Bias Analysis and Mitigation in the Evaluation of Authorship Verification

Overview

The PAN series of shared tasks is well known for its continuous and high-quality research in digital text forensics.

We review the authorship verification task and conclude that the underlying experiment design cannot guarantee pushing forward the state of the art—in fact, it allows for top benchmarking with a surprisingly straightforward approach.

In this regard, we present a “Basic and Fairly Flawed” (BAFF) authorship verifier that is on a par with the best approaches submitted so far, and that illustrates sources of bias that should be eliminated.

I: Model Bias

B1: Corpus-relative features
Global features such as IDF derived from small samples of a population allow the classifier to reverse-engineer part of the ground truth.

B2: Feature scaling
Scaling features to an interval based on corpus statistics also exploits biases in the corpus when the size of the data is small (similar to Bias B1).

II: Data Bias

B3: Plain text heterogeneity
Non-homogenized texts preserve publication-specific formatting and provide inadvertent features, particularly in the presence of Bias B4.

B4: Population homogeneity
Splitting and reusing longer texts is a quick way to increase the number of author pairs, but it leads to over- and underrepresentation of authors and therefore poor generalization.

III: Evaluation Bias

B6: Test conflation
Providing verifiers with the full test corpus is a rather unrealistic scenario and allows exploitation of corpus information. Verifiers should only see one test case at a time and must not base decisions on previously seen data.

BAFF Dismantled: The Webis Authorship Verification Corpus

Our new Webis Authorship Verification Corpus avoids Biases B1–B5:

- 192 pairs training / 82 pairs test
- 3,900 words per text on average
- all texts from the same time period (19th / 20th century)
- texts have similar genre (adventure and sci-fi only)
- no author appears twice in any genre / period combination
- punctuation and special characters normalized
- all formatting and ASCII art removed

Acc. ROC
BAFF on the PAN15 corpus 0.768 0.746
BAFF (best appr.) 0.757 0.811

BAFF on the PAN14 corpus
Modaresi, Gross (best appr.) 0.715 0.711
BAFF 0.661 0.715
Zamani et al. (runner-up) 0.650 0.733

BAFF on the PAN14 Essays corpus
BAFF 0.722 0.761
Fréry et al. (best appr.) 0.710 0.723

Features:
- Cosine similarity (TF)
- Cosine similarity (TFIDF)
- Kullback-Leibler divergence (KLD)
- Skew divergence (balanced KLD)
- Jensen-Shannon divergence
- Hellinger distance
- Avg. logarithmic sentence length difference

BAFF, a “baffling” authorship verifier: