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Abstract: Case-based reasoning (CBR), sometimes also called “reasoning by remem-
bering”, has shown success—especially in fields where human problem solving mech-
anisms are either partly understood or cannot be resembled properly.

The design of technical systems is such a field; here human designers outclass the
computer as well as traditional AT concepts. CBR can play two roles in this connection:
Creating a starting position for existing design approaches to draw up, or forming a
frame for problem solving approaches to be embedded.

Case adaptation plays the key role in case-based design. The paper in hand investi-
gates case adaptation theoretically and exemplary. Its main contribution is the iden-
tification and formalization of premises that must be fulfilled if case adaptation shall
be a successful concept for solving design problems.
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1. INTRODUCTION
1.1 Design Problem Solving

Solving a design problem means to transform a set of
demands, wishes, or expectations at a non-existing
system towards a description from which the de-
sired system can be constructed in a definite manner.
Speaking formally, a set of demands D is transformed
towards a system description S.

Human designers develop this transformation of-
ten within a cyclic (and evolutionary) process, the
so-called design process, which comprises synthesis,
analysis, and evaluation tasks (see Figure [).
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Figure [Ik Generic design process: The expected behavior Be
controls the synthesis of a system S, whose analysis reveals
the system behavior Bg. Within the evaluation phase, the two
behavior sets are compared to each other, leading to new in-
formation for the adaptation of S (Gero, 1990; Stein, 1995).

Moreover, human designers fall back on design prob-
lems previously solved. Consequently, design problem
solving must not start from scratch, and the syn-
thesis step in the process above will correspond to

a retrieve-and-adapt step, if a suited design pattern
can be found.

Automating design means to operationalize the
transformation D — S on a computer—either di-
rectly or by emulating the human design process.
However, for demanding engineering domains, the
synthesis and adaptation tasks can only be auto-
mated partly, and, by now, user support concen-
trates on demand formulation and analysis automa-
tion (Stein, 1995).

1.2 Case-based Reasoning

Let a case combine a description of a problem along
with a solution. Basic idea of case-based reasoning
(CBR) is to exploit previously solved cases when
solving a new problem. I.e., a collection of cases
is browsed for the most similar case, which then is
adapted to the new situation. The commonly ac-
cepted CBR cycle shown in Figure 2] goes back to
(Aamodt and Plaza, 1994) and is comprised of four
steps:

(1) Retrieve. A case relevant for the problem is re-
trieved.

(2) Reuse. Having performed more or less adapta-
tions, the retrieved case may be reused.

(3) Revise. Having evaluated the adapted case, ad-
ditional repair adaptations may be applied.
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Figure 2k The classical CBR. cycle.

(4) Retain. The new case, consisting of the problem
along with a solution, is stored.

1.3 Design Problem Solving and CBR

Configuration, design, synthesis—these terms stand
for problem classes where the AI paradigm “gen-
erate and test” has been applied rather success-
fully (Brown and Chandrasekaran, 1989; Cunis et
al., 1989; Stein and Weiner, 1991). CBR, however,
follows the paradigm “retrieve and adapt’ (Leake,
1995). Both concepts can work fine together to solve
design problems.

A previously solved design problem that contributes
a good deal to the desired solution may bound dif-
ficult synthesis and adaptation tasks to a tractable
rest problem. Following this idea, the starting posi-
tion of a design problem should be created with CBR
methods, while for the heuristic and search-intensive
adaptation tasks other Al paradigms come into play.

As mentioned at the outset, a design problem is
stated by a set of user demands, D; a solution to
a design problem is a system, S, which can be un-
derstood as a collection of objects or as some kind of
construction plan. S is a solution of the design prob-
lem D, if the behavior of the system, Bg, complies
with D.

Remarks. (i) With respect to a concrete domain,
a design problem can be formalized more precisely.
Nevertheless, in connection with the considerations
and conclusions of this paper, an abstracted view is
more adequate here. (i) There exist two concepts of
how a problem’s solution can be defined: One of them
codes the problem solving process, the other codes
the result of a problem solving process, for example
in the form of a system description S. From this dis-
tinction result two analogy concepts in CBR, namely
that of derivational analogy (belonging to the for-

mer) and that of transformational analogy (belong-
ing to the latter) (Carbonell, 1986; Goel and Chan-
drasekaran, 1989; Hinrichs and Kolodner, 1991). For
reasons of clearness, the considerations of this pa-
per are oriented at the latter, i.e., at the system de-
scription view, but they could be reformulated to the
process-centered view as well.

Definition 1.1 (Case, Case base, Query). Let
D be a set of demand sets, and let S be a set of
systems. A case C is a tuple C = (D, S), D e D, S €
S, where S constitutes a solution for D. A set CB
consisting of cases is called a case base. A case of the
form p = (D, ) is called query or problem definition
to a case base.

