is possibly persuasive in every given case. Motivated by the emergence of
democracy, the main work of Aristotle on rhetoric concentrates on improv-
ing the ability of public speakers to convince their audience of a certain idea.
His research focused on arousing and exploiting the emotions of the audience
and studying the in�uence of a speaker's character. The theory introduced by
Aristotle laid general rules about persuasion, concentrating more on the pro-
duction of persuasive speech than a deep analysis of argumentation. Aristotle
introduced a psychological analysis of human's emotions and character and
how a speaker can exploit them to convince an audience with his stance on a
certain topic.
The work of Aristotle is hard to model computationally since an explicit pro-
�ling of the speaker, his/her character, and his/her credibility lacks on the
Web, owing to the anonymous nature of the web. For the same reason, it
is di�cult to identify a potential audience of an argument and their current
emotional status. Additionally, a complete understanding of emotions and a
computational analysis of it is still lacking. Aristotle's work on rhetoric, how-
ever, motivated recent studies on argument analysis.
Blair [10] for example, introduced three criteria of a good argument : argu-
ment relevance, argument acceptability and argument su�ciency. Damer [14]
adds to these criteria the existence of a rebuttal. Argument su�ciency assesses
whether an argument is based on enough amount of premises. For Argument
relevance, Walton [46] di�erentiates between probative relevance and dialecti-
cal relevance. Probative relevance captures the contribution a set of premises
brings to the acceptance or rejection of its conclusion. Whereas dialectical
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relevance estimates how much does an argument contribute to settling a de-
bate or a discussion. Argument acceptability, however, is concerned with the
magnitude of consensus an argument achieves.
Even though the three quality criteria are well understood theoretically, no
computational approach has been introduced to automatically assess them
apart from the work of Dung [15] on argument acceptability. A computational
approach to assess the quality criteria of arguments is needed to develop an ar-
gument search engine. The reason is that a search engine is expected to process
a tremendous amount of data and an enormous number of queries in limited
time. Therefore, an approach which is able to be implemented on computers
is needed to process the large amount of data. A computational approach to
assessing the quality of an argument should automatically retrieve the argu-
ments on the Web that have enough support, widely accepted and relevant to
the topic the user is arguing about.

Starting from a set of arguments and the attack/support relations among
them, Dung [15] de�ned an argumentation framework which allows detecting
which arguments are accepted. Roughly speaking, an argument is accepted, if
all arguments attacking it are rejected, and it is rejected if it has at least an
argument attacking it which is accepted. An argument which is not attacked
at all is considered to be accepted. The work of Dung [15] was the �rst e�ort
to introduce a computational model to assess a quality criterion of arguments.
Cabrio and Villata [12] created a training set of arguments and their at-
tack/support relation from Debatepedia [2] and used textual entailment to
model support/attack relationships between the arguments. Textual entail-
ment is a directional relation between two text segments which holds when
the truth of the second text segment follows from the �rst. Cabrio and Villata
[12] tried to identify accepted arguments on the set of arguments and their
relations from Debatepedia, based on the mathematical models introduced by
Dung [15]. First, they evaluated the e�ectiveness of EDITS(Edit Distance
Textual Entailment Suite), which is an open-source software package for rec-
ognizing textual entailment [7]. They used it in modeling the relations between
the arguments on debatepedia and achieved an accuracy of 0.69 on the training
set they created. To evaluate the performance of EDITs on argument accept-
ability, they compared the accepted arguments, which are identi�ed based on
the gold-standard relations in the training set to the accepted arguments based
on the argument relations classi�ed by EDITs. The system achieved a precision
of 0.74 and a recall of 0.76. Cabrio and Villata [12] intro Though argument
acceptability is an important aspect of argument quality, it is orthogonal to
argument relevance since an argument can be accepted, but still irrelevant to
the proposition it is supporting or attacking.
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In the domain of Essay Scoring, Persing and Ng [35] tried to model argu-
ment strength on essays, which he de�nes as the strength an essay makes for
its thesis [35]. A thesis is the overall message of the whole essay. Persing and
Ng [35] created a corpus of 1000 essays from International Corpus of Learner
English (ICLE) [18]. The 1000 essays were written in response to 10 prompts,
where a prompt is a proposition which the writers should either support or at-
tack. Next, they let 6 out of 30 human annotators, who were most consistent
with the expected scores, score the essay using a scoring rubric. The scoring
rubric ranges from 1 to 4 by a di�erence of 0.5, where 4 is the best grade. This
corpus is the �rst ground truth for the task of estimating argument strength
of student essays..
After the creation of the annotated essay corpus, they used regression to au-
tomatically score the essays. They used syntactical, semantical and lexical
features to map an input instance (here the essay) to the input space. In addi-
tion to the mentioned categories, the features Persing and Ng [35] used relied
on the argument units and argument unit types annotated by the argument
mining classi�er created by Stab and Gurevych [41]. The classi�er was trained
on the created ICLE corpus after annotating the corpus heuristically with ar-
gument units. To evaluate the e�ectiveness of their approach, Persing and Ng
[35] used Mean Absolute Error (MAE) and Mean Squared Error (MSE). In a
�ve-fold cross-validation test, Persing and Ng [35] achieved an MAE of 0.392
and MSE of 0.244.
Compared to our approach to assessing argument relevance, the concept of
argument strength attributes a complete essay and doesn't attribute an indi-
vidual argument which makes it hard to be adapted in an argument search
engine. Moreover, the approach they implemented is speci�cally tailored to
argumentative essays domain. As a consequence, the e�ectiveness of their ap-
proach will most likely decrease severely when applied on the Web. The reason
is that the argumentative content on the Web is very wide in terms of topics
and platforms.
Habernal and Gurevych [20] introduced the concept of argument convincing-
ness and proposed a method to automatically assess it. First, they crawled 16
debates from two debate portals [5] and [1] and modeled convincingness as an
ordered relation between two arguments. In their experiment, they considered
an argument to be a comment which supports or attacks the debate prompt
and ended up with 16,927 argument pairs. A debate prompt is a controversial
conclusion which the user of the debate portals should argue for or against.
Second, they used crowdsourcing to decide for each pair which argument is
more convincing or whether they are equally convincing. Crowdsourcing is the
process of obtaining data by soliciting the contribution from a large group of
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people usually called the crowd. Later on, they created an argument graph
whose nodes are all the arguments and whose edges are the agreed convinc-
ingness relations from the crowd . Next, PageRank [31] algorithm was used to
rank the dominant arguments in the argument graph according to their con-
vincingness. PageRank was originally used on the Web to score the relevance
of a web page by using the count and scores of the web pages referring to it
in a. Recently, it has been used in di�erent applications to �nd the dominant
nodes in a graph by exploiting its structure.
Subsequently, they used di�erent classi�ers to predict the convincingness of a
pair of arguments based on a large set of features and achieved an accuracy
of 0.78. Addressing the problem as a regression problem, they used the same
feature set with the same algorithms to automatically rank the convincingness
of an argument and achieved a Spearman's correlation of 0.4.
The concept of argument convincingness is rather subjective, especially that
they don't report an inter-annotator agreement for the crowd's annotations
on which their approach is based. Moreover, it is completely decoupled from
previous literature on argument modeling and argument quality since they rep-
resent an argument as a mere comment on a certain debate, implicitly ignoring
the argument's structure and its inference. Nevertheless, their research is the
�rst approach which relies on PageRank algorithm to assess a quality criterion
of arguments.

2.4 Argument Mining

Recently, a sub�eld of natural language processing called argument mining
emerged, which focuses on the automatic detection of argumentation structure
in documents. Existing work on argument mining concentrates on the identi�-
cation of argumentative from non-argumentative text segments (argument unit
identi�cation), the classi�cation of argument units into premise or conclusion
(argument unit classi�cation) and �nally the identi�cation of argumentative
relations between argument units .i.e support or attack (argumentative rela-
tion classi�cation).
Since the motivation of this work is to evaluate the relevance of arguments
on the web, developing argument mining classi�ers which are domain-robust
is important, because of the heterogeneous and noisy aspects of the web. A
domain-robust classi�er should be able to achieve good e�ectiveness on a new
domain, on which it has not been trained.
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2.4.1 Argument Unit Identi�cation

In argument unit identi�cation, text segments which might contain an argu-
ment unit are identi�ed. The �rst step is to split a given text into segments
that are likely to contain an argument unit. While some approaches make the
assumption that such segments should match speci�c syntactic levels such as
the sentence level or the clause level, other approaches consider all possible
spans within a speci�c syntactic level. After splitting the text into segments,
each segment is classi�ed into a set of classes (e.g. argumentative or non-
argumentative). In the domain of essays scoring, Persing and Ng [36] used
heuristics to detect the beginning and the end of argument units. A heuristic
is a practical method or a rule of thumb acquired by experience and used to
solve problems. Their heuristics relied on the parse trees of each sentence and
the position of connectives and commas. Later on, each combination of a be-
ginning and an end are used to de�ne a candidate argument units. According to
the evaluation they conducted, they were able to �nd exact matches for 92.1%
of all argument units in their ground truth. Next, they classi�ed each can-
didate argument unit into a premise, conclusion, thesis or non-argumentative
and achieved an F1-score of of 0.47. This work was the �rst systematic ap-
proach to solve the problem of argument unit identi�cation. Nonetheless, this
approach is rather hard to adopt for mining arguments on the Web because of
the high computational e�ort required by the heuristics to parse the sentences
which can be an obstacle, considering the enormous size of the Web. Addition-
ally, the e�ectiveness they achieved is low even in the domain of essay, which
is more likely to drop when applied it on the Web, taking into account the
variety of content existing there.

On their corpus, which consists of 400 essays manually annotated with ar-
gument units and argument structure, Stab and Gurevych [42] used IOB-tagset
to label argument units on the word level. IOB-tagset is a tag set, consisting
of I (inside), B (begin) and O (outside) which are used to mark the words of
an annotation according to their position with regard to the annotation. Later
on, they classi�ed the words of each essay into one of the tags and achieved
an accuracy of 0.895. Since each word is classi�ed only with one tag, the
information about a token which occur in the intersection of two adjacent ar-
gument units will be lost. Similar to our approach, Moens et al. [30] classi�ed
sentences in AraucariaDB [39] into argumentative and non-argumentative and
obtained an accuracy of 0.738 in a 10-fold cross-validation test using feature
types that rely on word pair, text statistics such as sentence length, average
word length and the number of punctuation marks, verb and keyword features.
Despite its simplicity, the main disadvantage of this approach is that multiple
argument units which occur in a sentence are impossible to locate. Addition-
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ally, argument units which cross sentence boundaries cause both sentences to
be classi�ed as argumentative, adding some ambiguity to the model regarding
the number and the location of the original argument unit.
In the task context-dependent claims detection, Levy et al. [26] suggested a
3-steps funnel to precisely allocate a claim which is relevant to a given topic. It
starts by identifying sentences that might contain a claim and be related to the
topic. Secondly, several sub-sentences are generated automatically by a bound-
ary component which relies on a Maximum Likelihood model. A Maximum
Likelihood model is a probability distribution whose parameters are optimized
to best generate the set of observations it is trying to model. Next, the most
probable sub-sentence is selected by a classi�er. Lastly, another regression al-
gorithm ranks all the candidate for one topic by the using as input the scores
generated in the previous steps in the funnel and additional features.

2.4.2 Argument Unit Classi�cation

In this step, the type of the argument units (e.g conclusion or premise) iden-
ti�ed in the previous step is classi�ed. The type of an argument unit is seen
here as a class among a set of classes. While some approaches identify the
argument units before classifying their types as we discussed in the previous
step, other approaches merge both tasks in one task. This is done by adding
extra classes that indicate whether a text segment is argumentative or not to
the considered types.
Alternatively, some approaches skip the task of argument unit identi�cation
and classify a text segment into one of the considered types of the argument
units. For example, Kwon et al. [23] identi�ed the thesis of a document in
public comments on government regulations by using a classi�er. They classi-
�ed each sentence into a thesis or not using token n-grams, the position of the
thesis in the paragraph and the position of the paragraph in the document,
the subhead of the sentence and a trained topical feature to identify whether
the subtopic of the sentence is about policy and achieved an F1-score of 0.55.
Token n-grams represents the percentage of every 1-n possible sequences of to-
kens. Later on, they classi�ed the thesis with regard to the topic into support,
oppose or propose a new idea via subjectivity clues, headword of the sentence
(main predicate), FrameNet Baker et al. [9] frames which are semantic ways
to generalize the main predicate, the parsing rule that expands the sentence
and token n-grams.
Rooney et al. [38] classi�ed text segments into conclusion, premise and non-
argumentative and achieved an accuracy of 0.65. Palau and Moens [32] clas-
si�ed argument units in ECHR into premise or conclusion. ECHR is a set of
documents extracted from legal documents of the European Court of Human
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Rights (ECHR). They achieved an F1-score of 0.741 for conclusions and 0.681
for premises by using location features, sentence length, the tense of the verb,
a binary feature type indicating that the sentence includes the de�nition of an
article and a binary feature type indicating whether the sentence contains a
reference to an article of the law.
Stab and Gurevych [41] classi�ed text segments in persuasive articles into non-
argumentative, premise, conclusion or thesis and achieved an accuracy of 0.773
by using boolean 1-3 n-grams feature types, three boolean feature types indi-
cating the existence of a verb, an adverb or a modal verb. For each boolean
feature type, they generated a boolean feature for each verb, adverb or a model
verb from a prede�ned set. The boolean n-grams feature type they used is a
set of boolean feature that indicate the existence or the absence of a sequence
of n tokens. In addition, they used boolean syntactic feature types to repre-
sent the occurrence of each production rule in the parse tree of the sentence.
As indicator feature types, they modeled the existence of a set of discourse
markers, �rst person prepositions, and pronouns. Additionally, they relied on
contextual features such as the number of punctuations, the number of tokens
and the number of sub-clauses.
As explained in Chapter 1, one of the goals of this thesis is to develop argu-
ment mining algorithms which allows extracting the arguments on the Web as
a former step to a structural analysis of their relevance. The structural anal-
ysis suggested by us relies on an argument graph where the arguments on the
Web get connected to each other depending on the semantic similarity of their
composing argument units. In this graph, an argument unit can be a premise
for one argument and at the same time, it can serve as a conclusion for an
another argument. More precisely, the type of an argument unit relies solely
on the argument from which it is a unit of. Subsequently, in this work we
are not classifying the type of the argument units into premise or conclusion;
however, we classify sentences into argumentative or non-argumentative, leav-
ing the task of identifying the type of an argument unit to the argumentative
relations it participates in.

2.4.3 Argumentative Relation Classi�caiton

Seen as the main component of the argument structure, the main goal of this
step is to identify the argumentative relations between argument unit pairs.
According to the used argument model, this task is turned into a classi�cation
problem by considering an ordered pair of argument units (the source and the
target of the argumentative relation) as an input instance and the types of the
argumentative relations speci�ed by the model as the output classes. A corpus
annotated with arguments according to the argument model is used to develop
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the classi�er to perform this task. When the corpus is not annotated with neg-
ative argumentative relations, this is done automatically by generating them
in a systematic way. A negative argumentative relation is an ordered pair of
argument units for which there is no argumentative relation between them.
Having negative argumentative relations is important in order to learn the
classi�er to recognize nonexistent relations. As we showed in Subsection 2.2,
an argument model can specify the types of the source and the target of an
argumentative relation. This must be taken in consideration upon choosing
an ordered pair for classi�cation and upon generating negative argumentative
relations .
Early work on this task done by Palau and Moens [32], however, did not rely
on machine learning to perform it. Instead, they modeled the argumenta-
tion structure via a prede�ned Context-Free Grammar (CFG). Using these
grammers they parsed the articles in ECHR after identifying the premises and
conclusions in it. Even though the main goal of this model was to recognize
premises and conclusions, it allows as well identifying argumentation structure
as trees. The accuracy achieved using this approach is an accuracy of 0.6.
Since we aim in this thesis to extract the arguments from the web to evaluate
our approach on argument relevance, the approach introduced by Palau and
Moens [32] to mine argumentative relations is rather hard to adopt. The reason
is that they relied while de�ning the CFG on the formality which characterizes
legal text, a characteristic which the heterogeneous content Web lacks. An-
other reason for excluding such an approach while developing argument mining
algorithms on the Web is its low e�ciency.
Stab and Gurevych [41] modeled argumentative relation as an ordered pair of
argument unit and casted the problem of identifying argumentative relations
to a binary classi�cation into support or not-argumentatively related. They
used a classi�er with di�erent features such as indicators, structural, lexical
and syntactic features in addition to the predicted argumentative type and
obtained an F1-score of 0.722.
The structural features they used include the number of tokens of the source
and the target, and their di�erence and the number of punctuation marks in
the source, the target and their di�erence. Additionally, they used a structural
feature type which rely on the distance between the covering sentences and the
position of the paragraph where the argument unit has occurred. The lexical
feature types are based on all combinations of word pairs, �rst words and the
existence of modal verbs. Syntactic features and indicators are the same ones
used in argument unit classi�cation.
In this thesis, we are only interested in whether there is a relation between
two argument units or not. The reason is that, as described in Chapter 1, our
approach for assessing argument relevance relies on constructing an argument
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graph from the arguments on the Web by merging argument units across ar-
guments which have the same meaning. Subsequently, PageRank algorithm
is used to rank the argument units in the argument graph according to their
usage by other arguments as premises, thus further information about the type
of the relation is not needed for our approach to assess argument relevance.
However, such information can be useful for presenting the results.
In his work on modeling argument structure in German microtexts, Peldszus
[33] encoded argumentative relations with a tag for each segment which states
the target of the relation, the dialectical role (proponent or opponent), the
general type, whether the segment represents the central claim (thesis), sup-
ports or attacks another claim, the o�set of the target of the relation, the type
of attack (rebuttal or undercut), the type of support (normal or example) and
whether the relation of the segment is simple or combined with another seg-
ment.
While Peldszus [33] achieved an accuracy of 0.39 for the whole tagset including
48 tags, their approach is tailored to microtext and cannot be applied to the
Web, because of the possible unlimited tagset for long texts which are common
on the Web.
Later on, Peldszus and Stede [34] used Minimal Spanning Tree (MST) to model
several aspects of global argumentation structure and achieved an F1-score of
0.72 in identifying argumentative relations on their English microtext corpus.
Even though the results seems promising, their data set is heavily unbalanced
and contains relatively many attack relations (178 attack relations compared to
286 support relations) [33] which is usually not the case in real data. Further-
more, their approach doesn't tackle the problem of segmentation and assumes
that each text contains only one argument, which makes it hard to adapt on
the Web.

