Query Session Detection as a Cascade

Matthias Hagen Benno Stein Tino Rüb

Bauhaus-Universität Weimar
matthias.hagen@uni-weimar.de

SIR 2011
Dublin, Ireland
April 18, 2011
It’s quiz time!
It’s quiz time!

What is the user searching?

paris hilton
Without context . . .

paris hilton

source: [http://upload.wikimedia.org/wikipedia/commons/2/26/Paris_Hilton_3_Crop.jpg]
What if you knew the previous queries?

paris hotels
paris marriott
paris hyatt
paris hilton
What if you knew the previous queries?

paris hotels
paris marriott
paris hyatt
paris hilton

[Map of Paris with Hilton hotel location]

Sources:
- [http://maps.google.com/]
- [http://upload.wikimedia.org/wikipedia/en/e/eb/Hiltonbrandlogo.jpg]
Query sessions: same information need

The benefits

- Improved understanding of user intent
- Improved retrieval performance via session knowledge
Query sessions: same information need

The benefits
- Improved understanding of user intent
- Improved retrieval performance via session knowledge

The “minor” issue
Users do not announce when querying for a new information need.
A typical query log

<table>
<thead>
<tr>
<th>User</th>
<th>Query</th>
<th>Click domain + Click rank</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>773</td>
<td>istanbul</td>
<td>en.wikipedia.org</td>
<td>2011-04-16 20:34:17</td>
</tr>
<tr>
<td>773</td>
<td>istanbul archeology</td>
<td>www.kulturturizm.tr</td>
<td>2011-04-17 12:02:54</td>
</tr>
<tr>
<td>773</td>
<td>constantinople</td>
<td>www.roman-empire.net</td>
<td>2011-04-17 19:00:40</td>
</tr>
<tr>
<td>773</td>
<td>constantinople</td>
<td>www.roman-empire.net</td>
<td>2011-04-17 19:01:02</td>
</tr>
<tr>
<td>773</td>
<td>hurling</td>
<td>en.wikipedia.org</td>
<td>2011-04-17 19:03:05</td>
</tr>
<tr>
<td>773</td>
<td>hurling</td>
<td>en.wikipedia.org</td>
<td>2011-04-17 19:03:05</td>
</tr>
<tr>
<td>773</td>
<td>liam mccarthy cup</td>
<td>starbets.ie</td>
<td>2011-04-18 12:42:48</td>
</tr>
</tbody>
</table>
How to determine the break points?

<table>
<thead>
<tr>
<th>User</th>
<th>Query</th>
<th>Click domain + Click rank</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>773</td>
<td>istanbul</td>
<td>en.wikipedia.org</td>
<td>2011-04-16 20:34:17</td>
</tr>
<tr>
<td>773</td>
<td>istanbul archeology</td>
<td>www.kulturturizm.tr</td>
<td>2011-04-17 12:03:15</td>
</tr>
<tr>
<td>773</td>
<td>constantinople</td>
<td></td>
<td>2011-04-17 19:01:02</td>
</tr>
<tr>
<td>773</td>
<td>constantinople</td>
<td>www.roman-empire.net</td>
<td>2011-04-17 19:01:02</td>
</tr>
<tr>
<td>773</td>
<td>hurling</td>
<td></td>
<td>2011-04-17 19:03:01</td>
</tr>
<tr>
<td>773</td>
<td>hurling</td>
<td>en.wikipedia.org</td>
<td>2011-04-17 19:03:05</td>
</tr>
<tr>
<td>773</td>
<td>liam mccarthy cup</td>
<td></td>
<td>2011-04-17 23:33:04</td>
</tr>
<tr>
<td>773</td>
<td>liam mccarthy cup</td>
<td>starbets.ie</td>
<td>2011-04-18 12:42:48</td>
</tr>
</tbody>
</table>
The key is ... Automatic query session detection
Automatic query session detection

Usual “technique”

Check for consecutive queries whether same/new information need.

