Axiomatic Retrieval Experimentation with ir_axioms

July 11–15, 2022

J. Heinrich Reimer
Alexander Bondarenko
Maik Fröbe
Matthias Hagen
Benno Stein
Michael Völske

Martin-Luther-Universität Halle-Wittenberg
Bauhaus-Universität Weimar

www.webis.de

45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2022)
Axiomatic Retrieval Experimentation with ir_axioms
A Brief Tour into Axiomatic IR

Successful retrieval scoring functions share similar properties:

- TF weighting
- IDF weighting
- Length normalization

Example:

\[BM25(q, d) = \sum_{i=1}^{n} IDF(t_i) \cdot \frac{TF(t_i, d) \cdot (k_1 + 1)}{TF(t_i, d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{avgdl}\right)} \]

“Axioms” formally capture such properties / constraints of relevance.
Axiomatic Retrieval Experimentation with \texttt{ir_axioms}

Axiom Example: TFC1

TFC1: Favor documents with more occurrences of query terms \cite{Fang et al., SIGIR’04}

Given:

- Single-term query $q = \{t\}$
- Documents d_1, d_2 with $|d_1| = |d_2|$
Axiomatic Retrieval Experimentation with ir_axioms

Axiom Example: TFC1

TFC1 Favor documents with more occurrences of query terms [Fang et al., SIGIR’04]

Given:

- Single-term query \(q = \{t\} \)
- Documents \(d_1, d_2 \) with \(|d_1| = |d_2| \)

IF \(TF(t, d_1) > TF(t, d_2) \) THEN \(d_1 >_{TFC1} d_2 \)

\[
\begin{align*}
q & \quad \ \ \ \ \ \ \\
\text{d}_1 & \quad \ \ \ \ \ \ \\
\text{d}_2 & \quad \ \ \ \ \ \\
\end{align*}
\]
Axiomatic Retrieval Experimentation with \textit{ir_axioms}

Axiom Applications

- Improving an initial retrieval result via re-ranking [Hagen et al., CIKM’16]
- Using axioms as regularization loss in neural models [Rosset et al., SIGIR’19]
- Learning how to combine different retrieval models [Arora and Yates, AMIR@ECIR’19]
- Analyzing and explaining neural rankers [Völske et al., ICTIR’21; Formal et al., ECIR’21]
Axiomatic Retrieval Experimentation with ir_axioms

Motivation

- Many IR toolkits: Terrier, Anserini, Capreolus, PyTerrier, etc.
- They do not include components for IR axioms
Axiomatic Retrieval Experimentation with \texttt{ir_axioms}

Motivation

- Many IR toolkits: Terrier, Anserini, Capreolus, PyTerrier, etc.
- They do not include components for IR axioms

\texttt{ir_axioms}

- Python framework for experiments with IR axioms
- Implements 25 axioms (relax $|d_i| \approx 10\% |d_j|$, multi-term queries, etc.)
- Access to retrieval models and test collections in PyTerrier and \texttt{ir_datasets}
- Extensibility: simple to define new axioms

```python
class TFC1(Axiom):
    name = "TFC1"
    def preference(self, c, q, d_i, d_j) -> float:
        if not approximately_same_length(c, d_i, d_j, 0.1):
            return 0
        tf_i = sum(c.term_frequency(d_i, t) for t in c.terms(q))
        tf_j = sum(c.term_frequency(d_j, t) for t in c.terms(q))
        if approximately_equal(tf_i, tf_j, 0.1):
            return 0
        return 1 if tf_i > tf_j else -1
```
Axiomatic Retrieval Experimentation with ir_axioms
Showcase

Jupyter Notebook:
https://github.com/webis-de/ir_axioms/blob/main/examples/sigir2022_showcase.ipynb

Google Colab:
Axiomatic Retrieval Experimentation with ir_axioms

Summary

ir_axioms:
- 25 axioms
- Post-hoc analysis of rankings
- Axiomatic re-ranking pipeline
- Axiom preferences as features for LTR
- Caching and parallelization

Software and examples (contributions are welcome):

- `webis-de/ir_axioms`
- `pip install ir_axioms`
Axiomatic Retrieval Experimentation with ir_axioms

Summary

ir_axioms:
- 25 axioms
- Post-hoc analysis of rankings
- Axiomatic re-ranking pipeline
- Axiom preferences as features for LTR
- Caching and parallelization

Software and examples (contributions are welcome):

- webis-de/ir_axioms
- pip install ir_axioms

Thanks to SIGIR for a student travel grant.