2.5 Argument Corpora

As discussed previously in this chapter, argument mining relies on machine
learning algorithms to extract arguments from a given text. Usually, a typical
step in argument mining, such as argument unit identi�cation is realized by
classifying a span of text into one of a set of classes (e.g. argumentative and
non-argumentative). For this sake, di�erent corpora have been created which
includes a set of documents annotated with arguments according to prede�ned
argument model. We call the process of annotating a set of documents with
arguments the annotation process. One research question tackled in this thesis
is how to e�ectively mine arguments on the Web. Therefore, a corpus that is
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a good representative of the content on the Web is needed. The reason be-
hind this is that having a representative corpus to helps us to better develop
and evaluate our classi�ers, as the corpus will contain a more similar input
instances to those on the real Web.
As we de�ned in Subsection 2.2, the technical representation of an argu-
ment model on the language level is called annotation scheme. An annotation
scheme speci�es the annotation categories used to represent an argument on
the language level. An annotation is a span of text which represents a concept
and is labeled with some meta data (usually a type from a prede�ned set of
types). The annotation scheme includes also further information about the
granularity of a certain annotation category, e.g. sentence level. The technical
informations provided by the annotation scheme is crucial in any annotation
process because it de�nes a systematic rules to annotate arguments, which all
parties involved in the annotation process should obey.
Usually, more than one annotator are employed to annotate a given corpus
according to a prede�ned annotation scheme. Depending on the annotation
task, the agreement between the annotators may vary.The agreement is the
degree of consensus over annotations produced by the annotators and usually
measured by κ. κ's value indicates complete agreement when κ = 1 and no
agreement when κ < 0.
One of the most famous corpora is Araucaria [39] which includes structural an-
notations of arguments created with a graphical annotation tool. The corpus
includes approximately 660 documents from di�erent domains like newspaper
editorials, parliamentary records, judicial summaries, and discussions. The
documents are annotated with argument structure by using a graphical anno-
tation tool. The authors of Araucaria did not report any agreement on the
annotated arguments. Nevertheless, Araucaria is one of the most used corpora
in argument mining.
Mochales and Moens [29] carried out an argument annotation study in legal
cases of the European Court of Human Rights (ECHR). They experimented
with a small corpus of 10 documents and obtain an inter-rater agreement of κ
= 0.58. In a similar subsequent study, they achieved an inter-rater agreement
of κ = 0.75 on a corpus of 47 documents. The annotation scheme in this cor-
pus doesn't contain argumentative relation but contains only argument unit
types annotations. Since we aim at mining the arguments on the Web to assess
their relevance, such a corpus can't be used to develop a classi�er to identify
argumentative relations which constitute the core component of the argument
structure our approach relies on.
Peldszus [33] created a corpus of 115 German microtexts which were annotated
with argument units, support and attack relations in addition to the dialectical
role of the argument unit (proponent or opponent). In the initial annotation
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study, they let 26 students annotate 23 microtext with the described anno-
tation scheme and reported an agreement of κ=0.38. In a subsequent study,
they let three expert annotators annotate 115 German microtexts yielding an
agreement of κ =0.83. The created corpus, though translated into English, lack
non-argumentative text since it was created with speci�c rules which forced
the annotators to generate only argumentative content.
[40] conducted an annotation study of argument units and argumentative re-
lations in the domain of persuasive essays. The annotation scheme includes
arguments units, argument unit types (premises, claim, and major claim) and
argumentative relations (support and attack). The corpus contains 90 essays
from [3] which were annotated by three annotators with percentage inter-rater
agreement of 98%, 86 and %86 for major claims, claims, and premises respec-
tively. For argumentative relations, they achieved an inter-rater agreement
of 92% and 98% for support and attack relation respectively. The corpus is
unbalanced with regard to argumentative relations as only 3.1% of all possible
relations are classi�ed as attack relations, 25.5 % were classi�ed as support
relations, while 72.4 % were classi�ed as non-argumentatively related. Even
though the annotation scheme used to create this corpus contains the enough
speci�cation needed by our argument mining approach which I will introduce
in Chapter 4, we did not use to train or evaluate our developed classi�er. The
main reason is that essays domains is not a good representative of argumenta-
tive content on the Web, since the content of an essay tends to be formal and
targeted against a speci�c prompt.

As we showed, most of the existing corpora are either constructed from
documents from a speci�c domain, e.g. essays or lack argumentative relation
annotations. Therefore and given the wide variety of content on the Web, a
standalone corpus is not representative enough to achieve our goal to develop
a domain-robust argument mining approach. As we will see in Chapter 4, we
will construct a cross-domain corpus which contain multiple subcorpora one
of which is Araucaria.
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Chapter 3

Objective Assessment of

Argument Relevance

3.1 Overview

As explained in Chapter 1, argument relevance, which is an argument quality
criteria among others, can be seen from two di�erent perspectives: dialectical
and probative [46]. The probative (local) relevance of an argument captures
the contribution a set of premises brings to the acceptance or rejection of its
conclusion, whereas dialectical (global) relevance refers to the bene�t of an ar-
gument in a discussion [46]. Dialectical argument relevance is the main quality
criteria that an argument search engine should consider while retrieving the
most relevant argument for a conclusion. The reason is that it represents the
human interest in an argument. Given a set of arguments, an objective method
to automatically assess the relevance of arguments to the conclusion is needed.
In this chapter, I will introduce our approach for computationally assessing
argument relevance which relies on PageRank algorithm. PageRank is an al-
gorithm which was developed by Google for assessing the relevance of web
pages by recursively exploiting the structure of the hyper-links among them,
assuming that a web page is more relevant the more it gets referenced by other
web pages. A hyper-link which refers from one web page to another is seen
as an indicator of the relevance of the referred web page to the referring web
page.
To adopt PageRank to estimate argument relevance I will introduce our model
which consists of three parts: A canonical argument structure to model ar-
guments, an argument graph whose nodes are the arguments and a reuse in-
terpretation function which de�nes equivalence between two argument units
and thereby introduces reuse relations among the arguments in the argument
graph. To simulate PageRank on the web graph, we hypothesized that a con-
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clusion is more relevant, the more it is used as a premise for other arguments.
This structural analysis of the argument graph should allow us to obtain an
objective assessment of argument relevance. An objective assessment of ar-
gument relevance is important, because of the anonymous nature of the web,
where we would like to return to a user the most relevant results while knowing
nothing about his/her background. Based on this analysis, we calculate the
PageRank scores of the argument units in the graph and then estimate the
relevance of an argument based on the PageRank scores of its premises as we
will see in the following subsection 3.2.5.
After introducing our approach for assessing argument relevance, we conduct
an experiment to realize the approach and evaluate it. In the experiment,
we construct an argument graph from AIFdb Lawrence and Reed [24] which
constitutes of small argument graphs, called argument maps, that are created
mostly by humans and thus, we call this graph a ground-truth argument graph.
I will elaborate on the process of creating the ground-truth argument graph
and provide statistics about its size and structure to give the reader an idea
about its adequacy to evaluate our approach.

Subsequently, I will report on the ground-truth benchmark rankings ob-
tained for a set of conclusions from the ground-truth argument graph by letting
experts in computational linguistics rate the relevance of the arguments given
for them. These benchmark rankings will be used to assess the e�ectiveness to
our approach in estimating argument relevance. Lastly, I will elaborate on the
experiment we carried out to evaluate the rankings produced by our PageRank
for Argument Relevance approach against the previously created benchmark
rankings.

3.2 PageRank for Argument Relevance

3.2.1 PageRank on The Web

PageRank is a link analysis algorithm which is used by search engines to es-
timate the relevance of web pages by simulating a random surfer. Consider
a surfer who is browsing the Web. Starting from a random page, the surfer
can either click on a random link on that page or browse to a random page
on the Web. Let us assume that the probability with which the user stays on
the page is α and the probability that he browses randomly somewhere else is
1− α.
Now imagine that we let the surfer runs for an in�nite time. The PageR-
ank of a web page is the probability that we �nd the random surfer at that
page. Thus, PageRank algorithm generates a probability distribution over the
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web pages which represents their importance by making use of the hyperlinks'
structure among them.
Given D a set of web pages, the PageRank of a web page d ∈ D is computed
recursively as:

p(d) = (1− α) · 1
|D|

+ α ·
∑
i

p(di)

|Di|

p(di) is the PageRank of a web page di ∈ D that links to d and Di is the set
of all web pages that di links to. In this equation, the left summand represents
the probability that the surfer browses the page d randomly while the right
summand represents the probability that the surfer browses d starting from a
referring pages di. According to the right summand, a page di linking to d
contributes to p(d) more the higher PageRank it gets and the less outgoing
links it has.
PageRank is an algorithm which revolutionized web search, as it is "a method
for rating web pages objectively and mechanically e�ectively measuring the hu-
man interest and attention" [31].

3.2.2 The Web as an Argument Graph

In [45], we introduced an argument graph model which provides a global and
local formal representation of the arguments on the Web with the aim of es-
timating their relevance. Globally, the model provides an abstraction of the
argumentation on the Web by viewing it as an argument graph. The argument
graph represents all the arguments on the Web as its nodes. An edge between
two arguments indicates the relevance of the source to the target. The rele-
vance of the source argument is the extent of contribution it adds to the the
target and is determined by the units and the structure of both arguments.
Locally, the argument graph model represents an argument as a set of premises
and a conclusion (called argument units), de�ning what we call a canonical ar-
gument structure.
The construction of an argument graph relies on detecting the reuse of the
conclusions for some arguments in this graph as premises for others. A conclu-
sion of an argument that is reused as a premise for another argument indicates
the relevance of the former argument to the later. Given a set of arguments,
a reuse interpretation function is used on the local level to merge their units
which are semantically equal. On the global level, we create an edge between
two arguments if the conclusion of the source argument is used as a premise
by the target. Let us introduce our argument graph model more formally:
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3.2.3 The Argument Graph Model

Let D = d1, d2, . . . be the set of all considered web pages. Each web page in
D may contain zero, one, or more arguments. Given D, our model consists of
three blocks:

• Canonical Argument Structure: which represents each argument
in D as a tuple a = (c, P) where c denotes the conclusion of a and
P = c1, . . . , ck its premises, k ≥ 0. Figure 3.1 depicts the canonical
argument structure.

c

c 1 c k
P

Figure 3.1: Canonical argument structure

• Reuse Interpretation Function: An equivalence interpretation func-
tion I that assigns a label from the set {" ≈ ", " 6≈ "} to each pair of
argument units (c, c ′) of all arguments in D.

• Argument Graph:An argument graph G = (A,E) such that A =
a1, . . . , an is a set of nodes where each a ∈ A corresponds to one ar-
gument in D E ⊆ A × A is a set of edges where (a, a ′) ∈ E iff. ∃ci ∈
a ′.P : I(a.c, ci) = " ≈ "

Figure 3.2 illustrates a part of an argument graph where the focus is drawn
to on an edge (a, a ′) between two arguments a and a ′. The argument a has
a conclusion c which is detected by a reuse interpretation function I to be
semantically equivalent to a premise ci of a ′. Thus, an edge was constructed
from a to a ′ which indicates the relevance of a to a ′.
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c'

ciP

c

P

a 2

a 3

a 1

a 4

ci = c

An argument

A conclusion

An edge

Semantic equivalence

a

a'

Figure 3.2: An argument graph example

3.2.4 PageRank for Conclusion Relevance

Given an argument graph G = (A,E), we modify PageRank to score the con-
clusions in the argument graph. As stated in the previous subsection, an edge
e = (a, ai) ∈ E indicates that the conclusion of a is equal to a premise of ai
with regard to the reuse interpretation function used to build the argument
graph G. Now we make the assumption that a conclusion c is given a higher
PageRank p̂(c) the more it serves as a premise for other conclusions and the
higher PageRanks these conclusions get.
To simulate the random walk on the argument graph, we use the original
PageRank p(d) score of the document where an argument is found. The
assumption here is that the more relevant a document is the more relevant
conclusions found on it are likely to be. To maintain a sum of 1 over all ar-
guments, we normalize p(d) by the average number of arguments in each web

page. This results in the ground relevance p(d)·|D|

|A|

In contrast to the web graph, where a document di contributes more to the
PageRank of a document it refers to d the less outgoing links di has, a conclu-
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sion ci contributes more to the PageRank of a conclusion it uses as a premise
c, the less conclusions ci uses as premises. Following this logic, we normalize
the contribution of each conclusion ci's relevance p̂(ci), for which c serves as
premise, by the number of premises |Pi| given for ci. The recursive PageRank
formula is given below:

p̂(c) = (1− α) · p(d) · |D|

|A|
+ α ·

∑
i

p̂(ci)

|Pi|

3.2.5 From Conclusion Relevance to Argument Relevance

For a conclusion c all arguments whose conclusion is c are relevant to it. To
estimate the relevance of an argument we aggregate the PageRank scores of an
argument's premises to estimate its relevance, ignoring the inference used in
the argument. This �ts our model which aims mainly to estimate dialectical
relevance, i.e. the pro�t an argument contributes to a certain discussion. We
use four premise aggregation methods in this work, namely, (1) the minimum
(2) the average, (3) the maximum and (4) the sum of the PageRank values of
the argument's premises.

3.3 A Ground-truth Argument Graph and Bench-

mark Rankings

In this section, I report on the argument graph we created in the pursuit of
evaluating our PageRank for Argument Relevance introduced in the previous
subsection. First, I will introduce AIFdb [25], which we used to construct
an argument graph as formalized in the argument graph model explained in
the previous section. AIFdb consists of a set of argument maps which are
small argument graphs attached to the documents from which they were ex-
tracted. Second, I will thoroughly demonstrate the process in which we created
a ground-truth argument graph from AIFdb by merging all its argument maps,
considering two argument units are equal if they have the exact text. Since
the suggested PageRank for conclusion relevance approach relies on the usage
of a conclusion as a premise by multiple conclusions, I will present statis-
tics about the usages of argument units as premises in di�erent arguments in
the graph. This should give the reader an idea about the structure of the
constructed ground-truth argument graph which our PageRank approach ex-
ploits. In addition to this and to basic statistics about the constructed graph
and its arguments, I will introduce statistics about the count of arguments per
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each conclusion, as an evaluation for the relevance of the arguments can only
be carried out on these argument units which serve as a conclusion for mul-
tiple arguments. Lastly, I will introduce the benchmark rankings we created
by letting experts in computational linguistics sort the arguments given for
or against a set of conclusions according to their relevance. These benchmark
rankings will serve as ground-truth rankings associated with the ground-truth
argument graph against which we will evaluate our PageRank for Argument
Relevance approach.

