Harnessing Web Archives to Tackle Selected Societal Challenges

The Oral Exam of
Johannes Kiesel
To Obtain the Academic Degree of
Dr. rer. nat.

Web Technology & Information Systems Group
Bauhaus-Universität Weimar

www.uni-weimar.de www.webis.de
Societal challenges

Issues that concern most if not all members of a society, either now or in a likely future.

Well-known challenges:

- Critical assessment of information
- Protection of the environment
- Preservation of culture
- Ensuring public health
- Security and privacy

* Taken from European Commission (Horizon 2020), World Economic Forum, Gesellschaft für Informatik
Harnessing Web Archives to Tackle Selected Societal Challenges

Societal challenges

Issues that concern most if not all members of a society, either now or in a likely future.

Well-known challenges:*

- Critical assessment of information
- Protection of the environment
- Preservation of culture
- Ensuring public health
- Security and privacy

Web archives

- Allow for large-scale analyses
- Allow to trace changes
- Allow to replicate analyses

* Taken from European Commission (Horizon 2020), World Economic Forum, Gesellschaft für Informatik

Source: DOMO, Reddit, GDELT, Wikipedia

© Kiesel 2022
Harnessing Web Archives to Tackle Selected Societal Challenges

Main contributions

1. Preservation of digital culture
 - 10K pages high-fidelity archive (FAIRest dataset award)
 - Reproduction assessment task
 - 9K pages segmentation dataset
 - Segmentation evaluation measures

2. Critical assessment of information
 - Revert-based vandalism detection
 - 30K edits Wiki vandalism dataset
 - 1M hyperpartisan news dataset
 - Style-based polarity detection
 - Hyperpartisan news challenge (SemEval, 42 teams)

3. Online security and privacy
 - 3B web sentences dataset
 - Position-dependent language model
 - Security estimate: mnemonic passwords
 - Personal archiving tool

Tailored web archiving technology (Webis Web Archiver)
Harnessing Web Archives to Tackle Selected Societal Challenges

Main contributions

1. Preservation of digital culture
 - 10K pages high-fidelity archive (FAIRest dataset award)
 - Reproduction assessment task
 - 9K pages segmentation dataset
 - Segmentation evaluation measures

2. Critical assessment of information
 - Revert-based vandalism detection
 - 30K edits Wiki vandalism dataset
 - 1M hyperpartisan news dataset
 - Style-based polarity detection
 - Hyperpartisan news challenge (SemEval, 42 teams)

3. Online security and privacy
 - 3B web sentences dataset
 - Position-dependent language model
 - Security estimate: mnemonic passwords
 - Personal archiving tool

Tailored web archiving technology (Webis Web Archiver)

→ New tasks
Harnessing Web Archives to Tackle Selected Societal Challenges

Main contributions

1. Preservation of digital culture
 - 10K pages high-fidelity archive (FAIRest dataset award)
 - Reproduction assessment task
 - 9K pages segmentation dataset
 - Segmentation evaluation measures

2. Critical assessment of information
 - Revert-based vandalism detection
 - 30K edits Wiki vandalism dataset
 - 1M hyperpartisan news dataset
 - Style-based polarity detection
 - Hyperpartisan news challenge (SemEval, 42 teams)

3. Online security and privacy
 - 3B web sentences dataset
 - Position-dependent language model
 - Security estimate: mnemonic passwords
 - Personal archiving tool

Tailored web archiving technology (Webis Web Archiver)

→ New tasks → New or improved algorithms
Harnessing Web Archives to Tackle Selected Societal Challenges

Main contributions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10K pages high-fidelity archive (FAIRest dataset award)</td>
<td>Revert-based vandalism detection</td>
<td>3B web sentences dataset</td>
</tr>
<tr>
<td>Reproduction assessment task</td>
<td>30K edits Wiki vandalism dataset</td>
<td>Position-dependent language model</td>
</tr>
<tr>
<td>9K pages segmentation dataset</td>
<td>1M hyperpartisan news dataset</td>
<td>Security estimate: mnemonic passwords</td>
</tr>
<tr>
<td>Segmentation evaluation measures</td>
<td>Style-based polarity detection</td>
<td>Personal archiving tool</td>
</tr>
<tr>
<td></td>
<td>Hyperpartisan news challenge (SemEval, 42 teams)</td>
<td></td>
</tr>
</tbody>
</table>

