Towards Understanding and Answering Comparative Questions

Motivation
- Simple comparisons: “Did Messi or Ronaldo score more goals in 2021?”
- Life-changing and highly subjective: “Is it better to move abroad or stay?”
- For big decisions, 80% of Americans rely on online research [Turner & Rainie; 2020].
- 3% of search engine’s questions are comparative [Bondarenko et al.; WSDM’20].
- 50% of these comparative questions are non-factual [Bondarenko et al.; WSDM’20].

Contributions
- Dataset: comparative questions w/ objects, aspects, answers’ stances.
- Classifiers for comparative and subjective comparative questions.
- Classifiers for direct and indirect comparative questions.
- Identifying objects, aspects, and predicates.
- Stance detector for answers.

Comparative Questions and Answers
- 31,000 questions, 3,500 comparative, 1,690 subjective.
- 950 answers (text passages) with 4 stance labels from Stack Exchange.
- Direct: Is a cat or a dog a better friend?
- Indirect: What pet is the best friend?
- Without aspect: Who is better, a cat or a dog?
- ‘Pro cat’ answer: Cats can be quite affectionate and attentive, and thus are good friends.

Comparative Question Classification
- Cascading ensemble recalls 71% of comparative questions at prec. of 1.0.
 1. 10 rules: e.g., “Is a cat _or_ a dog a better _JJR_ friend?” Recall 54%.
 2. Feature-based: Logistic regression with word 4-grams Recall 62%.
 3. Neural: RoBERTa, BART, SBERT for representations + DNN Recall 69%.
 4. Averaging the classifiers’ decision probabilities Recall 71%.
- Operating points (probability thresholds) chosen for precision of 1.0
- Remove comparative questions after each classifiers’ group: more sophisticated classifiers for more difficult cases.
- 10-fold cross-validation.

Parsing Comparative Questions
- 10-fold cross-validation.
- Baseline: BiLSTM, 300-dimensional GloVe embeddings [Arora et al.; CIKM’17].

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Object</th>
<th>Aspect</th>
<th>Predicate</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiLSTM</td>
<td>0.80</td>
<td>0.52</td>
<td>0.85</td>
<td>0.98</td>
</tr>
<tr>
<td>RoBERTa</td>
<td>0.93</td>
<td>0.80</td>
<td>0.98</td>
<td>0.94</td>
</tr>
</tbody>
</table>

F1 scores

- More approaches for improving the parsing effectiveness in the paper.

Answer Stance Detection
- Is a cat or a dog a better friend?
 - Pro obj. 1: Cats can be quite affectionate and attentive, and thus are good friends.
 - Pro obj. 2: Cats are less faithful than dogs.
 - 4 labels: pro object 1, pro object 2, neutral, no stance.
 - RoBERTa and Longformer for representations + DNN and logistic regression.
 - RoBERTa and Longformer with sentiment prompts.
 - Masking comparison objects.

- Is OBJECT 1 or OBJECT 2 a better friend?
 - Pro obj. 1: OBJECT 1 can be quite affectionate and attentive, and thus are good friends.
 - 4 labels: pro object 1 / 2, neutral, no stance.
 - RoBERTa and Longformer with sentiment prompts.
 - Most effective classifier RoBERTa.
 - Identifying subjective questions (asking for opinions): F1 0.95.
 - Comparison objects are masked in questions and answers.
 - Add a sentiment prompt: OBJECT 1 is better.
 - Input: OBJECT 1 is better [SEP] ANSWER.
 - Highest accuracy on 4 labels (pro object 1 / 2, neutral, no stance) 0.63.

Conclusions
- Dataset: comparative questions with objects, aspects, and answers’ stances.
- Classifiers for comparative questions, objects, aspects, and predicates.
- Stance detector for potential answers.

Future Work:
- Matching comparison objects in questions and answers.
- Improving the stance detection of comparative answers.

Resources
- https://github.com/webis-de/WSDM-22
- Data: https://webis.de/data#webis-compquestions-22

This work has been partially supported by the Deutsche Forschungsgemeinschaft (DFG) within the project “ACQuA: Answering Comparative Questions with Arguments” that is part of the Priority Program “Robust Argumentation Machines (RATIO)”.

Big Data Analytics

Martin-Luther-Universität Halle-Wittenberg