3.3.1 AIFdb

AIFdb is a database implementation of AIF, allowing for the storage and re-
trieval of AIF complaint argument structures [25]. AIFdb contains about 70
corpora and about 10k argument maps, making the largest existing argument
database. AIFdb also provides part some of documents from which the argu-
ment maps were extracted. The count of these documents and other statistics
about the corpora are shown in Table 3.1.
An argument map consists of a set of argument units and the arguments in
which they are used as premises or conclusion all modeled in a standard for-
mat Argument Interchange Format (AIF). The main aims of AIF were to
facilitate the development of (closed or open) multi agent systems capable of
argumentation-based reasoning and interaction using a shared formalism and
to facilitate data interchange among tools for argument manipulation and ar-
gument visualization [13]. AIFdb o�ers an interactive web interface with which
user can upload their corpora or create a new corpus or a new argument map.
According to AIF, an argument map is a directed graph which consists of two
kinds of nodes, information nodes and scheme nodes. Information nodes repre-
sent argument units in a certain discussion whereas scheme nodes are speci�c
applications of schemes. Schemes are patterns of reasoning which are typi-
cally used to draw the conclusion of an argument from its premises. An edge
can follow from an information node to a scheme node, which means that the
information node has been used in the inference made by the scheme nodes.
These edges are called data edges. Alternatively, scheme edges emanate from
scheme nodes and meant to support conclusions that follow from the scheme
node.
To give an intuition of what is an argument map ? we present here an example
of one as shown in Figure 3.3. The map consists of three information nodes
and two scheme nodes. According to our terminology, these two scheme nodes
correspond to two arguments which have the same conclusion and two di�erent
individual premises.
AIF format's representation of an argument can be mapped easily to the ar-
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Warsaw is beautiful

Warsaw has lots of parks

Default Inference

Warsaw doesn't have a lot of

monuments.

Default Con�ict

Information Node

Scheme Node

Figure 3.3: An argument map example

gument canonical structure we introduced in Subsection 3.2.3, since a scheme
node clearly speci�es the conclusion and the premises of an argument. Thus,
the argument maps in AIFdb exhibit exactly the argument structure needed
by our approach to assess argument relevance. The large size of AIFdb and the
equivalence of its representation of argument structure to the structure needed
by our PageRank approach to assess argument relevance made it a suitable
candidate to be used to realize and evaluate the approach. In the next Subsec-
tion, we will show the process we conducted to construct an argument graph
from AIFdb.

Statistic Name Statistic Value
Count of corpora 57

Count of argument maps 8,479
Count of documents 5,421

Count of information nodes 49,504
Count of scheme nodes 26,012

Table 3.1: General statistics about AIFdb
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3.3.2 Construction of Ground-truth Argument Graph

In the last subsection, we introduced AIFdb and elaborated on its adequacy
to be used in the construction of an argument graph as modeled in Subsection
3.2.3. The argument graph will be constructed from all the argument maps in
AIFdb which are mostly annotated by humans and covers multiple domains.
Therefore, it constitutes a ground-truth representation of argumentative con-
tent on the Web.

The process of building an argument graph from AIFdb started be delet-
ing all duplicate argument maps. This was important since we noticed that
some corpora existed as parts of larger corpora in AIFdb. We considered two
argument maps duplicate if the documents associated with them contains the
exact text. The count of duplicate argument maps amounts to 3,058 and the
count of the remaining argument maps is 5,421.
Next , I converted all the arguments in the left argument maps to the canonical
argument structure introduced in Subsection 3.2.3.

Given an argument map, I carried out the following steps :

• an information node is converted to an argument unit.

• a scheme node is converted to an argument, whose premises are the
referring information node of the scheme and conclusion is the referred
information node of the scheme node

We ignored all the argument maps which have a scheme node without referring
information nodes or referred argument maps. Additionally, we excluded all
the arguments maps which had a scheme node that refers to another scheme
node for simplicity.
After the conversion of the arguments on AIFdb to the canonical argument
structure, all the arguments were merged into an argument graph. As de-
scribed in Subsection 3.2.3, in our model a reuse interpretation function is
used for deciding which argument units are semantically equal. In this case,
we used a reuse interpretation function which decides that two argument units
are semantically equal if they exactly have the same text after converting all
its letters to lower case. Let us call this function exact-match reuse interpre-
tation function. By comparing each possible pair of argument units in all the
arguments via the described function, we merged those argument units which
were decided to be equal. Figure 3.4a shows a histogram of the frequency of
occurrences for all argument units in the argument graph in AIFdb. Notice-
ably, most of the argument units occurred only once in the original corpora
and no matches were found for them. A reason for this can be the simplicity
of the exact-match reuse interpretation function, which checks for the exact
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Statistic Name Statistic Value
Count of arguments 26,012

Count of argument units 31,080

Table 3.2: General statistics about the ground-truth Argument Graph

equivalence between a given pair of argument units.
As explained in Subsection 3.2.5, our PageRank for Argument Relevance gives
a conclusion a higher score the more it serves as a premise by di�erent argu-
ments. As a consequence, using a reuse interpretation function which decides
for a higher count of matches between conclusions is of high importance while
building the graph, as it fosters the structure in the argument graph our ap-
proach exploits for estimating argument relevance.
For this purpose, we experimented with a heuristic-based reuse interpretation
function. A heuristic is a practical method or a rule of thumb acquired by expe-
rience and used to solve problems but without a guarantee. This function uses
heuristics to ignore in its input punctuations, capital letters, all white spaces,
a set of connectives and expressions which are usually used at the beginning
of a conclusion, before checking if the text of the given pair of conclusions are
identical. A full list of the ignored expression is given in the Appendix.
As shown in Figure 3.4b shows a histogram of the frequency of occurrences
of the argument units in the argument graph constructed with the heuristics-
based reuse interpretation function in AIFdb. As shown, this argument graph
exhibits a similar structure to the argument graph constructed with the exact-
match reuse interpretation function, as only few more matches between the
argument units were achieved with the heuristics-based reuse interpretation
function.
Though the structure of the argument graph obtained by using the exact-match
reuse interpretation function doesn't bring a massive amount of discovery of
reuse among di�erent arguments, I decided to carry on further experiments
using the argument graph constructed while using it. The main reason for this
decision was the negligible amount of new matches achieved with the more
sophisticated approach heuristics-based reuse interpretation function and be-
cause of its simplicity. We leave the development of more sophisticated reuse
interpretation functions to future work, due to the limitation of time allocated
for this thesis.

Table 3.2, shows general statistics about the count of arguments and the
argument units of the constructed ground-truth argument graph as described
previously.
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Figure 3.4: Construction of ground-truth argument graph
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The main motivation for constructing this argument graph is to evaluate
our PageRank for Argument Relevance approach. Following our suggested
model in Subsection 3.2.3, the exact match reuse interpretation function
was utilized to merge argument units in the whole AIFdb which have sim-
ilar meanings to construct an argument graph. As described in Subsection
3.2.5, our suggested approach estimates the relevance of an argument based
on the PageRank scores of its premises. Accordingly, PageRank is used to ex-
ploit the structure of a graph by recursively giving a conclusion a higher score
the more arguments have it as a premise.
The count of argument units' usages as premises by multiple arguments, shown
in Figure 3.5a for the constructed argument graph, represents exactly the
structure exploited by our approach. The histogram shows that approximately
the smallest part of the argument units 1,000 serve as premises more than once,
in comparison to 17,093 argument units which are used by multiple arguments
as premises.
To evaluate our PageRank for Argument Relevance approach, the set of argu-
ment units which serve as conclusions for multiple arguments are of high in-
terest since only for or against these conclusions various argument are pushed
that have contrast in relevance. Figure 3.6a shows the distribution of con-
clusions against the count of arguments for each conclusion. The histogram
shows that the majority of conclusions serve for only one argument (11,719),
while approximately 2,000 conclusions serve for more than one argument.
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Figure 3.6: Ground-truth argument graph

3.3.3 Creation of Benchmark Argument Relevance Rank-

ings

As described in the previous subsection, the ground-truth argument graph
will be used to implement and evaluate our PageRank for Argument Rele-
vance approach. For this purpose, we created benchmark rankings for a set
of conclusions and all the arguments in the argument graph pushed against
or for them. These arguments' rankings, sorted by experts in computational
linguistics, will serve as ground-truth rankings against which we will evaluate
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the ranking produced by our approach. All the conclusions which have mul-
tiple arguments supporting or attacking it were candidates for the selection
process. Only this set of conclusions is interesting for us since the arguments
which are attacking or supporting a given conclusion can be sorted according
to their relevance. We call this conclusions set candidate set while we call the
output of the selection process �nal set.
The selection process from the candidate set was conducted in two phases. In
the �rst phase, we retrieved all the conclusions for which at least one argument
has multiply used premises. All other arguments don't exhibit any structural
di�erence in the graph in terms of their premises' usages and hence they will
have the exact PageRank scores. In the second phase, two experts in compu-
tational linguistics classi�ed each conclusion of the set of conclusions produced
from the �rst phase, amounting to 498, into 2 classes: a candidate claim and
not a candidate claim. The mean reason for carrying out the second phase is
the noisiness of AIFdb. As the arguments advanced for the conclusions in the
�nal set will be sorted by humans, we wanted to keep in the �nal set only the
conclusions which are readable and valid.

• A candidate claim: a claim that Web users might search arguments for

• Not a candidate claim owing to one of these reasons

� It is not of general interest but comes from a speci�c or personal
context, e.g., "viv needs to be allowed to prove herself"

� Its meaning is not clear, e.g., "we need to get back to the classics"

� It is not English

� It combines multiple conclusions, e.g., " google wants everyone to
move towards doing everything on their apps in the cloud. apple,
as they made clear with their overly-long iwork for ipad demo on
wednesday, wants every one to move towards using iphone os-based
apps.

� It is not a real conclusion but a topic, anecdote, question or descrip-
tion, e.g., "�ngerpriting at the airport"

The experts were allowed to access all the premises of any argument in the
candidate set to resolve unclear references or disambiguations. The two experts
agreed 451 (90.6 %) of the cases with a substantial Cohen's κ agreement of
0.69. Cohen's κ is a statistic which measures the degree with which two raters
agree on classifying a set of items into mutually exclusive classes, taking into
account the probability that they agree coincidently. In 136 cases (27.4 %)
both experts chose the class not a real conclusion which re�ects the noisy
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aspect of AIFdb. That's why we chose the conclusions on which both experts
classi�ed as a candidate claim which amounts to 70 conclusions.
The same experts classi�ed the 264 arguments for the left 70 conclusions into
3 classes:

• Candidate argument

• Candidate counter-argument

• None

The experts agreed in 201 cases (76.1 %) with κ = 0.63. To allow for a rea-
sonable and tractable rankings, we kept the conclusions on which both experts
agreed on at least two arguments or counter-arguments. At the end, the �nal
set included 32 conclusions and 110 attacking or supporting arguments.
Figure 3.7a shows the arguments distribution for each conclusion in the �nal
set, while Figure 3.7b shows the distribution of arguments over each count of
premises.
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Figure 3.7: Benchmark argument relevance dataset

All the arguments given or for each conclusion in the �nal set were sorted by
seven experts in computational linguistics and information retrieval according
to their relevance. Since our approach aims to adapt PageRank for the ob-
jective estimation of argument relevance and provided the possible subjective
understanding of it by humans, a large number of experts was needed to have
as various range of views about the ranking tasks as possible. A large set of
experts should allow us to approximate an objective perception of argument
relevance during the ranking process. An objective estimation of argument
relevance is important in the ground-truth benchmark rankings because our
approach against which this benchmark ranking set will be evaluated should be
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objective as well. During the manual ranking process, we de�ned the relevance
of an argument for a given conclusion as the degree by which it contributes
to the acceptance or rejection of the conclusion. The experts were informed
that they have to give a strict ordering for the arguments, i.e. each arguments
should be unique ranking. To evaluate the consensus between each pair of ex-
perts over the rankings of a set of arguments, we used Kendall's τ. Kendall's τ
measures the ordinal similarity between two rankings. In comparison to Spear-
man correlation, Kendall's τ is not a�ected by how far from each other the
rankings are but only whether there is an inversion between them. To better
understand Kendall's τ let us introduce it more formally:

De�nition: Let (x1, y1), (x2, y2), ..., (xn, yn) be a set of observations of the
joint random variables X and Y respectively. Any pair of observations (xi, yi),
where i 6= j, are said to be concordant if the ranks for both elements agree,
i.e., if both xi > xj and yi > yj or if both xi < xj and yi < yj. They are
said to be discordant, if xi > xj and yi < yj or if xi < xj and yi > yj. Let
us call the count of concordant pairs C and the count of discordant pairs D.
Furthermore, let K and L be the count of of the tied groups of observations
for X and Y respectively. A group of observations is said to be tied if they
have the same value. Additionally, assume that tk and ul are the size of a tied
group of observations for X and Y respectively.

τ =
C−D√

(n0 − nx)(n0 − ny)

Where

n0 =
n(n− 1)

2

nx =

K∑
k=1

tk(tk − 1)

2

ny =

L∑
l=1

ul(ul − 1)

2

• if τ = 1 then the two rankings are the same

• if τ = −1 then the two rankings are the reverse of each other

• if τ = 0 then X and Y are independent

For each conclusion, the average Kendall's τ of the argument rankings for
all experts' pairs was calculated. The distribution of the conclusions over
average Kendall's τ is shown in Figure 3.8a. In 22 cases, the Mean Kendall's
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τ was greater than 0.2. Thus, we believe that the resulting rankings qualify
as benchmark rankings. The mean Kendall's τ over all conclusions and all
experts is 0.35, while the lowest agreement among experts' pairs is 0.1 and
the highest agreement is 0.59, all give in Kendall's τ correlation values. This
contrast between the experts' pairs supports our hypothesis that the notion of
argument relevance is perceived subjectively.
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Figure 3.8: Benchmark argument relevance dataset

3.4 Assessing Ground-truth Argument Relevance

In this section, I will introduce the experiment we carried out to test the ef-
fectiveness of our approach to estimate argument relevance on the Web. As
described in Subsection 3.2.5, our approach relies on a model which projects
the argumentative content on the Web into an argument graph whose nodes
are the arguments on the Web and whose edges are the reuse relations among
them. PageRank algorithm is adopted then to estimate the relevance of a
conclusion by recursively and structurally measuring the attention it gets as a
premise by all the arguments. Subsequently, the relevance of a given argument
in the argument graph is estimated by aggregating the PageRnak scores of its
premises. The structural analysis of a representative argument graph should
allow us to objectively estimate the relevance of the arguments found in it.
In the last previous subsection, I introduced the benchmark rankings we cre-
ated by letting 7 experts in Computational Linguistics sort the given argu-
ments for each conclusion from a systematically selected conclusions set by
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their relevance. A relatively large number of experts was needed to approx-
imate an objective understanding of argument relevance during the ranking
process. This benchmark rankings set which consists of a set of conclusions,
their supporting or attacking arguments and the relevance rankings of the ar-
guments serves as ground-truth dataset for argument relevance.
The experiment I report on here was mainly conducted to compare the agree-
ment between the benchmark rankings and the rankings produced by PageR-
ank to the agreement between the benchmark rankings and the rankings pro-
duced by di�erent baselines. A baseline is an intuitive approach that provides
a lower bound of e�ectiveness with which the e�ectiveness of the suggested
approach is compared during evaluation. Most of the used baselines follow our
approach by estimating relevance of its premises before aggregating it with a
Minimum (Min), Average (Avrg), Maximum (Max), Sum aggregation function
to assess the relevance of the arguments

3.4.1 Baselines to Assess Argument Relevance

• Frequency: This baseline captures the popularity of its premises in the
original corpora, i.e. AIFdb. The relevance of an argument is reduced to
the frequency of its premises in the original corpora, i.e. AIFdb.

• Similarity: The relevance of an argument is reduced to the similarity
of its premises to its conclusion. We use Jaccard similarity between the
words in the premises and the conclusion. This baseline assumes that the
more common words between the premise and the conclusion the more
relevant the premise to the conclusion is.

• Sentiment: An argument's relevance corresponds to the positivity of
its premises. We use SentiWordNet [16] to quantify the positivity of a
premise by summing all the positive values and subtracting all negative
values generated by SentiWordNet for its words. SentiWordNet learns a
set of classi�ers to give a positive and a negative score from 0 to 1.0 for
a token by using the WordNet database. WordNet is a lexical database
that groups English words into semantic groups, such as synonyms.

• Most premises: This baseline reduces the relevance of an argument
to the count of its premise, hypothesizing that the larger the amount of
premises an argument relies on the more relevant it is.

• Random: The relevance is decided randomly.
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3.4.2 Experiment

For each conclusion in the benchmark ranking dataset, we calculated the rel-
evance scores produced for the arguments given for the conclusion by our
approach and with the �ve baselines described above. For the �rst three base-
lines and for our approach, the relevance was �rst calculated for the premises
before aggregating them to estimate the relevance of the argument through
4 aggregation methods, namely Minimum (Min), Average (Avrg), Maximum
(Max) and Sum. Next, each set of arguments was sorted according to the
scores produced by the approach. Later on and for each conclusion, Kendall's
τ has been calculated to estimate the agreement between the rankings pro-
duced by each baseline for each argument given for the conclusion and the
rankings existing int the benchmark ranking dataset. Subsequently, the aver-
age Kendall's τ was calculated over all conclusions. Similarly, the agreement
between the rankings produced by our approach and the rankings existing in
the benchmark ranking dataset was calculated in terms of mean Kendall's τ.
The results for our approach and for each baseline is summarized in the Table
3.3.

