Improving Barycentric Embeddings of Topic Spaces

Dora Kiesel, Patrick Riehmann, Fan Fan, Yamen Ajjour, Henning Wachsmuth, Benno Stein, Bernd Froehlich

Background

Glyphs design: (a) Using spikes as topic hints as in [1] for a single document. (b) Overplotting of spikes of two documents.

The regular barycentric embedding as in [1]: The glyphs show one spike for each related topic which causes a lot of visual clutter and overplotting in the center of the visualization.

Reducing Overplotting: Jittering

Introducing jitter provides an impression of the actual number of documents.

Reducing Visual Clutter: Grid

Using a grid and aggregating glyphs leads to a tidier display without overlaps.

Reducing Position Ambiguity: Reduced Glyph Design

The reduced glyph design encodes only the most prominent topic: (a) Single document. (b) Aggregation of two documents. (c) Hovering reveals a polygon connecting all relevant topics.

Reducing Position Ambiguity: Layout Guidelines

Two topic space layouts showing the same document: (a) Non-Optimized: the two most prominent topics are placed directly opposing each other. Therefore, the document is placed almost in the center. (b) Optimized: Using odd numbers of topics avoids a layout of directly opposed placement of topics. Additionally, placing related topics adjacent to each other pulls the document off the center of the visualization.

Use Case : Argument Search Interface

Interactive visualization of an argument search engine [2] (https://args.me): (a) Visualisation of the results of the query “feminism”, showing the eight most prominent topics of the results plus the “other” topic – a summarization of all other. The color displays the stance as pro, contra, and neither. The glyphs’ sizes indicate the number of arguments being represented. (b) Hovering over an argument displays a magnified version of the glyph as well as a polygon for emphasizing all topics that influenced its position.

References:

Affiliations:

Dora Kiesel, Patrick Riehmann, Fan Fan, and Bernd Froehlich
Virtual Reality and Visualization Research Group at Bauhaus-Universität Weimar.
E-mail: <first>.<last>@uni-weimar.de

Yamen Ajjour and Benno Stein
Web Technology and Information Systems Group at Bauhaus-Universität Weimar.
E-mail: <first>.<last>@uni-weimar.de

Henning Wachsmuth
Computational Social Science Group at Paderborn University.
E-mail: henningw@upb.de

Bauhaus-Universität Weimar
PADERBORN UNIVERSITY