<table>
<thead>
<tr>
<th>ID</th>
<th>Query</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>773</td>
<td>istanbul</td>
<td>2011-04-16 20:34:17</td>
<td>✓ same</td>
</tr>
<tr>
<td>773</td>
<td>istanbul archeology</td>
<td>2011-04-17 18:24:07</td>
<td>✓ same</td>
</tr>
<tr>
<td>773</td>
<td>constantinople</td>
<td>2011-04-17 19:01:02</td>
<td></td>
</tr>
<tr>
<td>773</td>
<td>hurling</td>
<td>2011-04-17 19:03:05</td>
<td>⇣ new</td>
</tr>
</tbody>
</table>
Typical features

<table>
<thead>
<tr>
<th>Temporal thresholds</th>
<th>5 minutes</th>
<th>[Silverstein et al., 1999]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10–15 minutes</td>
<td>[He and Göker, 2000]</td>
</tr>
<tr>
<td></td>
<td>30 minutes</td>
<td>[Downey et al., 2007]</td>
</tr>
<tr>
<td></td>
<td>user specific</td>
<td>[Murray et al., 2006]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lexical similarity</th>
<th>n-gram overlap</th>
<th>[Zhang and Moffat, 2006]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Levenshtein distance</td>
<td>[Jones and Klinkner, 2008]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semantic similarity</th>
<th>Search results</th>
<th>[Radlinski and Joachims, 2005]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESA</td>
<td>[Lucchese et al., 2011]</td>
</tr>
</tbody>
</table>
Previous methods

Observations

- Temporal thresholds: fast but bad accuracy
- Feature combinations: more accurate
- One of the best: Geometric method (time + lexical) [Gayo-Avello, 2009]
Previous methods

Observations
- Temporal thresholds: fast but bad accuracy
- Feature combinations: more accurate
- One of the best: Geometric method (time + lexical) \[Gayo-Avello, 2009\]

Shortcomings
- All features evaluated simultaneously \rightarrow runtime
- Geometric method ignores semantics \rightarrow accuracy

Examples
- Subset test suffices
 - hurling ✓ same
 - hurling gaa ✓ same

- Geometric method fails
 - hurling ✓ same
 - mccarthy cup ✓ same
We address the shortcomings in a cascade ...
... well ... a small 4-step cascade
Cascading Method

The Framework

... well ... a small 4-step cascade

Step 1: Subset tests

↘

Step 2: Geometric method

↘

Step 3: ESA similarity

↙

Step 4: Search results

Basic Idea

Increased feature cost (runtime) from step to step. Expensive features only if previous steps “unreliable.”
Simple string comparison

Criterion

Consecutive queries q and q' in same session if q sub- or superset of q'. Else: Goto Step 2.

Remarks: Repetition, specialization, or generalization. Time gap = continuing a pending session.

Example

<table>
<thead>
<tr>
<th>Repetition</th>
<th>Specialization</th>
<th>Generalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>hurling</td>
<td>hurling</td>
<td>hurling gaa</td>
</tr>
<tr>
<td>✓ same</td>
<td>✓ same</td>
<td>✓ same</td>
</tr>
<tr>
<td>hurling</td>
<td>hurling gaa</td>
<td>hurling</td>
</tr>
</tbody>
</table>
For consecutive queries q and q'

$$f_{\text{temp}} = \max\{0, 1 - \frac{t}{24h}\} \quad t \text{ is time between } q \text{ and } q'$$

$$f_{\text{lex}} = \text{cosine similarity of 3- to 5-grams of } q' \text{ and } s \quad s \text{ is session of } q$$
Combination of temporal and lexical features

For consecutive queries \(q \) and \(q' \)

\[
f_{\text{temp}} = \max(0, 1 - \frac{t}{24h}) \quad t \text{ is time between } q \text{ and } q'
\]

\[
f_{\text{lex}} = \text{cosine similarity of 3- to 5-grams of } q' \text{ and } s
\]

\(s \) is session of \(q \)

Criterion (original)

Consecutive queries \(q \) and \(q' \) in same session if

\[
\sqrt{f_{\text{temp}}^2 + f_{\text{lex}}^2} \geq 1.
\]
Performs well on standard test corpus ...
... but has some problems “on the edge”

Major problems

Similar queries, time gap (upper left) → Merely a matter of opinion

Diff. queries, same semantics (lower right) → Incorporate semantics
Cascading Method

Step 2: Geometric method

... but has some problems “on the edge”

Major problems

Similar queries, time gap (upper left) → Merely a matter of opinion

Diff. queries, same semantics (lower right) → Incorporate semantics

Criterion (adapted)