Baseline (a) Min (b) Avrg (c) Max (d) Sum Best of a-d

Frequency -0.1 -0.03 -0.01 0.1 0.1

Similarity -0.13 -0.05 0.01 0.02 0.02

Sentiment 0.01 0.11 0.12 0.12 0.12

Most premises - - - - 0.19

Random - - - - 0

Approach

PageRank 0.01 0.02 0.11 0.28 0.28

Table 3.3: (a-d) Mean Kendall's τ correlation for all 32 benchmark argument rank-
ings. (e) Best observed results for each baseline/approach

3.4.3 Results

As shown in Table 3.3, PageRank with the aggregation method Sum achieves
the highest correlation with the benchmark rankings with a Kendall's τ of
0.28. Even though the correlation value is not so high, it is close to the mean
Kendall's τ of all the experts 0.36 as reported in Subsection 3.3.3. The results
clearly show that the PageRank approach outperforms the baselines Frequency
and Similarity in all the aggregation methods. Matching the concept that
popularity is not matched with merit [17], Frequency doesn't achieve any sig-
ni�cant correlation with the benchmark rankings. Comparably, the Similarity
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baseline also barely achieves any correlation with the benchmark rankings. A
justi�cation for that might be that this baseline rewards redundancy, i.e. a
longer premise might get a higher score even though it is not so relevant to
the conclusion.
The only baseline which achieves a close correlation with the benchmark rank-
ings to our approach is the Most Premises baseline. However, as shown in
Figure 3.7b, the majority of the arguments have only one premise and more
importantly all the arguments given for 22 conclusions of the 32 conclusions
have only one premise and thereby all were given the same ranking. To con-
clude, we see these positive results as evidence for the appropriateness and
impact of our PageRank approach to estimate argument relevance.
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Chapter 4

Domain-Robust Mining of

Arguments from The Web

An argument search engine, as we introduced in Chapter 1, will retrieve all ar-
guments on the Web whose conclusions are semantically equal to a given user's
query and sort them according to their quality. In my thesis, I will concentrate
on argument relevance as the main argument quality criteria, since it matches
the notion of relevance in regular web search engines. Prior to retrieving rel-
evant arguments to a given user's query, all arguments on the Web should be
mined and analyzed to allow for a fast ful�llment of the user's information
need. Argument mining, which is a sub �eld of natural language processing,
aims at the automatic extraction of arguments and its structure from a given
a text. As we introduced in Chapter 2, most of the approaches developed in
argument mining train supervised machine learning classi�ers on annotated
corpora, before using them to extract the arguments from a given text. In this
process, An argument model is used to abstract from the language level to a
higher level where the units of an argument, their types, and their relations
are described.
The Web, characterized by its enormous scale and heterogeneity, will consti-
tute a major challenge in the process of releasing such a search engine. The
main reason is that the majority of the classi�ers developed in the area of ar-
gument mining are trained and tested on a corpus from a speci�c domain, e.g.
law text. While trying to maximize its e�ectiveness, a classi�er will capture
domain-speci�c features, such as tokens which occur in annotations labeled
with a certain class. Thus, the e�ectiveness of this classi�er is more likely to
decrease upon applying it on another domain, because it will contain di�erent
usage of language, for example, the usage of di�erent senses of a word. We
call the di�culty faced by a classi�er trained on one domain and tested on a
di�erent domain the domain e�ect. As we aim at mining arguments from the
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Web and provided the variety of content on it, developing argument mining
approaches which are domain-robust is essential for extracting arguments on
the Web.
In Chapter 3, we introduced our approach to assessing argument relevance
using PageRank. Given a set of arguments, modeled as a conclusion and set
of premises, we �rst build an argument graph whose nodes are the given argu-
ments. An edge between two arguments is constructed when the conclusion of
one of them is semantically equal to a premise of the second one with regard to
a given reuse interpretation function. Ideally, this argument graph abstracts
the whole argumentative content on the Web in a structure that highlights
the attention an argument unit gets as a premise. The argument graph is
structurally analyzed by PageRank, which gives a score distribution over the
argument units of the argument graph, recursively giving higher scores to those
conclusions which are used as a premise by more arguments. Finally, the rel-
evance score of an argument is aggregated using the PageRank scores of its
premises.
To evaluate the e�ectiveness of our approach in assessing argument relevance
on the Web, we constructed an argument graph from the corpora of AIFdb
[25]. Next, we used our suggested approach to scoring the relevance of all
arguments in the argument graph. Later on, we systematically selected a set
of valid and readable conclusions for or against which more than one argu-
ment existed with di�erent argument relevance scores. For each conclusion,
we let 7 annotators rank the relevance of all the retrieved arguments, creating
the �rst objective benchmark argument relevance rankings. By comparing the
benchmark argument relevance rankings and the rankings produced by our
approach we found a positive correlation in terms of Kendall's τ, indicating
the e�ectiveness and impact of our approach in assessing the relevance of the
arguments on the Web.
The evidence of the appropriateness of our approach to assessing argument
relevance on the Web motivated us to study the question of how to e�ectively
and e�ciently mine the Web for arguments, before preparing them for further
analysis to assess their relevance according to our approach. As described pre-
viously, the main issue to consider while developing classi�ers for argument
mining on the Web is how to guarantee domain-robustness, i.e. the ability of
a classi�er to generalize over domains and to achieve an acceptable e�ective-
ness on a not seen domain. Another question to answer is how to model the
arguments on the Web in a way that allows e�ective mining and meanwhile
provides enough information for the argument analysis steps, in my case, this
is our approach to assessing argument relevance using PageRank. The canon-
ical argument structure we introduced in Chapter 3 represents an argument
as a conclusion and a set of premises, both seen as argument units, and the
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argumentative relations between them.
In this Chapter, I will �rst introduce the simple argument model we used to
model the arguments on the Web, which exactly matches the canonical ar-
gument structure. Subsequently, I will introduce the annotation scheme we
used to represent an argument de�ned according to our argument model on
the language level. This argument model will be used in our domain-robust
argument mining approach which will be broken up into classi�cation tasks
to distinguish the types of the annotations speci�ed by the argument model.
Next, in Subsection 4.2, I will introduce the corpus that I created and on
which the domain-robust argument mining approaches will be based and eval-
uated. The corpus is constructed from three di�erent subcorpora which are
Araucaria [37], AIFdb [25] and WebDiscourse [21] to allow for evaluating the
e�ectiveness of a classi�er on one corpus after training it on the other cor-
pora, simulating a cross-domain testing scenario, as each corpus represents a
di�erent domain. For each subcorpus, I will introduce its argument model and
how it is mapped to our argument model. We call the argument model which
is used originally to represent the arguments in each subcorpus the original
argument model, to distinguish it from our simple argument model to which it
will be mapped. Additionally, I will provide statistics about the arguments in
it and in the whole constructed corpus. These statistics should give the reader
an idea about the count of the argument units, their types and the argumen-
tative relations existing in the corpus which re�ects the argumentative content
on the Web and helps the reader to judge and understand the results of the
experiments.
The domain-robust argument mining approach I developed is divided into two
sequential tasks: argument unit classi�cation and argumentative relation clas-
si�cation, closely matching our suggested simple argument model which con-
sists of the argument units and the argumentative relations between them.
This modular break-up of the main task of mining the arguments on the Web
into argument unit classi�cation and argumentative relation classi�cation al-
lows for a separate development and evaluation of both tasks, before cascading
them into a pipeline that performs the whole task. In each task, a classi�er will
be developed to distinguish between positive and negative instances of both
argument units and argumentative relations.
For each task, I will conduct two experiments: an in-domain experiment and
a cross-domain experiment. In the in-domain experiment, a classi�er will be
trained and tested on the same subcorpus, whereas in the cross-domain ex-
periment a classi�er will be tested on a subcorpus and trained on the other
subcorpora. The cross-domain experiments aim at developing and evaluating
classi�ers which are domain-robust by testing the classi�er on a completely
unseen subcorpus. To distinguish between the general di�culty of both clas-
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si�cation tasks and the di�culty introduced by using a subcorpus from a dif-
ferent domain as a testing set, we conduct the in-domain experiments where
the training set and testing set belong to the same corpus and hence excluding
the domain e�ect.
In Subsection 4.3, I will present the design of both experiments: the in-
domain experiment and the cross-domain experiments and how did we create
the training and testing splits for both of them. Later on, I will introduce our
approaches to solving the tasks of argument unit classi�cation and argumenta-
tive relation classi�cation and the results of both approaches in the in-domain
and cross-domain experiments. Finally, I will report on the e�ectiveness of
the whole approach after cascading both tasks into a pipeline and discuss the
results.

4.1 Models For Argument Mining on The Web

The simple argument model represents an argument on the Web as a conclu-
sion and a set of premises pushed to support or attack the conclusion. As
explained previously, our domain-robust argument mining approach will rely
on this representation to extract arguments from the Web. This model exactly
matches the canonical argument structure needed by our approach to assessing
the relevance of an argument as we discussed in Subsection 2.2. The equality
between the two representation is important because in this thesis we aim at
assessing the relevance of the arguments on the Web and hence, the mined
arguments will be subjects to the argument relevance analysis we introduced
in Chapter 3. As depicted in Figure 4.1 In our model, the conclusion and
the premises of an argument are both seen as argument units. An argumen-
tative relation which is an ordered pair of two argument units speci�es the
conclusion as the target of the edge and the premise as the source of it. Ac-
cording to this model, the type of an argument unit is either: argumentative
or non-argumentative. Further information about whether an argument unit
is a premise or a conclusion is determined by each argumentative relation it
is involved in. Thus, an argument unit can be a premise of one argumen-
tative relation and a conclusion of another. Additionally, in this model we
don't distinguish between an attack or support relation since these details are
not needed by our PageRank approach to assessing argument relevance. Our
approach which estimates the relevance of an argument based on a structural
analysis of the usage of its premises in di�erent arguments doesn't di�erentiate
whether a premise was used in an attack or a support relation.
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related, non-related

Argumentative

Argumentative

Figure 4.1: The simple argument model, including argument units and argumen-
tative relations.

Annotation Scheme As we discussed in Subsection 2.5, an annotation
scheme is a technical representation of an argument model which is used to
map an argument on the language level by means of annotations. After we
de�ned our simple argument model, we present here the annotation scheme
which we adopted to annotate our cross-domain web argument corpus with
arguments. Our annotation scheme speci�es two annotation categories:

• ArgumentUnit with two types: argumentative and non-argumentative.

• ArgumentativeRelation with two types: related and non-related. Each
ArgumentativeRelation refers to a premise ArgumentUnit annotation
and a conclusion ArgumentUnit annotaiton, both must be labeled as
argumentative.

The annotation scheme de�nes the granularity of an ArgumentUnit anno-
tation to be the sentence level. While a more �ne-grained granularity, such
as clause level can result in a better accuracy to represent argument units,
we excluded this option because it requires parsing all the sentences on the
Web which is a computationally expensive task. Hence, we leave the deci-
sion of the appropriate granularity to model argument units on the Web for
further research. An ArgumentUnit annotation labeled with the type argu-
mentative speci�es a real argument unit, while an ArgumentUnit annotation
labeled with the type non-argumentative speci�es a fake argument unit. An
ArgumentativeRelation annotation labeled with the type related speci�es a
real argumentative relation, while an ArgumentativeRelation annotation la-
beled with the type non-related speci�es a nonexistent argumentative relation.

4.2 A Cross-domain Web Argument Corpus

As we discussed previously, a major challenge in developing argument mining
approaches on the Web is the domain e�ect, as most of the approaches rely
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on annotated corpora to train classi�ers before using them to mine arguments
from a real document. Consequently, the performance of such a classi�er will
decrease when applied to a new domain where people use the language di�er-
ently, e.g. the usage of di�erent senses of a word. This is an important chal-
lenge while developing argument mining approaches on the Web since the Web
is characterized by its heterogeneous content. To guarantee domain-robustness
when developing our argument mining approaches for the Web, I constructed a
cross-domain web argument corpus which includes three di�erent subcorpora,
namely Araucaria [37], AIFdb [25] and WebDiscourse [21], each representing a
di�erent domain.
The constructed corpus is annotated with arguments as speci�ed by the simple
argument model we introduced in the previous Subsection 4.3. This model
represents an argument as a conclusion and a set of premises, all seen as argu-
ment units whereby argumentative relations specify a conclusion and a premise
as the target and the source of the relation respectively. On the language level,
the annotation scheme of the simple argument model uses ArgumentUnit an-
notation categories to represent argument units and ArgumentativeRelation
to represent argumentative relations between them.
For each subcorpus, we will map each argument in it from its original argu-
ment model to our argument model, generating the corresponding Argumen-
tUnit and ArgumentativeRelation annotations for the argument in two steps
as follows:
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Step 1 Given a document annotated with a set of arguments, we
segment its text into sentences and do the following:

• Generate an ArgumentUnit annotation a labeled wtih the
argumentative type for each sentence if:

� It contains an annotation a ′ corresponding to an argument unit as
de�ned in the original argument model regardless of its type, e.g.
a premise or a conclusion.

� It is contained in an annotation a ′ corresponding to an argument
unit as de�ned in the original argument model regardless of its
type.

� It intersects with an annotation a ′ corresponding to an argument
unit as de�ned in the original argument model.

For the second step we keep a map between each annotation a and the
original annotation a ′ from which it was created

• Generate an ArgumentUnit annotation a labeled the with
non-argumentative type for all sentences which don't fall in one of the
previous categories.

Step 2 Depending on the annotation(s) and the types which the
original argument model of a subcorpus uses to represent the structure
of an argument, we create our ArgumentativeRelation annotations.
Given two annotations a ′1 and a

′
2 which correspond to two argument

units with a directed support/attack relation as de�ned in the original
argument model of the subcorpus. Let us assume that a ′1 corresponds to
the premise of the relation and a ′2 to the conclusion of the relation. Let
also A1 and A2 be the set of ArgumentUnit annotations that are
mapped to a ′1 and a

′
2 respectively according to the map we created in

Step 1. We do the following:

• Generate an ArgumentativeRelation annotations between each a1 ∈ A1
as a premise and each a2 ∈ A2 as a conclusion and we label it with the
related type, regardless to the type of the argumentative relation
between a ′1 and a

′
2.

Step 3 For each pair of ArgumentUnit annotations a1 and a2 if there
is no ArgumentativeAnnotation created in Step 1 whose premise is a1
and whose conclusion is a2, we generate an ArgumentativeRelation
annotation and set its premise to a1 and its conclusion to a2 and set its
type to non-related.

