Estimating Topic Difficulty Using Normalized Discounted Cumulated Gain

Lukas Gienapp Benno Stein Matthias Hagen Martin Potthast

Leipzig University
Bauhaus-Universität Weimar
Martin-Luther-Universität Halle-Wittenberg
webis.de
How can we identify topics in offline IR evaluation for which systems (systematically) face retrieval problems?
Experimental Setting

Offline IR Evaluation

\[\begin{pmatrix}
 p_{1,1} & \cdots & \cdots & p_{t,1} \\
 \vdots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 p_{1,s} & \cdots & \cdots & p_{t,s}
\end{pmatrix} \]

Topic-System-Matrix:

- \(p_{t,s} \) denotes **effectiveness score** of system \(s \) on topic \(t \) w.r.t. a measure on the relevance judgements
Experimental Setting

Offline IR Evaluation

\[
\begin{pmatrix}
p_{1,1} & \cdots & \cdots & p_{t,1} \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
p_{1,s} & \cdots & \cdots & p_{t,s}
\end{pmatrix}
\]

Topic-System-Matrix:

- \(p_{t,s} \) denotes effectiveness score of system \(s \) on topic \(t \) w.r.t. a measure on the relevance judgements
- **System performance**: row-based *aggregation* (mean) of system \(s \) over all topics \(T \)
Experimental Setting

Offline IR Evaluation

Topic-System-Matrix:

- $p_{t,s}$ denotes effectiveness score of system s on topic t w.r.t. a measure on the relevance judgements
- System performance: row-based *aggregation* (mean) of system s over all topics T
- **Topic difficulty**: column-based *aggregation* of topic t over all systems S
Experimental Setting
Offline IR Evaluation

$$\begin{pmatrix}
p_{1,1} & \cdots & \cdots & p_{t,1} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
p_{1,s} & \cdots & \cdots & p_{t,s}
\end{pmatrix}$$

Topic-System-Matrix:

- $p_{t,s}$ denotes **effectiveness score** of system s on topic t w.r.t. a measure on the relevance judgements
- **System performance**: row-based *aggregation* (mean) of system s over all topics T
- **Topic difficulty**: column-based *aggregation* of topic t over all systems S

Research Questions:

- What is a suitable *aggregation* method for topic difficulty estimation?
- How can it be applied in practice with minimal overhead?
Limitations of Existing Approaches

(1) Local inconsistency:

- **Problem:** results are incomparable between experiments
- **Solution:** standardized aggregation techniques
Limitations of Existing Approaches

(1) Local inconsistency:
- **Problem**: results are incomparable between experiments
- **Solution**: standardized aggregation techniques

(2) Topic set instability:
- **Problem**: topic ratings depend on each other
- **Solution**: aggregation method using only information within topic
Limitations of Existing Approaches

(1) Local inconsistency:
 - **Problem:** results are incomparable between experiments
 - **Solution:** standardized aggregation techniques

(2) Topic set instability:
 - **Problem:** topic ratings depend on each other
 - **Solution:** aggregation method using only information within topic

(3) Experimental inconsistency
 - **Problem:** different measures used for topic difficulty and system performance
 - **Solution:** use nDCG for both system performance & topic difficulty
Limitations of Existing Approaches

(1) Local inconsistency:
 - **Problem**: results are incomparable between experiments
 - **Solution**: standardized aggregation techniques

(2) Topic set instability:
 - **Problem**: topic ratings depend on each other
 - **Solution**: aggregation method using only information within topic

(3) Experimental inconsistency
 - **Problem**: different measures used for topic difficulty and system performance
 - **Solution**: use nDCG for both system performance & topic difficulty

(4) Discrete class labeling
 - **Problem**: difficulty expressed as classes (“easy”, “hard”, ...)
 - **Solution**: aggregation resulting in numerical scale
Ratio-based Topic Difficulty

Requirements:

- Aggregation method should not be subject to mentioned limitations
- Any kind of aggregation derived from a distribution over all topics is unsuitable
Ratio-based Topic Difficulty

Requirements:

- Aggregation method should not be subject to mentioned limitations
 ➔ Any kind of aggregation derived from a distribution over all topics is unsuitable

Solution:

- Difficulty is expressed as ratio
 ➔ Systems scoring higher than a baseline to overall number of systems

\[
\frac{\text{number of systems scoring higher}}{\text{total number of systems}} = 0.6
\]
Ratio-based Topic Difficulty

Requirements:

- Aggregation method should not be subject to mentioned limitations
 ➔ Any kind of aggregation derived from a distribution over all topics is unsuitable

Solution:

- Difficulty is expressed as ratio
 ➔ Systems scoring higher than a baseline to overall number of systems

 Issues solved:

- *Topic set instability* – topics are now scored independently
- *Discrete class labeling* – ratio is numerical value between 0 and 1

Problem: What is a sensible baseline?
Ratio-based Topic Difficulty
Hypothetical Random Baseline Ranking

Requirements for a baseline:

- Domain-agnostic and comparable
- Should be applicable to every experiment
- Does not create experimental overhead
Ratio-based Topic Difficulty
Hypothetical Random Baseline Ranking

Requirements for a baseline:

- Domain-agnostic and comparable
- Should be applicable to every experiment
- Does not create experimental overhead

Proposed: hypothetical random ranking as a baseline

- A system drawing documents at random
- Restricted to random permutations of the pooling for practicability
- Its nDCG performance approaches the mean of the relevance label distribution

→ Baseline: mean relevance of judged documents to compare systems to
Ratio-based Topic Difficulty
Baseline Standardization

Procedure:

- Standardize the relevance label distribution (z-transformation)
- Baseline nDCG is 0 across all experiments
- Standardization affects nDCG scores linearly (proof in the paper)
Ratio-based Topic Difficulty
Baseline Standardization

Procedure:
- Standardize the relevance label distribution (z-transformation)
- Baseline nDCG is 0 across all experiments
- Standardization affects nDCG scores linearly (proof in the paper)

Benefits:
- Improves on the *local inconsistency* issue
- Intra-experiment results are unaffected
- Inter-experiment comparability is improved
- Transforms baseline into well-defined reference point
Ratio-based Topic Difficulty

Summary

Our novel measure can be simplified to the following three steps:

(1) Standardize the relevance label distribution of the topics’ pooling
 → improves *local inconsistency* issue

(2) Calculate nDCG scores
 → solves *experimental inconsistency* issue

(3) Ratio of positive-scoring systems to total number of systems denotes difficulty
 → solves *topic set instability* issue
 → solves *discrete class labeling* issue
Conclusion

Our contribution:

- novel method of scoring difficulty of topics
- overcomes several existing limitations
- does not add any experimental requirements

Also included in the paper:

- reevaluation of TREC data to illustrate the practical advantages
- formal proof of the linear shift property of nDCG
- concept of random baseline ranking with potential applications beyond topic difficulty estimation
Conclusion

Our contribution:

- novel method of scoring difficulty of topics
- overcomes several existing limitations
- does not add any experimental requirements

Also included in the paper:

- reevaluation of TREC data to illustrate the practical advantages
- formal proof of the linear shift property of nDCG
- concept of random baseline ranking with potential applications beyond topic difficulty estimation

Thank you!