Tailored web archiving technology (Webis Web Archiver)

→ New tasks → New or improved algorithms → More adequate evaluation measures
Harnessing Web Archives to Tackle Selected Societal Challenges

Main contributions

1. Preservation of digital culture
 - 10K pages high-fidelity archive (FAIRest dataset award)
 - Reproduction assessment task
 - 9K pages segmentation dataset
 - Segmentation evaluation measures

2. Critical assessment of information
 - Revert-based vandalism detection
 - 30K edits Wiki vandalism dataset
 - 1M hyperpartisan news dataset
 - Style-based polarity detection
 - Hyperpartisan news challenge (SemEval, 42 teams)

3. Online security and privacy
 - 3B web sentences dataset
 - Position-dependent language model
 - Security estimate: mnemonic passwords
 - Personal archiving tool

Tailored web archiving technology (Webis Web Archiver)

→ New tasks → New or improved algorithms → More adequate evaluation measures → Larger and more accurate datasets
Challenge 1
Preservation of Digital Culture

Web Page Segmentation
(highlighting reproducibility)
Web Page Segmentation

Flashback: Supercut of Elton John singing 'Your Song' through the years

© Kiesel 2022
Web Page Segmentation

Visually distinct segments

Self-contained segments
Web Page Segmentation

Existing definitions (9): biased towards downstream tasks

- Segments are visual blocks (4), edge-delineated (2), visually distinct (1), self-contained (1), have a heading (1)

 → Problem: inconsistent evaluation methodology

 → No reliable benchmark of algorithms

Existing datasets (20): not re-usable

- The 12 with human annotations are small (max 1000 pages)
- Only 3 of these allow for algorithms based on computer vision
- None allow to reproduce page for browser-based algorithms
Web Page Segmentation

Existing definitions (9): biased towards downstream tasks
- Segments are visual blocks (4), edge-delineated (2), visually distinct (1), self-contained (1), have a heading (1)
→ Problem: inconsistent evaluation methodology
→ No reliable benchmark of algorithms

Existing datasets (20): not re-usable
- The 12 with human annotations are small (max 1000 pages)
- Only 3 of these allow for algorithms based on computer vision
- None allow to reproduce page for browser-based algorithms

Solution
- Segment concept based on human viewer (Gestalt principles)
- Dataset of 8490 archived web pages (5 segmentations each; reproducible in browser)
- Segmentation fusion method
- Evaluation measure, tweakable towards downstream tasks

Gestalt principles (selection)
- Proximity
- Similarity
- Closure
A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Elements $E = \{e_1, \ldots, e_n\}$

Segmentation $S = \{s_1, \ldots, s_m\}$ with segments $s_i \subseteq E$
A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Elements $E = \{e_1, \ldots, e_n\}$
Segmentation $S = \{s_1, \ldots, s_m\}$ with segments $s_i \subseteq E$

Large-scale human annotation (8490 pages \times 5)

→ Annotation of 600,000 segments in 4 months of full-time work
A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Elements $E = \{e_1, \ldots, e_n\}$

Segmentation $S = \{s_1, \ldots, s_m\}$ with segments $s_i \subseteq E$

Ground-truth fusion: hierarchical clustering (UPGMA)

Large-scale human annotation (8490 pages × 5)

→ Annotation of 600,000 segments in 4 months of full-time work
A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Elements $E = \{e_1, \ldots, e_n\}$

Segmentation $S = \{s_1, \ldots, s_m\}$ with segments $s_i \subseteq E$

Ground-truth fusion: hierarchical clustering (UPGMA)

Evaluation: $F_{B^3} \in [0, 1]$ (from clustering evaluation)