Algorithm 1: General algorithm for mapping arguments to our argument
model 56
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4.2.1 AIFdb

As we introduced in Subsection 3.3.1, AIFdb contains about 70 corpora and
about 10k argument maps. An argument map consists of a set of argument
units and the arguments in which they are used as premises or conclusion all
modeled in a standard format Argument Interchange Format (AIF). AIF for-
mat represents an argument as a set of nodes which can be one of two types:
information node or scheme node. An information node represents a content
unit which is used in an argument, corresponding to argument unit in our
terminology. A scheme node represents the type of reasoning which is used
to draw the conclusion of an argument from its premises. AIF format uses
directed edges to represent the connection between the information nodes and
the scheme node of an argument. A directed edge from an information node
to a scheme node indicates its usage as a premise in the argument, while a
directed edge from the scheme node to an information node indicates its usage
as a conclusion in the argument. Thus, an argument modeled in AIF format
can be mapped to our simple argument model by converting the information
nodes to argument units. Subsequently, a scheme node linking the premises
and the conclusion of an argument can be mapped to a set of argumentative
relations between each premise and the conclusion. Thus, AIF format provides
the adequate speci�cation needed by the simple argument model to represent
arguments.
While I used the argument maps of AIFdb in Chapter 3 to construct a ground-
truth argument graph with the purpose of evaluating our PageRank approach
to assessing argument relevance, I will reuse it here to construct a subcorpus
of our cross-domain web argument corpus which I will utilize to develop a
domain-robust argument mining approach. Some of the argument maps in
AIFdb are associated with the documents from which they were created, tech-
nically stored in plain text format. As AIFdb contains argument maps in 10
di�erent language [24] and since we target only English language in this thesis,
we excluded all documents which are written in a non-English language. Addi-
tionally, we excluded all documents which have the exact text. All documents
of Araucaria corpus, which is part of AIFdb, were excluded from this subcor-
pus and from this statistics as it will constitute an independent subcorpus on
its own as we will see in the next Subsection 4.2.2. As shown in Table 4.1,
the count of the valid documents which are left and which will constitute our
AIFdb subcorpus is 1,000 document.
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Statistic Name Statistic Value

Count of all documents 1,742
Count of non-english documents 190
Count of invalid documents 122

Count of duplicate documents 859
Count of valid documents 571

Table 4.1: General statistics about the documents in AIFdb subcorpus

The separation between the arguments' structure and the documents from
which they were extracted in AIFdb required creating an annotation scheme
to represent argument maps on the language level. An argument map is stored
technically in JSON format, specifying the information nodes and the scheme
node of each argument. The documents associated with the argument maps
were stored in plain text and without any metadata that links a node in an
argument map to its corresponding text segment in the associated document.
To annotate the documents with the arguments de�ned in the associated ar-
gument maps we de�ned a new annotation scheme.
The annotation scheme we used in the automatic annotation process con-
tains two annotation categories: InformationNode and SchemeNode, closely
matching the speci�cation of AIFdb. An InformationNode annotation spans
a sequence of tokens and represents an argument unit. A SchemeNode an-
notation refers to a conclusion InformationNode annotation and to an array
of InformationNode annotations called premises. Additionally, a scheme node
has a type which takes either a support or attack value.
The automatic annotation process relied on a content-based matching of the
information nodes in the documents. Since there was no metadata about the
location of an information node in the original document, we used a string
matching algorithm to locate an information node's content in the document
and generate an InformationNode annotation for it at that location. Subse-
quently, for each scheme node in an argument map, a SchemeNode annotation
was generated, specifying its conclusion and premises.
After annotating each document with all the arguments de�ned in its asso-
ciated argument map, we used Algorithm 1 to map the arguments to the
simple argument model. We considered an InformationNode annotation to
represent an argument unit and hence, we performed Step 1 accordingly. Ad-
ditionally, for a SchemeNode annotation we considered each InformationNode
of its premises to have an argumentative relation with its conclusion and per-
formed Step 2 & 3 accordingly. The output of this step constituted our �nal
AIFdb subcorpus annotated with arguments as modeled by the simple argu-
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ment model.

4.2.2 Araucaria

As we introduced in Chapter 2, Araucaria is one of the most used corpora in
argumentation mining and constitutes of approximately 660 documents anno-
tated with argument structure. The documents come from di�erent sources,
such as discussion forums, newspapers, and weekly magazines; however, the
majority of the documents come from unclassi�ed sources. The original argu-
ment model of Araucaria represents an argument as a conclusion and a set of
premises. Since Araucaria is a subcorpus of AIFdb, we handled it the same way
we handled AIFdb but as a separate subcorpus. Araucaria, being a subcor-
pus of AIFdb, consists of about 660 argument maps modeled with AIF format
associated with the documents from which they were extracted. Therefore,
we carried out the same steps we did for AIFdb. First, we excluded all the
duplicate and all the empty documents in Araucaria. Table 4.2 shows the
count of all the documents, the empty documents, the valid documents and
the left valid documents which will constitute our Araucaria subcorpus.

Statistic Name Statistic Value

Count of all documents 661
Count of duplicate documents 69
Count of valid documents 592

Table 4.2: General statistics about the documents in Araucaria subcorpus

Since Araucaria is a subcorpus of AIFdb, we carried out the exact auto-
matic annotation process to what we conducted on AIFdb. The goal of this
automatic process was to annotate the valid documents of Araucaria with the
arguments' structure de�ned by the argument maps associated with them. Just
like the automatic annotation process conducted on AIFdb, the content of an
information node in an argument map was located in the document associated
with the argument map by a string matching algorithm. In this automatic pro-
cess, we used the same annotation scheme we created to represent arguments
modeled by AIF format. As we described in Subsection 4.2.1, the annotation
scheme consists of two annotation cases: InformationNode and SchemeNode.
The output of this automatic process were the valid documents of Araucaria
annotated with the annotation scheme, which is created to represent the ar-
guments' structure in AIF argument maps on the language level.
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In the next step, we used Algorithm 1 to map the arguments, which were
annotated in the automatic process described previously, to the simple argu-
ment model. We took the same steps we took in creating the �nal AIFdb
subcorpus, by considering an InformationUnit to represent an argument unit
and performing Step 1 based on this assumption. Additionally, for a SchemeN-
ode annotation we considered each InformationNode of its premises to have
an argumentative relation with its conclusion and performed Step 2 & 3 ac-
cordingly. The output of this step constituted our �nal Araucaria subcorpus
annotated with arguments as modeled by the simple argument model.

4.2.3 WebDiscourse

The WebDiscourse corpus consists of 340 documents covering six domains
(homeschooling, private vs. public schools, mainstreaming, single-sex edu-
cation, prayer in school, and redshriting) [19]. The argumentation model used
in the corpus is based on an extension of Toulmin's model [43]. The argument
model consists of several argument unit types: claim, premise, backing, rebut-
tal and refutation. The argumentative relations used in this model have two
types: attack or support. Habernal and Gurevych [19] used the annotation cat-
egories ArgumentComponent and ArgumentRelation to model both argument
units and argumentative relations respectively. An ArgumentRelation anno-
tation has a source and a target each of which refers an ArgumentComponent
annotation. This argument model provides a similar, though more detailed,
representation of the arguments on the Web to the one we introduced at the
beginning of this Chapter. Both this reason and the fact that corpus contains
documents taken from di�erent domains the Web made this corpus a suitable
candidate to be a part of the cross domain web argument corpus.
To integrate WebDiscourse in the corpus we are constructing, we had to map
its arguments to the simple argument model, which we proposed to represent
the arguments on the Web. For this purpose, we used Algorithm 1 by con-
sidering an ArgumentComponet to represent an argument unit and did Step
1 accordingly. Similarly, we assumed that an ArgumentRelation represents
an argumentative relation whose premise is the source of the ArgumentRela-
tion and whose conclusion is the target of it. We carried out Step 2 & 3 to
generate the ArgumentativeRelation annotations with the mapped type. The
output of this process is the WebDiscourse subcorpus after being annotated
with arguments, as modeled by the simple argument model we proposed.
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4.2.4 Corpus Statistics

Here we present statistics about the type distribution of the ArgumentUnit
and ArgumentativeRelation annotations generated for the three subcorpora.
The corpus will be used mainly to develop classi�ers for our argument mining
approach on the Web, where the annotations of each annotation category will
be treated as input instances and their types as the classes to be predicted. In
the cross-domain experiment, we will divide the corpus into three splits. Each
split divides the corpus into a testing set that is one subcorpus and a training
set which is the remaining subcorpora. For each annotation category, we will
evaluate the e�ectiveness of our classi�er in classifying its type for each split
and compare it to the e�ectiveness achieved by a baseline. We will use a trivial
baseline that chooses always the same type which we are interested in. The
e�ectiveness of this baseline can be calculated for each split by using the type
distribution of the annotation categories which the classi�er is targeting.
Table 4.3 shows the type distribution of ArgumentUnit annotations for each
subcorpus in the cross-domain argument web corpus. For the ArgumentUnit
annotation category, the count and percentage of its annotations with the type
argumentative and non-argumentative is shown. Similarly , the count and the
percentage of ArgumentativeRelation annotations with the type related and
non-related is presented in Table 4.3. The tables also show the count of all the
annotations in the third column of each table. For the ArgumentativeRelation
annotations, we see that there is a big di�erence of the count of the annota-
tions between the WebDiscourse corpus and the Araucaria corpus.
Table 4.5 summarize the statistics for both annotation categories in the three
corpora the main corpus .These statistics should give the reader a rough idea
about the approximate count and percentage of the argument units for rep-
resented by our argument model on the Web. As shown the percentage of
the argument units with the type argumentative, i.e. real argument units
amount to 33% approximately, re�ecting a slightly skewed distribution. For
argumentative relations, however, we see here a more skewed distribution with
almost 11 % real argumentative relations compared to 88% fake argumentative
relations.
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Subcorpus Argumentative Non-argumentative
Count of

annotations

AIFdb
822

(32.88 %)
1,678

(67.12 %)
2,500

(100 %)

Araucaria
890

(27.47 %)
2,350

(72.53 %)
3,240

(100 %)

WebDiscourse
1535

(39.27 %)
2,374

(60.73 %)
3,909

(100 %)

Table 4.3: Type distribution of the ArgumentUnit annotations for each subcorpus

Subcorpus Related Non-related Count of annotations

AIFdb
654

(11.75 %)
4,912

(88.25 %)
5,566

(100 %)

Araucaria
366

(15.84 %)
1,944

(84.16 %)
2,310

(100 %)

WebDiscourse
869

(8.43 %)
9,438

(91.57 %)
10,307
(100 %)

Table 4.4: Type distribution of the ArgumentativeRelation annotations for each
subcorpus and for the whole corpus

ArgumentUnit ArgumentativeRelation
Argumentative Non-argumentative Related Non-related

3247
(33.65 %)

6402
(66.35 %)

1889
(10.39 %)

16294
(89.61 %)

Table 4.5: Class distribution of the ArgumentUnit and ArgumentativeRelation
annotations for the cross-domain web argument corpus

4.3 Mining Arguments Across Web Domains

Our approach to mine arguments from the Web constitutes of two sequential
tasks: argument unit classi�cation and argumentative relation classi�cation,
which are arranged in a pipeline to extract the arguments as represented by
the argument model we introduced previously in Subsection . According to our
model, an argument constitutes of a set of argument units (a conclusion and
a set of premises) and a set of argumentative relations between the premises
and the conclusion. On the language level, argument units are represented
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by an annotation category called ArgumentUnit which is labeled by the argu-
mentative or non-argumentative type. Similarly, argumentative relations are
represented by an annotation category called ArgumentativeRelation which is
labeled with the related or non-related type and refer to an ArgumentUnit
annotation which speci�es the premise of the relation and another one which
speci�es the conclusion of the relation. These two annotation categories, one
referring to the another (ArgumentUnit referred to by ArgumentativeRela-
tion), justify the sequential design of our approach as two tasks one piped in
the other task (argument unit classi�cation piped in argumentative relation
classi�cation).
For each task, I developed a classi�ers set which uses the same classi�er type
and a set of feature types. A classi�ers set consists of multiple classi�ers
which are instances of the classi�er type but each is evaluated in a di�erent
experiment (cross-domain or in-domain). We call the classi�er set developed
for the argument unit classi�cation task the argument unit classi�ers set and
the classi�er set developed for the argumentative relation classi�cation task
the argumentative relation classi�ers set. A classi�er uses features types to
quantify interesting aspects of an input instance that allow for distinguishing
its class. In our case, an input instance is an annotation (ArgumentUnit or Ar-
gumentativeRelation) and its class is its type, e.g. argumentative. The feature
types, which are developed for each classi�er, measure syntactic, structural or
lexical properties of the annotation that are likely to correlate with its type.
The di�erent design of the in-domain and the cross-domain experiments can
a�ect the knowledge a feature type brings to a classi�er for a speci�c task.
In the in-domain experiment, a classi�er is exposed to input instances (anno-
tations) in the training and testing sets which come from the same domain
and thus exhibit similar usage of language. In the cross-domain experiment, a
classi�er is confronted with input instances in the testing sets which belong to
a di�erent domain from the ones the classi�er were exposed to in the training
set and hence, have a more di�erent usage of language. Since our feature types
depend on linguistic properties of an input instance, the e�ectiveness of a clas-
si�er which uses it in both experiments are likely to vary. More importantly,
the best feature types combination for each classi�er in the classi�ers set can
be di�erent, because each one of them is developed in a di�erent experiment.
To have a plausible way of comparison between the classi�er members in a
classi�ers set, we a adopt a systematic approach to select the best feature type
combination for each classi�er.
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4.3.1 Experiment Design

Two main experiments were carried out to evaluate the classi�ers set developed
for each of the argument unit classi�cation and argumentative classi�cation
tasks, namely the cross-domain experiment and the in-domain experiment.
Each experiment splits the corpus we presented in Subsection 4.2 into testing
and training sets di�erently. The aim of both experiments is to develop our
domain-robust approach for argument mining and evaluate its e�ectiveness
across di�erent web domains.

Cross-Domain Experiment In the cross-domain experiment, we devel-
oped a classi�er for each task (argument unit classi�cation and argumentative
relation classi�cation) and evaluate its ability to generalize over domains. The
ability of the classi�ers to generalize over domains is important since their
ultimate goal is to extract an argument from the Web, which is characterized
by its wide variety of content. For this purpose, We split the corpus into three
testing sets which correspond to the three subcorpora of which our corpus
consists, namely AIFdb, Araucaria, and WebDiscourse. For each task in our
approach, we test the classi�er we developed for the task on one testing set
(subcorpus) after training it on the other subcorpora. Later on, we weight the
e�ectiveness of the classi�ers over the three testing sets by their size.
The main reason for this is the large di�erence among the subcorpora in terms
of the count of their input instances. As we showed in Subsection 4.2.4, the
count of the ArgumentativeRelation annotations in the Araucaria subcorpora
is only 20 % of the ArgumentativeRelation annotations in the WebDiscourse
subcorpora. This large di�erence between the two subcorpora will make the
split in which the WebDiscourse subcorpora functions as a testing set easier
than the one where the Araucaria subcorpora functions as a testing set because
there are more di�erent input instances to learn from in the �rst case.

In-Domain Experiment In the in-domain experiment, we developed a clas-
si�er for each task (argument unit classi�cation and argumentative relation
classi�cation) and evaluate its e�ectiveness within each domain represented
by our cross-domain web argument corpus. Even though we won't use the
developed classi�ers in this experiment for mining the arguments on the Web,
their achieved e�ectiveness helps us have a basis of comparison to the classi-
�ers developed in the cross-domain experiment. The goal of conducting this
experiment is to estimate the e�ectiveness of the classi�ers in each task while
excluding the domain-e�ect. By excluding the domain-e�ect, we can di�eren-
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tiate between the e�ectiveness of the classi�er to perform the task itself and
its e�ectiveness in performing the same task in an unseen domain.
The in-domain experiment is broken up into three experiments one for each
subcorpora in our cross-domain web argument corpus, assuming that each
subcorpus represents a speci�c domain. For each experiment, we develop a
classi�er for each task in our approach (argument unit classi�cation and ar-
gumentative relation classi�cation) and evaluate its e�ectiveness it in 5-folds
cross-validation setting. Thus, for each experiment the involved subcorpus is
split into 5 testing sets and the classi�ers are tested on each set after training
it on the other sets. Then, the e�ectiveness of the classi�ers is averaged over
the 5 testing sets.
We split each subcorpus by randomly and uniquely assigning an annotated
document to a testing set while trying to have a similar count of the Argu-
mentUnit and ArgumentativeRelation input instances in each of them. The
random assignment of the documents helps to have a class distributions of the
testing set that resembles the class distributions of the subcorpus. A class dis-
tribution of a testing set, training set or a corpus is the percentage of the input
instances for each class in it. The class distributions of the subcorpus are our
best knowledge about the percentage of the input instances for each class in
the real world. Hence, having testing sets with a class distribution that is sim-
ilar to that of the corpus guarantees us more reliable results in our experiment.
The unique assignment of the documents to a speci�c testing set helps us to
have testing sets that are exclusive, i.e. no common input instances exists in
two testing sets. An input instance existing in two testing sets decrease the
reliability of the results in our experiment since the input instance will occur
in the training set for both testing sets. The �nal criterion which we tried to
meet is having equal count of the ArgumentUnit and ArgumentativeRelation
input instances in each testing set. Since the documents in the corpus con-
tain a di�erent count of the input instances, assigning only an equal count of
documents to each testing set might lead to having a di�erent count of the
ArgumentUnit and Argumentative input instances in each of them. This can
a�ect the results in our experiment as the e�ectiveness of a classi�er is likely
to decrease on the biggest testing set, as it will have fewer input instances to
learn on in that split.
The tables 4.6, 4.7 and 4.8 show the class distribution of ArgumentUnit
and ArgumentativeRelation input instances for the 5 splits of each subcorpus
AIFdb, Araucaria and WebDiscourse respectively. Here, we show the class dis-
tribution only for testing sets for brevity and space limitations. When needed,
the class distribution for a training set can be calculated by summing the class
distributions for all other testing sets except the one with which the training
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set is associated.