Original geometric method if \(f_{\text{temp}} < 0.8 \) or \(f_{\text{lex}} > 0.4 \).
Else: Goto Step 3.
How ESA works

[Gabrilovich and Markovitch, 2007]

Preprocessing

tf · *idf*-weighted inverted index of Wikipedia articles → term-document matrix *M*

For consecutive queries *q* and *q'*

\[f_{esa} = \text{cosine similarity of } M^T \cdot q' \text{ and } M^T \cdot s \]

* s is session of *q*

Criterion

Consecutive queries *q* and *q'* in same session if \(f_{esa} \geq 0.35 \).
Else: Goto Step 4.
Even more “semantics”

Idea
Enrich the short query strings with the results of some web search engine.

Criterion
Consecutive queries \(q \) and \(q' \) in same session iff

they share at least one of the top 10 search results.
Even more “semantics”

Idea

Enrich the short query strings with the results of some web search engine.

Criterion

Consecutive queries \(q \) and \(q' \) in same session iff
they share at least one of the top 10 search results.

Remark

If \(q \) and \(q' \) share no top 10 result, decision should be “not sure.”
That’s the complete cascade

Step 1: Subset tests

↘

Step 2: Geometric method

↘

Step 3: ESA similarity

↙

Step 4: Search results

source: [http://www.solarshop.com/solarpix/Solar Cascade 4 Tier GreenL.jpg]
That’s the complete cascade

Step 1: Subset tests

Step 2: Geometric method

Step 3: ESA similarity

Step 4: Search results

What about accuracy and performance?
Accuracy and runtime

Accuracy on Gayo-Avello’s corpus (11,000 queries, 2.7 per session)

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure ($\beta = 1.5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric</td>
<td>0.8673</td>
<td>0.9431</td>
<td>0.9184</td>
</tr>
<tr>
<td>Cascading</td>
<td>0.8618</td>
<td>0.9676</td>
<td>0.9328</td>
</tr>
</tbody>
</table>

Performance per step on Gayo-Avello’s corpus

<table>
<thead>
<tr>
<th>Step</th>
<th>affected</th>
<th>F-Measure</th>
<th>time</th>
<th>factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>40.49%</td>
<td>0.8303</td>
<td>0.08 ms</td>
<td>1.0</td>
</tr>
<tr>
<td>Step 2</td>
<td>35.15%</td>
<td>0.9292</td>
<td>0.20 ms</td>
<td>2.5</td>
</tr>
<tr>
<td>Step 3</td>
<td>2.05%</td>
<td>0.9316</td>
<td>0.27 ms</td>
<td>3.4</td>
</tr>
<tr>
<td>Step 4</td>
<td>0.85%</td>
<td>0.9328</td>
<td>9.85 ms</td>
<td>123.1</td>
</tr>
</tbody>
</table>
Goal: high quality session test data

Our own use case
Sample sessions from the AOL log as test data.
AOL log (cleaned): 35.4 million interactions from 470,000 users.

Some figures
Step 4 involved on 22.5% → 8 million web queries
→ 300 ms per search → 1 month
Goal: high quality session test data

Our own use case
Sample sessions from the AOL log as test data.
AOL log (cleaned): 35.4 million interactions from 470,000 users.

Some figures
Step 4 involved on 22.5% → 8 million web queries
→ 300 ms per search → 1 month

Way out
• Drop Step 4 and the sessions on which it would have been invoked

Remaining sessions: F-Measure = 0.9755
Cleaned AOL log: 27 minutes
Almost the end: The take-away messages!
What we have done

Results
- Cascading method
- Cheap features first
- Beats geometric
- 3 step version: simple, fast, high quality sessions

Future Work
- Postprocessing for multi-tasking
- Postprocessing for goals/missions
What we have (not) done

Results
- Cascading method
- Cheap features first
- Beats geometric
- 3 step version: simple, fast, high quality sessions

Future Work
- Postprocessing for multi-tasking
- Postprocessing for goals/missions
Conclusion

What we have (not) done

Results
- Cascading method
- Cheap features first
- Beats geometric
- 3 step version: simple, fast, high quality sessions

Future Work
- Postprocessing for multi-tasking
- Postprocessing for goals/missions

Thank you 😊