The Impact of Negative Relevance Judgements on nDCG

Lukas Gienapp Maik Fröbe Matthias Hagen Martin Potthast

Leipzig University
Martin-Luther-Universität Halle-Wittenberg

webis.de
"nDCG produces scores between 0 and 1."

(iff gain values are positive)
nDCG produces scores between 0 and 1."

(iff gain values are positive)

Negative gain values (qrels) are prevalent:

- Commonly used at TREC, other venues
- Denote spam, inappropriate documents
- Same amount as “key documents”

<table>
<thead>
<tr>
<th>TREC Web Track</th>
<th>Qrels Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>5%</td>
</tr>
<tr>
<td>2011</td>
<td>6%</td>
</tr>
<tr>
<td>2012</td>
<td>5%</td>
</tr>
<tr>
<td>2013</td>
<td>2%</td>
</tr>
<tr>
<td>2014</td>
<td>6%</td>
</tr>
</tbody>
</table>
Introduction

“nDCG produces scores between 0 and 1.”

(if gain values are positive)

Negative gain values (qrels) are prevalent:

- Commonly used at TREC, other venues
- Denote spam, inappropriate documents
- Same amount as “key documents”

<table>
<thead>
<tr>
<th>TREC Web Track</th>
<th>Qrels Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>5%</td>
</tr>
<tr>
<td>2011</td>
<td>6%</td>
</tr>
<tr>
<td>2012</td>
<td>5%</td>
</tr>
<tr>
<td>2013</td>
<td>2%</td>
</tr>
<tr>
<td>2014</td>
<td>6%</td>
</tr>
</tbody>
</table>

Boundedness is necessary:

- Ensures nDCG’s statistical properties
 - nDCG is convergent, top-weighted, realizable, monotonous, localized, complete, scale invariant

→ How to handle negative gain values?
Strategies

(1) Original nDCG

- Use orig. nDCG formula on neg. gain values
- **Problem:** boundedness not guaranteed
Strategies

(1) Original nDCG
 - Use orig. nDCG formula on neg. gain values
 - **Problem:** boundedness not guaranteed

(2) Ignoring negative values
 - Negative relevance values are treated as 0
 - This is current practice of most eval tools
 - **Problem:** loss of information
Strategies

(1) Original nDCG
 - Use orig. nDCG formula on neg. gain values
 - **Problem:** boundedness not guaranteed

(2) Ignoring negative values
 - Negative relevance values are treated as 0
 - This is current practice of most eval tools
 - **Problem:** loss of information

(3) Min-Max normalization
 - Adopt full min-max-normalization by also including worst possible ranking
 - **Problem:** unknown properties
Frequency and Impact
TREC Web Tracks 2010–2014

How often is boundedness violated?

- Between 70% and 100% of topics violate the boundedness property (neg. scores possible) when using Original nDCG
- Between 8% and 68% of topics may even score below -1

How do the two proposed solutions impact system rankings?

- Ignoring negative labels affects the rankings slightly ($\rho \approx 0.89$)
- Min-Max nearly reproduces rankings given by Original in full ($\rho \approx 0.98$)

Conclusions:

- Unboundedness is a widespread issue and needs to be addressed.
- The current best practice seems unsuitable, as it affects system rankings.
- Investigation of reliability, sensitivity, and stability of the three strategies.
Reliability

A measure’s ability to reflect the actual performance differences of systems.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>TREC 2011</th>
<th>TREC 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0.937</td>
<td>0.930</td>
</tr>
<tr>
<td>Ignoring</td>
<td>0.973</td>
<td>0.975</td>
</tr>
<tr>
<td>Min-Max</td>
<td>0.993</td>
<td>0.995</td>
</tr>
</tbody>
</table>

- Min-Max is most reliable, followed by ignoring negative labels, and Original
- Unboundedness increases the measurements’ variance for Original
Sensitivity

A measure’s ability to successfully tell two systems apart at significance level.

- Min-Max performs best, followed by Original
- Ignoring negative values is disfavorable, as it negatively impacts sensitivity.
Stability

A measure’s dependence on number of topics.

- Min-Max performs much better, likely due to reduced cross-topic variance.
- Even with more topics, other strategies can’t match the improved error rate.
Conclusion

Identified Problem:
- Negative gain values can lead to boundedness violation for nDCG.
- Many evaluation experiments use negative relevance judgments.
- Current strategy is not equipped to adequately address these issues.

Proposed Solution:
- Adopting full min-max normalization.
- Restores boundedness while preserving system rankings.
- Yields additional benefits with increased stability, reliability, and sensitivity.
Conclusion

Identified Problem:
- Negative gain values can lead to boundedness violation for nDCG.
- Many evaluation experiments use negative relevance judgments.
- Current strategy is not equipped to adequately address these issues.

Proposed Solution:
- Adopting full min-max normalization.
- Restores boundedness while preserving system rankings.
- Yields additional benefits with increased stability, reliability, and sensitivity.

Thank you!