When given a query p = (D, -) to a case base CB, two
jobs must be done to obtain a solution to p. (i) Re-
trieval of a similar case ¢, and (i7) adaptation of ¢
such that D is fulfilled.

In (WeR, 1995) three approaches to define similarity
are mentioned: Similarity based on predicates, sim-
ilarity based on a preference relation, and the most
generic concept, similarity based on a measure. In
connection with design problem solving, only the last
is powerful enough, and the following definition will
formalize a similarity measure for design case bases.

Definition 1.2 (Case Similarity). Given is a
symmetric function o : D x D — [0;1], which ad-
ditionally has the reflexivity property, o(D1, D2) =
1< Dy = Ds.

Moreover, let ¢; = (D1, S1) and ¢c2 = (D3, Sa), ¢1, ¢a
€ CB, be two cases. Then the case similarity sim :
CB x CB — [0;1] is defined by means of ¢ in the
following way: sim(c1,c2) = o(D1, Da).

Remarks. (i) The semantics of o shall be as follows.
The more similar two demand sets D; and Dy are,
the larger shall be their value o(D1, D2). (ii) The
symmetry property guarantees that sim(cy,ce) =
sim(ca, c1); the reflexivity property defines the self-
similarity of a case.

2. ADAPTATION IN CASE-BASED DESIGN

The identification of similar cases is a prerequisite for
solving a design problem by means of CBR. However,
case adaptation plays the key role. As a consequence,
the similarity between two cases ¢; and co should be
defined in relation to the adaptation effort that is
necessary to transform c¢; towards co.

This section discusses case adaptation in greater de-
tail. It investigates at which places in the CBR cycle
adaptation happens and defines premises that must



be fulfilled when case adaptation shall be a successful
concept.

e Adaptation can occur in the reuse step.
A retrieved case is modified to better fulfill the
demands. The adaptation is not evaluated re-
specting efficacy.

e Adaptation can occur in the revise step.
An already modified case is evaluated and even-
tually further modified to better fulfill the de-
mands.

Each adaptation of a case ¢ = (D,S) is a mod-
ification of c¢; nevertheless, not every modification
yields an adaptation: An adaptation has teleological
character—it serves the purpose to modify S towards
S’ in such a way that a demand, which has been
under-satisfied by S, is fulfilled to a higher degree by
S’. Formally:

Definition 2.1 (Modification, Adaptation).

Let ¢ = (D, S) € CB be a case, and let p = (D,, -) be
a query. A modification of ¢ respecting p is a function
w:DxCB — DxS, with (D, c) = (D', 8 for all
D, €D and ce CB.

A modification is called an adaptation of c if the fol-
lowing condition holds:

sim((D',S"),p) > sim({D, S),p)

Adaptation poses several requirements to a domain
and a design problem respecting feasibility and evalu-
ability. These requirements can be quantified. The
next subsections develop a hierarchy of adaptations,
which is ordered by their complexity.

2.1 Level 0—No Adaptation

Design problems that can be solved without a mod-
ification (Level 0 adaptation) form the basis of the
hierarchy. Given a case base CB and a query p, the
most similar case is used as a solution for p. In
(Watson, 1997; Wefs, 1995) this situation is called
“null adaptation”.
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Figure [B The null adaptation case (Level 0 adaptation).

Solving a design problem by such a table lookup pro-
cedure is rarely possible. If case adaptation is aban-
doned, the size of the case base must compensate this
deficit. As a result, the similarity measure must be of
a simple form to guarantee an efficient retrieval. On

the other hand, the similarity measure needs not to
encode a case’s adaptability.

A (nearly) null adaptation approach has been em-
ployed successfully within CLAVIER (Barletta and
Hennessy, 1989; Hennessy and Hinkle, 1991), a CBR
system that guides autoclave loading for graphite-
thread composites.

2.2 Level 1—Automatic Adaptation

Having retrieved a case from the case base, adapta-
tion is usually necessary. If the adaptation can be per-
formed automatically, and if the adapted case does
not require an evaluation, an adaptation of Level 1 is
given.

Automatic adaptation can be performed in several
ways. Two important concepts in this connection are
scalability and composibility.
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Figure @k Automatic adaptation is possible without a subse-

quent evaluation (Level 1 adaptation). The Figure hints three
adaptation variants.

Definition 2.2 (Scale Function, Scalable, Scal-
ing). Given is a query p = (D,,-) and a demand
subset D, C D,. A function scale : P(D) x CB —
D x S is called scale function of a case respecting D;,
if the following conditions hold:

(i) scale(D,,c) =c = (D', S"), where D;, C D', c €
CB, and
(i) sim(cd,p) > sim(c,p)

c is called scalable with respect to D,, ¢ is called
scaling of c.