\rightarrow Decomposition into P_{B^3}, R_{B^3}

\approx errors of oversegmentation, undersegmentation

Large-scale human annotation (8490 pages × 5)

→ Annotation of 600,000 segments in 4 months of full-time work
A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Elements $E = \{e_1, \ldots, e_n\}$

Segmentation $S = \{s_1, \ldots, s_m\}$ with segments $s_i \subseteq E$

Ground-truth fusion: hierarchical clustering (UPGMA)

Evaluation: $F_{B^3} \in [0, 1]$ (from clustering evaluation)

\rightarrow Decomposition into P_{B^3}, R_{B^3}

\approx errors of oversegmentation, undersegmentation
A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Elements $E = \{e_1, \ldots, e_n\}$

Segmentation $S = \{s_1, \ldots, s_m\}$ with segments $s_i \subseteq E$

Ground-truth fusion: hierarchical clustering (UPGMA)

Evaluation: $F_{B_3} \in [0, 1]$ (from clustering evaluation)

\rightarrow Decomposition into P_{B_3}, R_{B_3}

\approx errors of oversegmentation, undersegmentation

Elements of downstream tasks

Characters

DOM nodes

Pixels

Edge pixels

High agreement for all tasks

<table>
<thead>
<tr>
<th>Agreement measure</th>
<th>Characters</th>
<th>Nodes</th>
<th>Pixels</th>
<th>Edge pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{B_3}</td>
<td>0.78</td>
<td>0.74</td>
<td>0.65</td>
<td>0.73</td>
</tr>
<tr>
<td>$\max(P_{B_3}, R_{B_3})$</td>
<td>0.97</td>
<td>0.95</td>
<td>0.94</td>
<td>0.96</td>
</tr>
</tbody>
</table>
A web page segment is a part of a web page containing those elements that belong together as per agreement among a majority of viewers.

Elements $E = \{e_1, \ldots, e_n\}$
Segmentation $S = \{s_1, \ldots, s_m\}$ with segments $s_i \subseteq E$

Ground-truth fusion: hierarchical clustering (UPGMA)

Evaluation: $F_{B^3} \in [0, 1]$ (from clustering evaluation)

→ Decomposition into P_{B^3}, R_{B^3}
≈ errors of oversegmentation, undersegmentation

Elements of downstream tasks

<table>
<thead>
<tr>
<th>Characters</th>
<th>DOM nodes</th>
<th>Pixels</th>
<th>Edge pixels</th>
</tr>
</thead>
</table>

High agreement for all tasks

<table>
<thead>
<tr>
<th>Agreement measure</th>
<th>Characters</th>
<th>Nodes</th>
<th>Pixels</th>
<th>Edge pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{B^3}</td>
<td>0.78</td>
<td>0.74</td>
<td>0.65</td>
<td>0.73</td>
</tr>
<tr>
<td>$\max(P_{B^3}, R_{B^3})$</td>
<td>0.97</td>
<td>0.95</td>
<td>0.94</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Insights into segmentation technology (F_{B^3})

<table>
<thead>
<tr>
<th>Elements/task</th>
<th>1Seg</th>
<th>VIPS</th>
<th>HEPS</th>
<th>Cor.</th>
<th>MMD.</th>
<th>Meier</th>
<th>MV@2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characters</td>
<td>0.52</td>
<td>0.67</td>
<td>0.50</td>
<td>0.61</td>
<td>0.61</td>
<td>0.50</td>
<td>0.62</td>
</tr>
<tr>
<td>Pixels</td>
<td>0.24</td>
<td>0.38</td>
<td>0.33</td>
<td>0.36</td>
<td>0.42</td>
<td>0.32</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Challenge 2
Critical Assessment of Information

Spatio-Temporal Analysis of Vandalism in Wikipedia

(highlighting temporal dynamics)
Wikipedia Vandalism
Wikipedia Vandalism

Vandalism is a problem for Wikipedia

- 470 million edits to the English Wikipedia (14 years)
- 40 million (9.5%) are vandalism
 → Rate of today: a vandalism case every 5 seconds

How to fight vandalism?