Split ArgumentUnit ArgumentativeRelation
Argumentative Non-argumentative Related Non-related

1
180

(38.54 %)
287

(61.46 %)
128

(12.81 %)
871

(87.19 %)

2
152

(32.34 %)
318

(67.66 %)
108

(6.54 %)
1567

(93.55 %)

3
162

(29.29 %)
391

(70.71 %)
141

(14.39 %)
839

(85.61 %)

4
159

(29.12 %)
387

(70.88 %)
151

(17.50 %)
712

(82.50 %)

5
169

(36.42 %)
295

(63.58 %)
126

(12.01 %)
923

(87.99 %)

Table 4.6: Class distribution of the ArgumentUnit and ArgumentativeRelation
input instances for each split of AIFdb in the in-domain experiment

Split ArgumentUnit ArgumentativeRelation
Argumentative Non-argumentative Related Non-related

1
159

(24.16 %)
499

(75.84 %)
71

(19.35 %)
296

(80.65 %)

2
185

(29.65 %)
439

(70.35 %)
95

(20.00 %)
380

(80.00 %)

3
175

(29.17 %)
425

(70.83 %)
65

(13.49 %)
417

(86.51 %)

4
193

(28.26 %)
490

(71.74 %)
72

(14.23 %)
434

(85.77 %)

5
178

(26.37 %)
497

(73.63 %)
63

(13.13 %)
417

(86.88 %)

Table 4.7: Class Distribution of the ArgumentUnit and ArgumentativeRelation
annotations for each Split of Araucaria in the in-domain Experiment
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Split ArgumentUnit ArgumentativeRelation
Argumentative Non-argumentative Related Non-related

1
336

(35.44 %)
612

(64.56 %)
178

(6.35 %)
2624

(93.65 %)

2
290

(39.51 %)
444

(60.49 %)
165

(10.19 %)
1455

(89.81 %)

3
288

(35.47 %)
524

(64.53 %)
166

(9.25 %)
1629

(90.75 %)

4
333

(42.86 %)
444

(57.14 %)
193

(7.79 %)
2228

(92.03 %)

5
288

(45.14 %)
350

(54.86 %)
167

(10.01 %)
1502

(89.99 %)

Table 4.8: Class Distribution of the ArgumentUnit and ArgumentativeRelation
annotations for each split of WebDiscourse in the in-domain Experiment

Figure 4.2 shows the classi�ers' names developed for the cross-domain and
in-domain experiments for each task in our approach. Having developed three
classi�ers for each task in the in-domain experiment we number them from
1 to 3, representing the subcorpora on which the experiment was based on:
AIFdb, Araucaria and WebDiscourse respectively. The classi�ers developed for
the same task in the in-domain and the cross-domain experiments are grouped
in classi�ers sets. We call the classi�er sets developed for the argument unit
classi�cation task as the argument unit classi�ers set and the classi�ers set de-
veloped for the argumentative relation classi�cation task the as argumentative
relation classi�ers sets.

Figure 4.2: The classi�ers developed for each task and each experiment
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We chose RandomForest [11] as the classi�er type for all the classi�ers de-
veloped in our approach. A RandomForest classi�er uses a set of DecisionTree
classi�ers where each of them is trained on a randomly selected sample set of
size n from the whole available training set. The size of the DecisionTree
classi�ers set in our experiments is 100.

Evaluation As we stated previously, in the cross-domain experiment we
develop and evaluate our cross-domain argument unit and argumentative re-
lation classi�er which we will use to mine the arguments on the Web. In the
in-domain experiment, the e�ectiveness of the developed classi�ers is used for
the comparison with the e�ectiveness of the cross-domain classi�er in the same
classi�ers set. Since we developed three in-domain classi�ers for each cross-
domain classi�er we average their e�ectiveness to compare the e�ectiveness of
a cross-domain classi�er with them.
As e�ectiveness measures, we use precision, recall, and F1-score. During eval-
uation, we focus more on the argumentative class in the argument unit classi�-
cation task and on the related class in the argumentative relation classi�cation.
As we saw in Subsection 4.2.4 and 4.3.1, the class distributions for the the
ArgumentUnit and ArgumentativeRelation input instances are skewed in all
the splits the in-domain experiment and the cross-domain experiment, i.e. the
percentage of the input instances with the negative classes (non-argumentative
and non-related) is higher. Therefore, a classi�er which is trained on such a
split can achieve better e�ectiveness by always favoring the negative class since
this decision is less risky. To avoid this problem, we always oversample the
input instances labeled with the positive class by doubling them in the train-
ing set till the the class distribution is equally balanced. In the testing set,
however, we don't oversample the input instances labeled with the positive
class to preserve the original class distribution which is more similar to the
one a classi�er will face in the real world. Additionally, we focus more on
the e�ectiveness achieved by the classi�er in identifying the positive class by
reporting the positive precision, recall, and F1-score.
During the evaluation of our developed classi�ers sets, we concentrate more
on positive precision than positive recall. The reason for this is that the ar-
gument mining approach we developed will be used mainly on the Web with
the aim of assessing of their relevance according to the approach we discussed
in Chapter 3. Our approach constructs an argument graph from the extracted
arguments by merging those argument units used in multiple arguments if they
are semantically equal. Later on, PageRank algorithm is used to rank the ar-
gument units in the graph according to the attention they get as premises. An
invalid argumentative relation can severely a�ect the PageRank scores of its
premise. Similarly, an invalid argument unit in the graph can severely a�ect
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the PageRank scores of all the premises with which it is used as a conclusion
in an argument. For this reason, we are more interested in avoiding classifying
negative input instances as positive than classifying all of the positive instances
on the Web to exclude invalid argumentative content or argument structure in
our graph. In other words, the big size of the Web o�ers us the opportunity to
trade the quality of the input instances classi�ed as positive for their quantity.

4.3.2 Greedy Feature Type Selection

In the cross-domain and in-domain experiments, we developed a classi�ers set
for each classi�cation task in our approach. A classi�ers set consists of a cross-
domain classi�er and three in-domain classi�ers. All the classi�ers are of the
same classi�er type Random Forest, however, each classi�er uses a di�erent
feature type combination. As we discussed previously, the achieved e�ective-
ness of a classi�er that uses an individual feature type or a combination of
them will vary according to the experiment on which it is developed.
Finding the best combination of feature types that maximizes the e�ectiveness
of a classi�er developed in an experiment can be seen as a search problem.
Given a set of feature types for the classi�ers set, our approach represents all
the possible combinations of it as a search space and searches for the com-
bination that maximizes the e�ectiveness of the classi�er. A search space is
a directed graph whose nodes are all the possible solution candidates (in our
case feature type combinations) and the edges between them are called oper-
ators. An operator is a transition between a solution candidate to another.
With each solution candidate for the search problem we are trying to solve,
a measure of merit is associated. In our case, the merit associated with each
solution candidate (feature type combination) is the e�ectiveness achieved by
the classi�er using the feature type combination in the experiment.
A search space has an initial solution candidate and one or multiple best so-
lution candidates. The initial solution candidate has a merit of zero while the
best solution candidate has the maximum merit. When the search space is
small, all the solution candidates can be traversed to �nd the best solution
candidate; however, this is usually not the case. If we have for example 10
feature types, then the number of the possible feature type combinations is
210. Another factor for not visiting each solution candidate is the limitation of
the resources existing on a computer. Therefore, a search algorithm is usually
used to traverse a small part of the search space in a way that guarantees
tractability and optimality or near optimality. Optimality is the quality of
the solution candidate which the search algorithm chooses as the best solution
candidate. By near optimality we mean that the best solution candidate found
by the search algorithm might be not the best solution candidate but its merit
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is very close to its merit.
To �nd the best feature type combination for a classi�er in an experiment, we
use a greedy search algorithm. A greedy search algorithm traverses the search
space by always choosing the operator at each solution candidate that leads
to the maximum gain in terms of merit.
Given a set of developed feature types, we generate all the possible combina-
tions of them as solution candidates. We de�ne our set of operators to match
exactly the set of the given feature types. A solution candidate in our con-
structed search space has as many operators as the feature types it doesn't
have, each leading to a solution candidate with the same feature types in the
previous solution candidate in addition to the feature type represented by the
operator. If there are no such an operator the algorithms stops and returns
the last visited solution candidate as the best solution candidate.
We use the greedy search algorithm in choosing the best feature combination
during the development of each classi�er in the argument unit classi�ers set
and the argumentative relation classi�ers set. This systematic development of
the classi�ers in both classi�ers sets in addition to the usage of the same clas-
si�er type and the set of feature types during development helps us to perform
a consistent comparison of their e�ectiveness in the both experiments we will
conduct.

4.3.3 Argument Unit Classi�cation

The goal of the argument unit classi�cation task is to extract the argument
units in a document on the Web as a prior step to classifying the poten-
tial argumentative relations between them. According to our simple argu-
ment model, an argument unit can have either the type argumentative or
non-argumentative. An argument unit with the argumentative type indi-
cates a valid argument unit, whereas an argument unit with the type non-
argumentative denotes an invalid one, i.e. a non argumentative text segment.
Technically, an argument unit is represented as an ArgumentUnit annotation
category which spans a sentence. In Subsection 4.2, we created a corpus
which covers three di�erent domains and which is annotated with arguments
as modeled with the simple argument model. Using this corpus, we designed
two experiments with the purpose of developing an argument unit classi�er
that is able to extract argument units in a domain-robust fashion. In the
cross-domain experiment, we divided our cross-domain argument web corpus
into three splits whose testing sets are its three subcorpora. In this exper-
iment, we developed an argument unit classi�er and tested its e�ectiveness
on the three splits. The in-domain experiment consists of three experiments.
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Each experiment is conducted on a subcorpus of our cross-domain argument
web corpus in a 5-fold cross-validation evaluation setting. For each experi-
ment, an argument unit classi�er is developed and evaluated. The argument
unit classi�ers developed in the two experiments uses the same classi�er type
which is Random Forest and belong to the argument unit classi�ers set.
We created an argument unit classi�ers set by developing feature types that
provide the classi�er with interesting aspects about an ArgumentUnit input
instance that help in identifying its class. Thus, an ArgumentUnit annotation
is handed into a classi�er as an input instance whose class is the type of the
ArgumentUnit. We consider the argumentative type of an argument unit as
the positive class and the non-argumentative type as the negative class. As we
discussed in Subsection 4.3.1, We will report the e�ectiveness of the classi�er
in this experiment as its average e�ectiveness for each split in the cross-domain
experiment. As e�ectiveness measures, we use positive precision, positive re-
call, and positive F1-score and weighted F1-score to assess the e�ectiveness of
the argument unit classi�er.
To choose the best feature combination for each classi�er in our classi�er sets,
we use our greedy feature type selection we introduced in Subsection 4.3.2. As
we discussed in Subsection 4.3.1, we will concentrate during the evaluation of
our classi�ers in each experiment on its positive precision, because we will use
these classi�ers to mine the Web for arguments whose size o�ers us the oppor-
tunity to trade the quantity of the ArgumentUnit input instances classi�ed as
positive for their quality. We concentrate on the positive class, because as we
saw in Subsection 4.3.1 the positive class is less represented in the training
set. This skewed class distribution makes it harder for a classi�er to distin-
guish it in the testing set since there are less representative input instances of
the minority class. Therefore, we will associate with each feature type com-
bination the weighted positive precision of the classi�er on each testing set in
the experiment. We weight each testing set by the count of its input instances.
The main reason for this is the large di�erence in the size of the domains. This
Search-based feature type selection during the development of the classi�ers
in the argument unit classi�ers set allows us to make a consistent comparison
between their e�ectiveness in the two di�erent experiments we will carry.

Feature Types

A complete list of the developed feature types in the argument unit classi�ca-
tion is:

• Lexical Feature Types :
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� Keyword n-grams (1-3): Keywords refer to about 300 words or
word phrases extracted from a list of indicative terms for argumen-
tation [22]. Examples from the list are "but", "consequently", and
"because of". This list is used by Moens et al. [30] to develop a
feature type for the classi�cation of argument units in Araucaria
corpus. We generate a feature that represents the percentage of
each possible 1-3 sequences of the elements of this list in an Argu-
mentUnit annotation normalized by its length.

� TransitionalPhrasesType n-grams (1-3) (TPT n-grams): This
feature type relies on a list compiled by Study Guides and Strategies
[6] of 149 transitional phrases which are categorized in 14 phrase
types. The same list is used by Persing and Ng [35] in his work
on assessing the argument strength of an essay. While they use
the number of transitional phrases in an essay for each phrase type
in an essay, we use the percentage of each possible 1-3 sequences
of an occurrence of a phrase type in an ArgumentUnit annotation
normalized by length.

� Token n-grams (1-3): represents the percentage of every 1-3 pos-
sible sequences of token normalized by the text's length.

� TopKToken n-grams (1-3): This feature type relies on the k
most common words in the ArgumentUnit annotations in the train-
ing set. We create a feature for each 1-3 possible sequences of each
of these tokens that represent its percentage in the ArgumentUnit
annotation normalized by its length.

� FirstToken n-grams (1-3): This feature type generates a boolean
feature for every possible �rst 1-3 sequences of tokens in the Argu-
mentUnit annotation in the training set. For an ArgumentUnit an-
notation, we set those feature that represents its �rst 1-3 sequences
of tokens.

• Syntactic Feature Types :

� Part-Of-Speech (POS) n-grams (1-3): a part-of-speech tag is a
tag which a word is assigned depending on its use and function (e.g.
noun, verb, adjective). This feature type represents the percentage
of each possible 1-3 sequences of part-of-speech tags normalized by
the ArgumentUnit annotation's length.

• Structural Feature Types:
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� Punctuations: the relative percentage of the tokens that contain
punctuation marks to the all tokens in an ArgumentUnit annota-
tion. The punctuation marks we considered are (commas, exclama-
tion marks, question marks, colons, semicolons and dots).

� SentenceStatistics: the minimum, average, maximum and the
standard deviation of the length of each token in an ArgumentUnit
annotation.

� ArgumentUnitLength (AuLength) : This feature type captures
the length of an ArgumentUnit annotation in di�erent ways. This
include the count of characters, syllables, tokens and phrases of the
ArgumentUnit annotation. Additionally, the count of syllables per
character, tokens per character, phrases per character, tokens per
syllable, phrases per syllable and phrases per token.

� ArgumentUnitPosition (AuPosition) : The position of the Ar-
gumentUnit annotation in the document and in the paragraph in
which it occurred. Additionally the position of the paragraph in the
document.

� StatementBoundaries: This feature type captures the �rst token
and the last token of the ArgumentUnit annotation and their POS
in addition to the �rst three characters and the last three characters
of the ArgumentUnit annotation. We generate a boolean feature for
each encountered value for them for all the ArgumentUnit annota-
tions in the training set. Given an ArgumentUnit annotation, we
set those feature which has the same values in it.

• Sophisticated Feature Types:

� SentiWords: This feature type captures the distribution of the
negative or positive tokens in an ArgumentUnit annotation using
SentiWordNet [16]. The name of the feature comes from the word
sentiment which is a measure to the polarity of a word, i.e. how
negative or positive it is perceived. For example, the word "stormy"
has a negative score of 0.75 according to SentiWordNet. SentiWord-
Net learns a set of classi�ers to give a positive and a negative score
from 0 to 1.0 for a token by using the WordNet database. Word-
Net is a lexical database that groups English words into semantic
groups, such as synonyms. We generate a numerical feature for each
token in an ArgumentUunit annotation in the training set that has
a positive score or negative score higher than a 0.4. For a given
ArgumentUnit annotation, we set the value of each feature to the
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count of the occurrences of the word which the feature represents
in it normalized by the length of the ArgumentUnit annotation.

� GeneralInquirerCateogories (GIC): The General Inquirer is a
dictionary that stores the categories of about 11,788 word mean-
ings [4]. The categories of the words are sorted by their lemmas.
A lemma is the root of the word which is usually found in the dic-
tionary. For example, the lemma of the word "running" is "run".
This feature type generates a feature for each category for all the
token in the ArgumentUnit annotations in the training set. The
value of the features for a given ArgumentUnit annotations is the
distribution of the categories of all tokens' lemmas in an Argumen-
tUnit annotation, that is it for each token we increase its General
Inquirer category by one. All the features are normalized by the
length of the ArgumentUnit annotation in tokens.

Cross-domain Results

Table 4.9 shows the e�ectiveness of our cross-domain argument unit classi-
�er using each individual feature type in addition to the best feature type
combination found by our greedy feature type selection in the cross-domain
experiment. To estimate the novelty of our approach and the di�culty of the
argument unit classi�cation task, we adopt a baseline which always chooses
the positive class. The e�ectiveness of this baseline can be calculated from
the class distribution of the ArgumentUnit input instances in the three testing
sets split in the experiment. The positive precision is the division of the count
of the input instances in the testing set which are labeled as positive to the
count of all the input instances. The positive recall is equal to 1.0 because
we are able to retrieve all the positive input instances in the testing set. As
shown in Table 4.9, our greedy feature type selection chose the feature type
combination: ArgumentUnitLength, TranistionalPhrasesType n-grams, Punc-
tuations and ArgumentUnitPosition to be the best feature type combination
with a positive precision of 0.429. We notice that most of the feature types
in this combination belong to the structural set which shows the superiority
of structural feature types in the domain-robust mining of argumentative con-
tent on the Web. While the e�ectiveness of the cross-domain argument unit
classi�er doesn't seem very high, it manages to beat the baseline with about
%20 e�ectiveness gain. The results of the in-domain experiment for the ar-
gument unit classi�cation task will help us better evaluate our cross-domain
argument unit classi�er because in the in-domain experiment we exclude the
domain-e�ect by developing and evaluating our classi�ers on the same corpus.

