
ON ADAPTATION IN CASE-BASED DESIGNBenno Stein Marus Ho�mannDepartment of Mathematis and Computer Siene / Knowledge-based SystemsUniversity of Paderborn, D�33095 Paderborn, GermanyEmail: stein�uni-paderborn.deAbstrat: Case-based reasoning (CBR), sometimes also alled �reasoning by remem-bering�, has shown suess�espeially in �elds where human problem solving meh-anisms are either partly understood or annot be resembled properly.The design of tehnial systems is suh a �eld; here human designers outlass theomputer as well as traditional AI onepts. CBR an play two roles in this onnetion:Creating a starting position for existing design approahes to draw up, or forming aframe for problem solving approahes to be embedded.Case adaptation plays the key role in ase-based design. The paper in hand investi-gates ase adaptation theoretially and exemplary. Its main ontribution is the iden-ti�ation and formalization of premises that must be ful�lled if ase adaptation shallbe a suessful onept for solving design problems.Keywords: ase-based design, design problem solving, adaptation in CBR, CBR.1. INTRODUCTION1.1 Design Problem SolvingSolving a design problem means to transform a set ofdemands, wishes, or expetations at a non-existingsystem towards a desription from whih the de-sired system an be onstruted in a de�nite manner.Speaking formally, a set of demands D is transformedtowards a system desription S.Human designers develop this transformation of-ten within a yli (and evolutionary) proess, theso-alled design proess, whih omprises synthesis,analysis, and evaluation tasks (see Figure 1).
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ModificationFigure 1: Generi design proess: The expeted behavior Beontrols the synthesis of a system S, whose analysis revealsthe system behavior BS . Within the evaluation phase, the twobehavior sets are ompared to eah other, leading to new in-formation for the adaptation of S (Gero, 1990; Stein, 1995).Moreover, human designers fall bak on design prob-lems previously solved. Consequently, design problemsolving must not start from srath, and the syn-thesis step in the proess above will orrespond to

a retrieve-and-adapt step, if a suited design patternan be found.Automating design means to operationalize thetransformation D −→ S on a omputer�either di-retly or by emulating the human design proess.However, for demanding engineering domains, thesynthesis and adaptation tasks an only be auto-mated partly, and, by now, user support onen-trates on demand formulation and analysis automa-tion (Stein, 1995).1.2 Case-based ReasoningLet a ase ombine a desription of a problem alongwith a solution. Basi idea of ase-based reasoning(CBR) is to exploit previously solved ases whensolving a new problem. I. e., a olletion of asesis browsed for the most similar ase, whih then isadapted to the new situation. The ommonly a-epted CBR yle shown in Figure 2 goes bak to(Aamodt and Plaza, 1994) and is omprised of foursteps:(1) Retrieve. A ase relevant for the problem is re-trieved.(2) Reuse. Having performed more or less adapta-tions, the retrieved ase may be reused.(3) Revise. Having evaluated the adapted ase, ad-ditional repair adaptations may be applied.
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ReviseFigure 2: The lassial CBR yle.(4) Retain. The new ase, onsisting of the problemalong with a solution, is stored.1.3 Design Problem Solving and CBRCon�guration, design, synthesis�these terms standfor problem lasses where the AI paradigm �gen-erate and test� has been applied rather suess-fully (Brown and Chandrasekaran, 1989; Cunis etal., 1989; Stein and Weiner, 1991). CBR, however,follows the paradigm �retrieve and adapt� (Leake,1995). Both onepts an work �ne together to solvedesign problems.A previously solved design problem that ontributesa good deal to the desired solution may bound dif-�ult synthesis and adaptation tasks to a tratablerest problem. Following this idea, the starting posi-tion of a design problem should be reated with CBRmethods, while for the heuristi and searh-intensiveadaptation tasks other AI paradigms ome into play.As mentioned at the outset, a design problem isstated by a set of user demands, D; a solution toa design problem is a system, S, whih an be un-derstood as a olletion of objets or as some kind ofonstrution plan. S is a solution of the design prob-lem D, if the behavior of the system, BS , omplieswith D.Remarks. (i) With respet to a onrete domain,a design problem an be formalized more preisely.Nevertheless, in onnetion with the onsiderationsand onlusions of this paper, an abstrated view ismore adequate here. (ii) There exist two onepts ofhow a problem's solution an be de�ned: One of themodes the problem solving proess, the other odesthe result of a problem solving proess, for examplein the form of a system desription S. From this dis-tintion result two analogy onepts in CBR, namelythat of derivational analogy (belonging to the for-