- Explain why people vandalism
- Analyze when people vandalize
- Analyze where these people are
Wikipedia Vandalism

Vandalism is a problem for Wikipedia

- 470 million edits to the English Wikipedia (14 years)
- 40 million (9.5%) are vandalism
 → Rate of today: a vandalism case every 5 seconds

How to fight vandalism?

- Explain why people vandalize
- Analyze when people vandalize
- Analyze where these people are

Language-independent detection approach

- Take all 1.2 billion edits to the 7 most-edited Wikipedias (english, german, french, spanish, russian, italian, japanese)
- Historical geolocation of anonymous editors (77% of edits by cross-checking RIR, IPligence, and IP2Location)
- Vandalism detector based on revert patterns (community behavior)
 → Spatio-temporal analysis per local time of anonymous editors
Not all reverts indicate vandalism

- Prior work: use only reverts whose comment indicates vandalism
 → Underestimates vandalism; language-dependent

- Our approach: identify revert patterns indicating non-vandalism

Revert to blank page
Empty revert
Self-revert
Revert correction (enlargement)
Revert reverting more than one editor
Reverted revert
Interleaved reverts (edit war)
Not all reverts indicate vandalism

- Prior work: use only reverts whose comment indicates vandalism
 → Underestimates vandalism; language-dependent

- Our approach: identify revert patterns indicating non-vandalism

- Only 46% of reverted edits are vandalism
- Human evaluation: precision 82.8%, recall 84.7%
 (4 times the recall of prior work)
Not all reverts indicate vandalism

- Prior work: use only reverts whose comment indicates vandalism
 → Underestimates vandalism; language-dependent

- Our approach: identify revert patterns indicating non-vandalism

 - Revert to blank page
 - Empty revert
 - Self-revert
 - Reverted revert
 - Interleaved reverts (edit war)
 - Revert correction (enlargement)
 - Revert reverting more than one editor

- Only 46% of reverted edits are vandalism

- Human evaluation: precision 82.8%, recall 84.7%
 (4 times the recall of prior work)
Spatio-temporal vandalism analysis

- English Wikipedia from United States
- French Wikipedia from France
- Japanese Wikipedia from Japan

- Monday - Thursday
- Friday
- Saturday
- Sunday

© Kiesel 2022
Challenge 3
Online Security and Privacy

Security Estimate for Mnemonic Passwords

(highlighting volume)
The mnemonic password advice
(as per German BSI, Google, etc.)

1. Create a sentence
2. Memorize it
3. Concatenate the first characters of each word
4. Use the string as password

When I walked to the grocery store,
there were camels flying overhead!

Password: wiwttgstwcfo
The mnemonic password advice
(as per German BSI, Google, etc.)

1. Create a sentence
2. Memorize it
3. Concatenate the first characters of each word
4. Use the string as password

Passwords that require a botnet \((H_1 \approx 65 \text{ Bit})\):
- 14 random lowercase letters (out of 26)
- 10 random ASCII characters (out of 96)
- 5 random words (out of 7776)

And for mnemonic passwords?

When I walked to the grocery store, there were camels flying overhead!

Password: wiwtgswcfo

![Graph showing probability distribution of word initials](image)
The mnemonic password advice
(as per German BSI, Google, etc.)

1. Create a sentence
2. Memorize it
3. Concatenate the first characters of each word
4. Use the string as password

When I walked to the grocery store, there were camels flying overhead!

Password: wiwtgstwcfo

Passwords that require a botnet ($H_1 \approx 65$ Bit):

- 14 random lowercase letters (out of 26)
- 10 random ASCII characters (out of 96)
- 5 random words (out of 7776)

And for mnemonic passwords?

Depends on password distribution (Kerckhoffs’ principle) → model distribution from a billion passwords
The mnemonic password advice
(as per German BSI, Google, etc.)

1. Create a sentence
2. Memorize it
3. Concatenate the first characters of each word
4. Use the string as password

Passwords that require a botnet \((H_1 \approx 65\text{ Bit})\):
- 14 random lowercase letters (out of 26)
- 10 random ASCII characters (out of 96)
- 5 random words (out of 7776)

And for mnemonic passwords?