74



CHAPTER 4. DOMAIN-ROBUST MINING OF ARGUMENTS FROM THE

WEB

Feature Type
Positive
Precision

Positive
Recall

Positive
F1-score

F1-score

Baseline 0.337 1.000 0.501 -
Keyword n-grams 0.388 0.424 0.404 0.593
TPT n-grams 0.389 0.155 0.217 0.582
Token n-grams 0.375 0.410 0.391 0.584

TopKToken n-grams 0.373 0.374 0.367 0.580
FirstToken n-grams 0.363 0.294 0.315 0.576

POS n-grams 0.366 0.392 0.373 0.573
Punctuations 0.374 0.583 0.452 0.551

SentenceStatistics 0.365 0.438 0.393 0.568
AuLength 0.364 0.408 0.380 0.570
AuPosition 0.364 0.558 0.416 0.505

StatementBoundaries 0.363 0.423 0.389 0.572
SentiWords 0.378 0.315 0.343 0.593

GeneralInquirerFrequency 0.388 0.348 0.358 0.590
AuLength,

TPT n-grams,
Punctuations,
AuPosition

0.429 0.514 0.452 0.606

Table 4.9: Cross-domain argument unit classi�er 's e�ectiveness results for each
feature type and for the best feature type combination: ArgumentUnitLength, Tran-
sitionalPhrasesType n-grams, Punctuations, ArgumentUnitPosition

In-domain Results

The in-domain experiment consists of three smaller experiments in which we
develop an argument unit classi�er for each subcorpus in our cross-domain
argument web corpus. As we discussed in Subsection 4.3.1, we call the classi-
�ers with the names: in-domain argument unit classi�er 1, in-domain argument
unit classi�er 2, in-domain argument unit classi�er 3 for the subcorpora AIFdb,
Araucaria and WebDiscourse respectively. For each in-domain argument unit
classi�er, we list the e�ectiveness of our developed in-domain argument unit
classi�ers using each individual feature type in addition to the best feature
type combination found by our greedy feature type selection on each the ex-
periment. We use the same baseline we used in the cross-domain experiment
which always chooses the positive class. The positive precision achieved by of
the baseline for each experiment can be calculated from the class distribution
of the ArgumentUnit input instances in the its �ve testing splits. Table 4.10,
Table 4.11 and Table 4.12 shows the e�ectiveness of each of the in-domain
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classi�ers developed on AIFdb, Araucaria and WebDiscourse respectively. The
best feature type combination for each experiment is listed at the end of each
table.
Noticeably, all of the in-domain argument unit classi�ers performed very well
by using the TopkToken n-grams, achieving a positive precision of 0.536 on the
in-domain experiment on the AIFdb subcorpus, however, the positive precision
of the cross-domain argument unit classi�er by using just this feature type is
relatively low (positive precision of 0.375). The di�erence between the contri-
bution of TopToken n-grams in the in-domain experiment and the cross-domain
experiment is a logical consequence of the design of the in-domain experiment
where we exclude the domain-e�ect by training and testing the classi�er on
the same subcorpora. As we have shown in Subsection 4.3.1, we created the
testing sets in the in-domain experiment in a by assigning documents to dif-
ferent testing sets randomly while trying to have a similar distribution of the
ArgumentUnit input instances in the testing sets. The similar usage of lan-
guage in a speci�c corpus and the randomness used to create the testing splits
in our corpus guarantees a similar usage of language in each testing set. For
example, in the Araucaria subcorpus, which includes a fair amount of law text,
the word "suit" is more likely to always be used to mean a law case while it
might be used in a di�erent domain (like AIFdb) as an out�t. Hence, a lexical
feature type which relies on counting words like TopKToken n-grams is likely
be less e�ective in mining argument units on the Web.
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Feature Type
Positive
Precision

Positive
Recall

Positive
F1-score

F1-score

Baseline 0.328 1.000 0.493 -
Keyword n-grams 0.426 0.424 0.417 0.614
TPT n-grams 0.409 0.188 0.257 0.596
Token n-grams 0.482 0.538 0.506 0.660

TopKToken n-grams 0.536 0.599 0.564 0.699
FirstToken n-grams 0.479 0.381 0.424 0.647

POS n-grams 0.494 0.516 0.503 0.666
Punctuations 0.403 0.544 0.461 0.593

SentenceStatistics 0.431 0.461 0.443 0.623
AuLength 0.447 0.490 0.464 0.631
AuPosition 0.405 0.632 0.491 0.580

StatementBoundaries 0.390 0.604 0.473 0.569
SentiWords 0.395 0.298 0.339 0.602

GeneralInquirerFrequency 0.459 0.454 0.451 0.635
TopKToken n-grams,

AuPosition
0.578 0.616 0.594 0.725

Table 4.10: In-domain argument unit classi�er 1 's e�ectiveness results for each
feature type and for the best feature type combination: TopKToken n-grams, Argu-
mentUnitPosition (AIFdb subcorpus)
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Feature Type
Positive
Precision

Positive
Recall

Positive
F1-score

F1-score

Baseline 0.275 1.000 0.431 -
Keyword n-grams 0.392 0.410 0.400 0.665
TPT n-grams 0.269 0.693 0.367 0.385
Token n-grams 0.375 0.410 0.391 0.584

TopKToken n-grams 0.522 0.462 0.488 0.729
FirstToken n-grams 0.328 0.365 0.344 0.625

POS n-grams 0.490 0.438 0.461 0.714
Punctuations 0.440 0.658 0.527 0.692

SentenceStatistics 0.404 0.421 0.412 0.673
AuLength 0.404 0.404 0.402 0.672
AuPosition 0.373 0.623 0.466 0.629

StatementBoundaries 0.339 0.506 0.404 0.611
SentiWords 0.352 0.370 0.360 0.643

GeneralInquirerFrequency 0.456 0.378 0.412 0.695
TopKToken n-grams,
SentenceStatistics

0.564 0.502 0.530 0.752

Table 4.11: In-domain argument unit classi�er 2 's e�ectiveness results for each
feature type and for the best Feature type combination: TopKToken n-grams, Sen-
tenceStatistics, (Araucaria Subcorpus)
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Feature Type
Positive
Precision

Positive
Recall

Positive
F1-score

F1-score

Baseline 0.392 1.000 0.562 -
Keyword n-grams 0.444 0.424 0.433 0.559
TPT n-grams 0.377 0.233 0.233 0.481
Token n-grams 0.444 0.451 0.447 0.559

TopKToken n-grams 0.467 0.487 0.476 0.579
FirstToken n-grams 0.436 0.442 0.424 0.532

POS n-grams 0.436 0.477 0.455 0.552
Punctuations 0.410 0.509 0.451 0.517

SentenceStatistics 0.403 0.444 0.421 0.521
AuLength 0.418 0.461 0.437 0.535
AuPosition 0.490 0.612 0.453 0.599

StatementBoundaries 0.426 0.505 0.460 0.538
SentiWords 0.436 0.330 0.374 0.551

GeneralInquirerFrequency 0.452 0.494 0.470 0.564
TopKToken n-grams,

AuPosition
0.558 0.570 0.562 0.651

Table 4.12: In-domain argument unit classi�er 3 's e�ectiveness results for each
feature type and for the best feature type combination: TopKToken n-grams, Argu-
mentUnitPosition (WebDiscourse Subcorpus)

Comparison of the Cross-domain and In-domain Results

Table 4.13 shows the e�ectiveness of the cross-domain argument unit clas-
si�ers together with the three in-domain argument unit classi�ers and their
average. We weight the e�ectiveness of an in-domain argument unit classi�er
by the count of the ArgumentUnit input instances in the subcorpora on which
it was developed for the consistency with the design of the cross-domain ex-
periment. As we discussed in Subsection 4.3.1, we weight the e�ectiveness
of the cross-domain argument unit classi�er by the size of the testing set to
balance the large di�erence of the ArgumentUnit input instances in the three
subcorpora.
The weighted positive precision of the in-domain argument unit classi�ers
amounts to 0.565, compared to a positive precision of 0.429 achieved by our
cross-domain argument unit classi�er. Even though all of the in-domain argu-
ment unit classi�ers are evaluated on the same corpus, their e�ectiveness in
the classi�cation of ArgumentUnit input instances labeled with positive stays
only slightly higher than the e�ectiveness of the corresponding cross-domain
classi�er. This close performance of our argument unit classi�ers set in the
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cross-domain and in-domain experiments indicates the possibility of develop-
ing domain-robust argument unit classi�ers and the appropriateness of our
approach of guaranteeing domain-robustness. Nevertheless, the low e�ective-
ness of the cross-domain classi�er and the in-domain classi�ers re�ects the
di�culty of extracting argument units on the Web.

Classi�er Name
Positive
Precision

Positive
Recall

Positive
F1-score

F1-score

Baseline 0.337 1.000 0.501 -
In-domain argument unit

classi�er 1
0.578 0.616 0.594 0.725

In-domain argument unit
classi�er 2

0.564 0.502 0.530 0.752

In-domain argument unit
classi�er 3

0.558 0.570 0.562 0.651

In-domain
argument unit

classi�er (Weighted)
0.565 0.559 0.560 0.704

Cross-domain
argument unit classi�er

0.429 0.514 0.452 0.606

Table 4.13: Cross-domain vs in-domain argument unit classi�ers e�ectiveness com-
parison

4.3.4 Argumentative Relation Classi�cation

The second task in our domain-robust argument mining approach is the argu-
mentative relation classi�cation task. Seen as a sequential task to argument
unit classi�cation, this task aims at the extraction of the argumentative rela-
tions between argument unit pairs. As we showed in Chapter 3, argumentative
relations constitute the main component of our argument structure, which our
PageRank for argument relevance exploits to score the argument units by re-
cursively measuring the attention they get as premises pushed for or against
the arguments on the Web. Thus, the simple argument model we use as an
abstraction for the arguments on the Web represents an argumentative relation
as an ordered pair of argument units which has a premise, a conclusion, and
a type. Technically, argumentative relations are represented by the Argumen-
tativeRelation annotation category which de�nes a premise and a conclusion
that refer to ArgumentUnit annotations and have the type argumentative. The
type of an ArgumentativeRelation can be either related, indicating an existing
relation between the premise and the conclusion or non-related indicating a
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nonexistent relation.
In Subsection 4.3.1, we introduced the design of the cross-domain experiment
where we developed our cross-domain argumentative relation classi�er. In the
cross-domain experiment, we divided our cross-domain argument web corpus,
which constitutes from three subcorpora, into three splits. The testing set of
each split is one of the subcorpora while the training set consists of the other
two subcorpora. Parallel to the cross-domain experiment, we carry out the
the in-domain experiment which is broken up into three experiments done on
each of the subcorpora of the cross-domain argument web corpus in 5-folds
cross-validation evaluation setting. The class distribution of the Argumenta-
tiveRelation annotations in the corpus is severely skewed where the percentage
of the argumentative relation annotations labeled as related is only about 10
%.
In the cross-domain experiment and the in-domain experiment we developed
four argumentative relation classi�er (a cross-domain classi�er and three in-
domain classi�ers), comprising our argumentative relation classi�ers set. The
cross-domain classi�er will be used to mine the arguments on the Web, while
the in-domain classi�ers will be used to evaluate the ability of our classi�er
to work robustly across domains. An ArgumentativeRelation annotation is
handed into the argumentative relation classi�ers as an input instance associ-
ated with the type of the annotation as its class as well as its conclusion and
premises.
The dependency of an ArgumentativeRelation annotation category on the Ar-
gumentUnit annotation category to indicate the premises and the conclusion
of an ArgumentativeRelation annotation made us provide the ground-truth
ArgumentUnit annotations in the training and the testing set for each clas-
si�er. The availability of correctly extracted argument units doesn't match a
real working scenario of our pipeline since it assumes a perfect e�ectiveness of
the previous task. This assumption, however, allows us to evaluate the argu-
mentative relation classi�cation task independently.
We created an argumentative relation classi�ers set by developing feature types
that provide the classi�er with interesting aspects about an ArgumentativeRe-
lation input instance that help in identifying its class. We consider the related
type of an argument unit as the positive class and the non-related type as the
negative class. As we discussed in Subsection 4.3.1, We will report the e�ec-
tiveness of the classi�er in this experiment as its average e�ectiveness for each
split in the cross-domain experiment. As e�ectiveness measures, we use pre-
cision, positive precision, positive recall, and positive F1-score and weighted
F1-score to assess the e�ectiveness of the argumentative relation classi�er.
To choose the best feature combination for each classi�er in our classi�er sets,
we use our greedy feature type selection we introduced in Subsection 4.3.2.
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As we discussed in Subsection 4.3.1, we will concentrate during the evalu-
ation of our classi�ers in each experiment on its positive precision, because
we will use these classi�ers to mine the Web for arguments whose size o�ers
us the opportunity to trade the quantity of the ArgumentativeRelation input
instances classi�ed as positive for their quality. We concentrate on the positive
class, because as we saw in Subsection 4.3.1 the positive class is less repre-
sented in the training set (the count of ArgumentativeRelation annotations in
the Araucaria subcorpus is 20 % of their count in WebDiscourse subcorpus).
This skewed class distribution makes it harder for a classi�er to distinguish
the input instances labeled with it in the testing set since there are less rep-
resentative input instances of the minority class. Therefore, we will associate
with each feature type combination the weighted positive precision of the clas-
si�er on each testing set in the experiment. We weight each testing set by the
count of its input instances. The main reason for this is the large di�erence
in the size of the domains. This Search-based feature type selection during
the development of the classi�ers in the argumentative relation classi�ers set
allows us to make a consistent comparison between their e�ectiveness in the
two di�erent experiments we will carry.

Feature Types

Seen as a relation between two ArgumentUnit input instances (a premise and
a conclusion), some of the feature types for ArgumentativeRelation input in-
stances relies on the feature types de�ned for ArgumentUnit annotations in
Subsection 4.3.3.

• Lexical Feature Types

� ArgumentTopKToken n-grams (ArTopKToken n-grams) :
The TopKToken n-grams feature type of the conclusion in addition
to the TopKToken n-grams feature type of the premise.

� ArFirstToken n-grams(ArFirstToken n-grams): The First-
Token n-grams feature type of the conclusion in addition to the
FirstToken n-grams feature type of the premise.

� JaccardSimilarity: The count of the common tokens in the premise
and in the conclusion of the ArgumentativeRelation annotation.
Additionally, the count of the tokens in the premise which don't
occur in the conclusion. The two features are normalized by the
count of the tokens in the premise.

• Syntactic Feature Types
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� ArgumentPOS n-grams: The POS n-grams feature type of the
conclusion in addition to the POS n-grams feature type of the
premise.

• Structural Feature Types

� ArgumentBinaryPositionalOrder (ArBPO): Three boolean fea-
tures indicating whether the premise precede the conclusion or whether
the conclusion occurs after the premise or whether the argumenta-
tive relation is re�exive, i.e. if the premise and the conclusion is the
same ArgumentUnit annotation.

� ArgumentPositionalO�set (ArPO): The count of the sentences
between the conclusion and the premise weighted by the count of the
sentences in the document. Additionally, The count of the argument
units between the conclusion and the premise weighted by the count
of the argument units in the document.

� ArgumentPunctuations: The Punctuations feature type for the
premise in addition to the Punctuations feature type for the con-
clusion.

• Sophisticated Feature Types

� ArgumentGeneralInqurierCategories (ArGIC): The Gener-
alInqurierCategories feature type of the conclusion in addition to
the GeneralInqurierCategories feature type of the premise.

Cross-domain Results

Table 4.18 shows the e�ectiveness of our cross-domain argumentative relation
classi�er for each developed feature type. Additionally, we show the e�ec-
tiveness of our baseline which amounts to 0.104 positive precision. The best
feature type combination we found by using our greedy feature type selection
is: ArgumentPunctuations, ArgumentBinaryPositionalOrder and Argument-
TopKToken n-grams. Despite the severely skewed distribution of the Argu-
mentativeRelation input instances, our cross-domain argumentative relation
classi�er is able to achieve a positive precision of 0.330 which is two times
higher than the e�ectiveness achieved by the baseline. Nevertheless, these re-
sults implies that 67% of the ArgumentativeRelation input instances classi�ed
as related are incorrect.
As we showed in Chapter 3, our approach for assessing the relevance of an
argument relies on argumentative relations to model the argument structure
needed by our PageRank algorithm to score its argument units. Thus the low
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e�ectiveness achieved by our cross-domain argumentative classi�er is likely to
severely a�ect the PageRank scores. To better analyze the contribution of
the domain-e�ect on the argumentative relation classi�cation task we intro-
duce the results achieved by our argumentative relation classi�ers set in the
in-domain experiments.