In other words, with respect to a demand subset D;
there is a case ¢ = (D, S) in the case base whose sys-
tem S can be modified—scaled—towards S’ in such a
way that S” complies with Dj, and ¢’ is more similar
to p than is c.



Definition 2.3 (Composable). Given is a query
p = (Dp,-) and two cases ¢; = (D1, S1) and c; =
(D, S3), ¢1, ca € CB. Moreover let the sets D] C
Dy, S7 € 81, Dy C Ds, and S5 C S5 be given. ¢;
and ¢y are called composable respecting a query p, if
a function comp : D x CB x CB — D X S can be
stated such that the following conditions hold:

(i) comp(Dp,c1,c2) = cg = (D3, S3) where D}, D}
C D3 and S7, S5 C Sz, and

(i) sim(cz,p) > sim(ci,p) A
sim(cs, p) > sim(cz,p)

Adaptation by scaling is realized among others in
WAYLAND, a CBR system that advises on the setup
of aluminum pressure die-casting machines (Price
and Peglar, 1995). Adaptation by composing requires
the analysis of several pattern cases each of which
contributing a particular aspect to the new case. This
approach is pursued by the systems FABEL (Voss,
1997). A special composition variant is the frame
transformation (Maher and de Silva Garza, 1997)
where a “master” case defines the basic structure of
the new case, which then is completed with other
cases. COMPOSER (Purvis and Pu, 1996) is a system
of this type; it has been used to plan the assembly
sequence of electric motor assemblies.

Remarks. Note that Level 1 adaptation gets by with-
out an extra evaluation step. I.e., the effects of an
adaptation can completely be foreseen, or, at least,
they can be estimated within narrow bounds.

2.3 Level 2—Automatic Adaptation Plus Revise

Exact the last point of the previous subsection can-
not be guaranteed for Level 2 adaptations. Here, an
adaptation’s effect cannot be predicted at a sufficient
accuracy, and consequently an additional evaluation
becomes necessary.

Definition 2.4 (Evaluable). Given is a case ¢ =
(D,S) € CB. cis called evaluable if a function ¢ :
S — D with £(5) = D can be stated.

Evaluability forms the basis for further adaptations.
Using CBR terminology, these adaptations are called
“repair” or—along with a preceding evaluation—
“revise”. Obviously adaptation plus evaluation can be
performed several times, leading to a cycle that ren-
ders the design cycle presented at the outset in Fig-
ure @ Here CBR forms a frame where an approach
for design problem solving is embedded.

The CBR application JULIA (composition of menus)
operationalizes an explicit evaluation/repair step
(Hinrichs and Kolodner, 1991). Note that automatic
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Figure Bk Automatic adaptation is possible, but must be eval-
uated and applied more than once (Level 2 adaptation).

evaluation can turn out to be a complex job involving
demanding reasoning and simulation tasks (Goel et
al., 1997; Stein, 1998).

2.4 Level 3—User Adaptation

A common feature of all preceding adaptation types
is automation: Computable functions and tractable
algorithms can be stated, rendering a supervision by
the user superfluous. However, adaptation and eval-
uation is left to the user in the following cases:

e The application domain is weakly structured.

e An automated adaptation is too expensive.

e Human designers can perform necessary adap-
tations or evaluations easily.

e Creativity is essential for getting the knack of
the design problem.
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FigureB Adaptation must be carried out by a human (Level 3
adaptation).

According to the paradigm that a poorly adapted
case is of less use than a null-adapted one (Riesbeck,
1996), the following tools bet on user adaptation:
SEED in the architectural domain (U. Flemming et



al., 1997), and CADET (Narashiman et al., 1997),
which supports the design of mechanical devices.

Table [ puts together the different types of adapta-
tion. Note that the complexity of adaptation within
case-based design problem solving must not be of
a unique level. The next section presents a design
problem, where adaptation jobs vary from level 1 to
level 2.

No . Adaptation automated by Adaptatio
adaptation | Scaling] Compos, Other | by user

No 1 1
evaluation : :

Evaluatior]
automated

Evaluation
by user

Level of adaptation:

0 2 s
1 2-3

Figure [k An overview of adaptations and their complexities.

3. CASE ADAPTATION IN HYDRAULICS

This section provides examples for adaptation, which
stem from the field of fluid engineering (= hydraulics
and pneumatics). Based on research and experiences
in fluid engineering, we have realized tools for draw-
ing, simulating, and structure visualization of electro-
fluidic circuits (Stein et al., 1998). At present, re-
search concentrates on design support within hy-
draulics.

Fluidic manipulation jobs vary from simple lifting
problems up to the realization of complex robot kine-
matics, and, given a demand description D for such a
manipulation task, the design of an appropriate drive
is a truly creative job (Gero, 1990; Brown and Chan-
drasekaran, 1983). Thus our working hypothesis is
that we still have a preliminary design S of a sys-
tem which has been retrieved by CBR methods, and
which can be adapted to comply with D.