- Depends on password distribution (Kerckhoffs' principle) \(\rightarrow\) model distribution from a billion passwords

Approach: substitute mnemonics by web sentences
- 3 billion web sentences corpus from a standard web archive
- Statistically align the sentence corpus to mnemonics
- Estimate password distribution using position-dependent language models
 \(\rightarrow\) Security estimates against offline \((H_1)\) and online attacks \((H_0, \lambda_n)\)
Sentence acquisition for password distribution estimate

<table>
<thead>
<tr>
<th>5,000</th>
<th>Mnemonics Study by Yang et al., 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>80,000</td>
<td>Sentences The Bible</td>
</tr>
<tr>
<td>5,000,000</td>
<td>Sentences Encyclopedia Britannica</td>
</tr>
<tr>
<td>70,000,000</td>
<td>Passwords Largest password corpus</td>
</tr>
<tr>
<td>730,000,000</td>
<td>Web pages ClueWeb12, 27.3 TB</td>
</tr>
<tr>
<td>3,400,000,000</td>
<td>Sentences Extracted and filtered</td>
</tr>
<tr>
<td>500,000,000</td>
<td>Sentences And aligned to mnemonics</td>
</tr>
</tbody>
</table>

Alignment in sentence complexity (≈ readability)

- Model from the mnemonics study
- Distribution in the Web

Syllables

Sentences of length 12
Security estimates (per character)

<table>
<thead>
<tr>
<th>Language model</th>
<th>Lowercase letters</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_1</td>
<td>Ppl.</td>
</tr>
<tr>
<td>Uniform</td>
<td>4.70</td>
<td>26.0</td>
</tr>
<tr>
<td>Order 0</td>
<td>4.15</td>
<td>17.8</td>
</tr>
<tr>
<td>Order 8</td>
<td>3.71</td>
<td>13.1</td>
</tr>
<tr>
<td>Order 8, position-dependent</td>
<td>3.65</td>
<td>12.6</td>
</tr>
</tbody>
</table>
Security estimates (per character)

<table>
<thead>
<tr>
<th>Language model</th>
<th>Lowercase letters</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_1</td>
<td>Ppl.</td>
</tr>
<tr>
<td>Uniform</td>
<td>4.70</td>
<td>26.0</td>
</tr>
<tr>
<td>Order 0</td>
<td>4.15</td>
<td>17.8</td>
</tr>
<tr>
<td>Order 8</td>
<td>3.71</td>
<td>13.1</td>
</tr>
<tr>
<td>Order 8, position-dependent</td>
<td>3.65</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Reaching $H_1 = 65$ Bit with mnemonic passwords

- Lowercase letters from 13+ words sentence 54 Bit
- 7-bit visible ASCII (incl. %, !, @, #, etc.) 8 Bit
 (adds on average 2 characters ≈ 6.4 Bit)
- Word replacements (and \rightarrow &), to \rightarrow 2, etc.) 2 Bit
- Different characters (last of each word) 0 Bit
- Complex sentences (rich vocabulary) + 2 Bit

Total 66 Bit
Harnessing Web Archives to Tackle Selected Societal Challenges

Summary

1. Preservation of digital culture
 - 10K pages high-fidelity archive (FAIRest dataset award)
 - Reproduction assessment task
 - 9K pages segmentation dataset
 - Segmentation evaluation measures

2. Critical assessment of information
 - Revert-based vandalism detection
 - 30K edits Wiki vandalism dataset
 - 1M hyperpartisan news dataset
 - Style-based polarity detection
 - Hyperpartisan news challenge (SemEval, 42 teams)

3. Online security and privacy
 - 3B web sentences dataset
 - Position-dependent language model
 - Security estimate: mnemonic passwords
 - Personal archiving tool

Tailored web archiving technology (Webis Web Archiver)

Highlighted aspects:
- Reproducibility
- Temporal dynamics
- Volume