Feature Type
Positive
Precision

Positive
Recall

Positive
F1-score

F1-score

Baseline 0.104 1.000 0.187 -
ArTopKToken n-grams 0.148 0.026 0.041 0.821
ArFirstToken n-grams 0.110 0.347 0.113 0.581
JaccardSimilarity 0.113 0.441 0.179 0.604

ArgumentPOS n-grams 0.168 0.034 0.056 0.823
ArBPO 0.141 0.680 0.231 0.552

ArgumnetPositionalO�set 0.136 0.521 0.212 0.604
ArgumentPunctuations 0.147 0.200 0.167 0.781

ArGIC 0.260 0.027 0.045 0.824
ArgumentSentenceStatistics 0.121 0.045 0.063 0.814
ArgumentPunctuations

, ArBPO,
ArTopKToken n-grams

0.330 0.062 0.096 0.828

Table 4.14: Cross-domain argumentative relation classi�er 's e�ectiveness results
for each feature type and for the best feature type combination: ArgumentPunctu-
ations, BinaryArgumentPositionalOrder, ArgumentTopKToken n-grams

In-domain Results

In the in-domain experiment, we develop three argumentative relation classi-
�ers on the three subcorpora of our cross-domain argument web corpus. As
we showed in Subsection 4.3.1, we split each subcorpora in 5 testing sets and
conduct an experiment on it in a 5-folds cross-validation evaluation setting,
resulting in three experiments. In each experiment, we develop an in-domain
argumentative relation and number them from 1 to 3 according to the subcor-
pora on which it is developed AIFdb, Araucaria andWebDiscourse respectively.
The distribution of the ArgumentativeRelation annotations in each subcorpora
is highly skewed but vary according to corpora. Thus, the e�ectiveness of the
baseline we suggested when we designed will vary as well. We use the same
feature types we used for the cross-domain experiment and use the greedy fea-
ture type selection approach to choose the best feature type combination for
each classi�er. This will allow us to carry out a consistent comparison of the
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e�ectiveness of the in-domain classi�ers to the e�ectiveness of the cross-domain
classi�er.
Table 4.15, 4.16 and 4.17 show the e�ectiveness of the three in-domain
experiments for the subcorpora AIFdb, Araucaria and WebDiscourse respec-
tively. In comparison with the �rst two classi�ers, the argumentative relation
classi�er developed on WebDiscourse achieves a relatively lower positive pre-
cision of 0.403; however as we showed in Subsection 4.2.4, the distribution
of the ArgumentativeRelation input instances in this corpus is more skewed
and amounts to only 8% of the whole count of the input instances. In the
three experiments, our in-domain argumentative relation classi�ers achieve 4
times higher positive precision than the listed baseline. The feature type Ar-
gumentTopKToken n-grams performs very well in the tree experiment similar
to TopKToken n-grams in the in-domain experiment for argument unit classi-
�cation, emphasizing the superiority of lexical feature types in the in-domain
experiments on argument mining in general to other feature types.

Feature Type
Positive
Precision

Positive
Recall

Positive
F1-score

F1-score

Baseline 0.117 1.000 0.208 -
ArTopKToken n-grams 0.405 0.190 0.255 0.843
ArFirstToken n-grams 0.013 0.200 0.024 0.636
JaccardSimilarity 0.167 0.580 0.258 0.657

ArgumentPOS n-grams 0.446 0.191 0.264 0.848
ArBPO 0.182 0.862 0.298 0.573

ArgumnetPositionalO�set 0.221 0.722 0.336 0.710
ArgumentPunctuations 0.281 0.321 0.299 0.818

ArGIC 0.488 0.195 0.276 0.852
ArgumentSentenceStatistics 0.358 0.230 0.378 0.841
ArgumentPunctuations,

ArGIC
0.581 0.215 0.308 0.859

Table 4.15: In-domain argumentative relation classi�er 1 's e�ectiveness results for
each feature type and for the best feature type combination: ArgumentPuctuations,
ArgumentGeneralInqurierCategories (AIFdb subcorpus)

85



CHAPTER 4. DOMAIN-ROBUST MINING OF ARGUMENTS FROM THE

WEB

Feature Type
Positive
Precision

Positive
Recall

Positive
F1-score

F1-score

Baseline 0.158 1.000 0.272 -
ArTopKToken n-grams 0.491 0.256 0.330 0.814
ArFirstToken n-grams 0.155 0.598 0.223 0.407
JaccardSimilarity 0.175 0.664 0.277 0.508

ArgumentPOS n-grams 0.489 0.236 0.316 0.813
ArBPO 0.175 0.429 0.247 0.640

ArgumnetPositionalO�set 0.188 0.772 0.302 0.486
ArgumentPunctuations 0.270 0.342 0.298 0.759

ArGIC 0.449 0.201 0.276 0.806
ArgumentSentenceStatistics 0.279 0.245 0.260 0.775

ArGIC
ArTopKToken n-grams

0.616 0.250 0.348 0.826

Table 4.16: In-domain argumentative relation classi�er 2 's e�ectiveness results for
each feature type and for the best feature type combination: ArgumentGeneralIn-
qurierCategories, ArgumentTopKToken n-grams (Araucaria subcorpus)

Feature Type
Positive
Precision

Positive
Recall

Positive
F1-score

F1-score

Baseline 0.084 1.000 0.155 -
ArTopKToken n-grams 0.250 0.037 0.064 0.873
ArFirstToken n-grams 0.155 0.256 0.193 0.835
JaccardSimilarity 0.092 0.451 0.152 0.658

ArgumentPOS n-grams 0.129 0.016 0.029 0.869
ArBPO 0.156 0.753 0.257 0.703

ArgumnetPositionalO�set 0.135 0.461 0.209 0.758
ArgumentPunctuations 0.135 0.184 0.154 0.837

ArGIC 0.272 0.030 0.054 0.873
ArgumentSentenceStatistics 0.131 0.049 0.071 0.863
ArgumentPOS n-grams,

ArGIC
0.403 0.038 0.069 0.875

Table 4.17: In-domain argumentative relation classi�er 3 's e�ectiveness results for
each feature type and for the best feature type combination: ArgumentPOS n-grams,
ArgumentGeneralInqurierCategories (WebDiscourse subcorpus)
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Comparison of the Cross-domain and In-domain Results

Table 4.18 shows the e�ectiveness of the cross-domain argumentative relation
classi�er together with the in-domain classi�ers. The e�ectiveness of the three
in-domain classi�ers is weighted with the size of the corpus on which they
were developed. The main reason for this is to balance the large di�erence
of the ArgumentativeRelation input instances' count in the three subcorpora
(the count of ArgumentativeRelation input instances in WebDiscourse is about
2,000 while its count is about 10,000 in Araucaria). Similar to the argument
unit classi�cation task, the positive precision of our cross-domain argumen-
tative relation classi�er appears to be fairly close to the weighted positive
precision of the in-domain classi�ers. This relatively close performance indi-
cates the possibility of developing argumentative relation classi�ers that are
able to generalize over domains and the appropriateness of our approach for
developing it. Nevertheless, the low performance of the cross-domain and in-
domain classi�ers shows the di�culty of extracting argumentative relations on
the Web.

Classi�er Name
Positive
Precision

Positive
Recall

Positive
F1-score

F1-score

Baseline 0.104 1.0 0.187 -
In-domain

argumentative relation
classi�er 1

0.581 0.215 0.308 0.859

In-domain
argumentative relation

classi�er 2
0.616 0.250 0.348 0.826

In-domain
argumentative relation

classi�er 3
0.403 0.038 0.069 0.875

In-domain
argumentative relation
classi�er (Weighted)

0.485 0.119 0.178 0.864

Cross-domain
argumentative relation

classi�er
0.330 0.062 0.096 0.828

Table 4.18: Cross-domain vs In-domain Argumentative Relation Classi�ers ' E�ec-
tiveness Comparison
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Conclusion

In this work, we took the �rst steps on the way of developing an argument
search engine whose goal is to retrieve the arguments on the Web which are
relevant to a user's information need. Argument relevance is a quality criterion,
among others, which attributes an argument and indicates locally how much
its premises contribute to its conclusion and globally how much it is useful for
a speci�c discussion.
In the last two decades, the Web has become a favorite place for people to
discuss di�erent topics on di�erent platforms, such as social media. The wide
spectrum of content on the Web in terms of topic or platform makes it hard to
mine the Web for arguments since it covers collections of di�erent documents
(domains) on di�erent levels. Nevertheless, the enormous size of the Web
makes it an invaluable knowledge source for mining relevant arguments to a
user's information need.
Motivated by these rewards and to tackle these di�culties, we studied the
following two research questions:

1. How to model argument relevance computationally on the Web?

2. How to domain-robustly mine the Web for arguments ?

5.1 Contributions

Given the success of PageRank algorithm [31] in assessing relevance of web
pages, we introduced a novel approach to assessing argument relevance com-
putationally by using PageRank algorithm [45]. Our approach relies on build-
ing an argument graph model to represent argumentative content on the Web.
In this argument graph, we create a node for each argument on the Web and
construct a directed edge between two arguments if the conclusion of the tar-
get argument is semantically equal to a premise of the source argument. This
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structure of the argument graph is used by PageRank algorithm to score the
contribution of an argument unit in it according to the extent with which it
gets used as a premise.
The second contribution in this direction is the construction of a ground-truth
argument graph from the arguments on AIFdb [25], considering two argument
units to be semantically equal only if they have the same text. The argument
graph contains about 26,000 arguments and 30,000 argument units. We cre-
ated a ground-truth benchmark argument relevance ranking by applying our
PageRank approach on the constructed graph. To evaluate our approach, we
compared the ground-truth rankings for a set of arguments in the constructed
graph with a set of rankings produced by experts in computational linguis-
tics. The evaluation revealed a positive correlation of 0.28 between the two
rankings in terms of Kendall's τ, indicating the impact and the correctness
of our PageRank for argument relevance approach and the reliability of our
ground-truth rankings.
To bring our approach to the Web, we introduced a simple argument model to
represent arguments on the Web in accordance with the argument structure
needed by the approach. The model represents an argument as a set of ar-
gument units and a set of argumentative relations. Technically, an argument
unit is considered to be a complete sentence and an argumentative relation is
considered to be a directed pair of argument units and states the premise and
the conclusion of the relation.
In the pursuit of studying the second research question, I carried out two ex-
periments to develop a domain-robust argument mining which made our main
contribution in this direction. The approach is designed as a pipeline which
consists of two sequential tasks, namely the argument unit classi�cation and
the argumentative relation classi�cation. Most of the corpora used in develop-
ing conventional argument mining tasks cover only one domain because they
are usually created using documents form the same source. The lack of cor-
pora which cover multiple domains led to our second contribution which is the
construction of a cross-domain argument web corpus. This corpus comprises
of three subcorpora: Araucaria [39], WebDiscourse [19] and AIFdb (without
Araucaria) [25] which are annotated with arguments according to our simple
argument model.
The cross-domain web argument corpus was used to design the two exper-
iments which we conducted to develop our domain-robust argument mining
approach. In the �rst experiment, called cross-domain experiment, we devel-
oped and evaluated our classi�er by testing it on a subcorpus after training it
on the other subcorpora. Since each subcorpus represents a di�erent domain,
in the cross-domain experiment, we studied the ability of an argument mining
classi�er to carry out its learned knowledge across domains. The second ex-
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periment, called in-domain experiment, was done to evaluate the e�ectiveness
of our classi�ers in the cross-domain experiment by training and testing them
on the same subcorpora thus excluding the di�culty faced in the generaliza-
tion over domains. In the cross-experiment, I achieved a positive precision
of 0.429 in the task of argument unit classi�cation, outperforming a baseline
which achieved a positive precision of 0.337. In the same experiment, the posi-
tive precision for the argumentative relation classi�cation task was 0.33 which
outperformed the baseline whose positive precision amounted to 0.104. See
Subsection 4.3.3 and 4.3.4 for more details.
In both tasks, the positive precision achieved in the in-domain experiment
were 0.565 and 0.485 for the argument unit classi�cation and the argumenta-
tive relation classi�cation tasks respectively. These results indicate a positive
outcome in developing an argument mining approach which is able to work
e�ectively across domains. Nonetheless, it also shows that there is still room
for improvement. In addition, the low e�ectiveness achieved in the in-domain
experiments highlights the seriousness of the obstacles a conventional argu-
ment mining approach will encounter in extracting arguments from the Web.
To summarize, I list the contributions for each research question below:

1. How to model argument relevance computationally on the Web?

• An Approach to Assessing Argument Relevance on the Web

• A ground-truth Argument Graph Together with a Ground-truth
Benchmark Argument Relevance Rankings

2. How to domain-robustly mine the Web for arguments ?

• A Cross-domain Argument Web Corpus

• A First Cross-domain Argument Mining Approach

5.2 Future Work

• Domain-robust Argument Unit Identi�cation

Our simple argument model represents an argument unit on the sentence
level for simplicity. Moens et al. [30] took a similar decision during their
work on argument mining in Araucaria. Despite its simplicity, the main
disadvantage of this approach is that multiple argument units which oc-
cur in a sentence are impossible to locate. Additionally, argument units
which cross sentence boundaries cause both sentences to be classi�ed as
argumentative. While there is some research on argument unit identi�ca-
tion in the essays domain byPersing and Ng [36] and Stab and Gurevych
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[42], the question of how to identify argument units on the Web is still
open for research.
Most of the argument mining approaches, including ours, are designed
as a pipeline, i.e. a sequence of tasks which depend on each other in
a sequential order. The main disadvantage of this design is the prop-
agation of errors increasingly through the pipeline [36]. Therefore, the
simpli�cation we did by segmenting a document into sentences can be
one reason for the low e�ectiveness of our pipeline. Adding an argument
unit identi�cation task before the argument unit classi�cation task can
improve the results of the subsequent tasks.

• Domain-speci�c Argument Mining Approach

A possible way to adapt our in-domain argument mining pipelines to
handle a document from multiple domains is to add a domain classi�-
cation task at the beginning of the pipeline. A domain classi�er can
be trained easily on our cross-domain argument web corpus to identify
the domain of a given document. Our suggested domain-speci�c argu-
ment mining approach will thus constitute of a domain classi�cation task
which will identify the domain of an input document before handing it to
the conventional in-domain argument mining pipeline which is responsi-
ble for this domain. This approach, however, is hard to use for mining
arguments on the Web where we have a large and increasing growing
number of domains.

• Argument Synthesis

Our approach to assessing argument relevance uses PageRank to score
an argument unit in an argument graph based on the magnitude of its
usage as a premise in di�erent arguments. The relevance of an argument
is then estimated by aggregating the PageRank scores of the premises of
the argument [45]. Our simple argument model represents an argument
as a set of argument units and a set of argumentative relations which
represent the structure of the argument. The cross-domain argument
mining approach, however, doesn't determine which sets of argumen-
tative relations establish a complete argument. Since humans tend to
use multiple premises in their arguments (see Figure 3.6b), having an
end-to-end argument mining approach which aggregates argumentative
relations is crucial for our PageRank approach to fully work.

• Paraphrasing for Argument Graph Construction

The PageRank for argument relevance approach [45] relies on construct-
ing an argument graph for the estimation of the relevance of an argu-
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ment. In the process of constructing our ground-truth argument graph,
we created an edge between two arguments if the conclusion of the target
argument is semantically equal to a premise in the source argument. We
considered two argument units to be semantically equal if they have the
same text. Humans, however, can and tend to express the same idea
di�erently in the same language. We call the rewording of a sentence
di�erently paraphrasing. In my thesis, we studied a simple approach
to detecting paraphrasing while constructing our graph (see Subsection
3.3.2) which did not improve the structure of the argument graph needed
by our approach. A more focused study with more sophisticated para-
phrasing detection can bring more matches among the argument units,
leading to better PageRank scores.
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Appendix

This list of expressions is used to detect statements which are semantically
equivalent but are expressed di�erently by using an extra expression. A in-
dicate a set of possible alternatives while ( ) indicate an optional word.

• i|you|he|she|it|we|they know|think|feel|believe|agree|maintain(s) (that)

• in (my|your|his|her|its|our|their) view|opinion|mind

• from (my|your|his|her|its|our|their) (perspective|point of view|viewpoint)

• therefore|thus|hence|so|as a consequence|consequently|as a result|as a mat-
ter of fact

• �rstly|secondly|thirdly|�nally|on the one hand|on the other hand

• also|moreover|in addition|likewise|besides|additionally|furthermore|plus

• still|however|but|yet|notwithstanding|nevertheless|nonetheless

• indeed|in fact|anyway|anyhow
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