The next subsections illustrate that various adapta-
tion jobs in hydraulics can be tackled by scaling and
composition techniques.

3.1 Adaptation by Scaling

Consider the simple example of designing a lifting
hoist. Moreover, let’s assume that ¢ = (D, S), the
most similar case found respecting the query p =

(Dp, -), does not fulfill the maximum force constraint
(F,vr,) € D,. Given this situation, ¢ can be scaled
up to fulfill D, if the force difference between the
existing and the desired system is of the same order
of magnitude (see Figure ).

Figure B Scaling a cylinder respecting a desired force.

Notice that the scaling of the force is possible since
the responsible underlying physical connections can
be quantified: F =P - A

A reasonable scale function applies this law as fol-
lows. It adapts the force value vy of ¢ according to
the required value v, by scaling the piston area to a
new value v 4. with respect to the maximum pressure

pmax:
va

var =

pmax

Formally, the scale function takes two arguments (re-
call Definition BIB); the first of which defines the sub-
set of D to be scaled, the second is the case to be
modified:

scale({(F,vp,)},c) =c =(D',5") e D x S,

where

D" = D\{(F,vp)} U{(F,vE,)},
S =S5\ {(A,va)} U{(A,va)},
D’ and S’ result from the demand set D and the sys-

tem description S respectively by simply substituting
the new parameter-value-pairs for the old ones.

VFy,

with v4 =

Pmax

Note that it remains to be shown that condition
(ii) of Definition 2]

sim(c',p) > sim(c,p),
is fulfilled when applying the above function scale.

For a typical similarity function, which is based on
the Euclidean distance measure, this is easily under-
stood. Observe that the difference (and hence the Eu-
clidean distance) between the desired maximum force
value, vr, , and the maximum force value produced by
¢, VA’ * Dmax, 1S Z€ro:

va

VR, — VA’ * Pmax = VUF, — “Pmax =0

pmax

L The cylinder force equals the pressure times the piston area.



As a consequence, the similarity between the scaled
case ¢’ and the query p is strictly larger than the
similarity between the original case ¢ and p.

To formulate and to operationalize such type of scal-
ing knowledge, we have developed a prototypic de-
sign language, which is tailored to the fluidic domain
(Stein and Vier, 1998; Schlotmann, 1998).

3.2 Adaptation by Case Composition

Case composition in hydraulics is more sophisticated.
Note that a prerequisite for applying the composition
paradigm is a decomposition of existing cases into
functional units.

In fluidic systems the functional level is reflected by
so-called hydraulic or pneumatic axes, which are re-
sponsible to fulfill a particular function. Figure
shows three cases contributing a supply unit and two
hydraulic axes to a new system.
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Figure [ Creating a solution by composition.

SCHEMEBUILDER. pursues this composition approach
(Oh et al., 1994; da Silva and Dawson, 1997): A de-
mand set D is interactively decomposed into sub-
tasks, assuming that each of the subtasks is realized
by means of a single hydraulic axes. The axes in turn
are retrieved from a database containing carefully se-
lected design prototypes.

At present, the SCHEMEBUILDER approach lacks in
the following respects:

(i) Axes can only be connected in parallel, which re-
stricts the possible designs to an uniform circuit

type.

(i) The evaluation of a composed circuit is not in-
tegrated.

(#4) The case base must be maintained by a human
engineer.

Remarks. The problem of automatically analyzing
hydraulic systems respecting their functional units
has been addressed in (Stein and Schulz, 1998).
The authors developed graph-theoretical concepts to
identify hydraulic axes—a concept which may also be
extended to solve the case retaining problem men-
tioned under (7).

4. SUMMARY AND FURTHER WORK

The design of technical systems is a field where hu-
man problem solving mechanisms cannot be resem-
bled properly. Case-based reasoning may show a way
out, for instance by creating a starting position for
existing problem solving approaches to draw up: A
previously solved design problem that contributes a
good deal to the desired solution can bound diffi-
cult synthesis and adaptation tasks to a tractable rest
problem.

The adaptation of cases plays the key role in case-
based design. The paper in hand investigated case
adaptation and formulated premises to discrimi-
nate between different levels of adaptation. These
premises have been formalized and illustrated at a
complex design problem, the design of hydraulic sys-
tems.

Current work is concerned with the operationaliza-
tion of case-based design in fluidics. Based on our
developments that include a prototypic design lan-
guage, algorithms that break up complex circuits into
useful pieces, and efficient simulation algorithms, case
adaptation in fluidics shall be automated and tested
in particular design scenarios.

Future work shall concentrate on the improvement
of criteria (theoretically and exemplary) that help to
decide a-priori whether or not a retrieved case can be
upgraded to the solution of a given design problem.
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