mer) and that of transformational analogy (belong-ing to the latter) (Carbonell, 1986; Goel and Chan-drasekaran, 1989; Hinrihs and Kolodner, 1991). Forreasons of learness, the onsiderations of this pa-per are oriented at the latter, i. e., at the system de-sription view, but they ould be reformulated to theproess-entered view as well.De�nition 1.1 (Case, Case base, Query). Let
D be a set of demand sets, and let S be a set ofsystems. A ase C is a tuple C = 〈D, S〉, D ∈ D, S ∈
S, where S onstitutes a solution for D. A set CBonsisting of ases is alled a ase base. A ase of theform p = 〈D, ·〉 is alled query or problem de�nitionto a ase base.When given a query p = 〈D, ·〉 to a ase base CB, twojobs must be done to obtain a solution to p. (i) Re-trieval of a similar ase c, and (ii) adaptation of csuh that D is ful�lled.In (Weÿ, 1995) three approahes to de�ne similarityare mentioned: Similarity based on prediates, sim-ilarity based on a preferene relation, and the mostgeneri onept, similarity based on a measure. Inonnetion with design problem solving, only the lastis powerful enough, and the following de�nition willformalize a similarity measure for design ase bases.De�nition 1.2 (Case Similarity). Given is asymmetri funtion σ : D × D → [0; 1], whih ad-ditionally has the re�exivity property, σ(D1, D2) =
1 ⇔ D1 = D2.Moreover, let c1 = 〈D1, S1〉 and c2 = 〈D2, S2〉, c1, c2

∈ CB, be two ases. Then the ase similarity sim :
CB × CB → [0; 1] is de�ned by means of σ in thefollowing way: sim(c1, c2) = σ(D1, D2).Remarks. (i) The semantis of σ shall be as follows.The more similar two demand sets D1 and D2 are,the larger shall be their value σ(D1, D2). (ii) Thesymmetry property guarantees that sim(c1, c2) =
sim(c2, c1); the re�exivity property de�nes the self-similarity of a ase.2. ADAPTATION IN CASE-BASED DESIGNThe identi�ation of similar ases is a prerequisite forsolving a design problem by means of CBR. However,ase adaptation plays the key role. As a onsequene,the similarity between two ases c1 and c2 should bede�ned in relation to the adaptation e�ort that isneessary to transform c1 towards c2.This setion disusses ase adaptation in greater de-tail. It investigates at whih plaes in the CBR yleadaptation happens and de�nes premises that must



be ful�lled when ase adaptation shall be a suessfulonept.
• Adaptation an our in the reuse step.A retrieved ase is modi�ed to better ful�ll thedemands. The adaptation is not evaluated re-speting e�ay.
• Adaptation an our in the revise step.An already modi�ed ase is evaluated and even-tually further modi�ed to better ful�ll the de-mands.Eah adaptation of a ase c = 〈D, S〉 is a mod-i�ation of c; nevertheless, not every modi�ationyields an adaptation: An adaptation has teleologialharater�it serves the purpose to modify S towards

S′ in suh a way that a demand, whih has beenunder-satis�ed by S, is ful�lled to a higher degree by
S′. Formally:De�nition 2.1 (Modi�ation, Adaptation).Let c = 〈D, S〉 ∈ CB be a ase, and let p = 〈Dp, ·〉 bea query. A modi�ation of c respeting p is a funtion
µ : D×CB → D×S, with µ(Dp, c) = 〈D′, S′〉 for all
Dp ∈ D and c ∈ CB.A modi�ation is alled an adaptation of c if the fol-lowing ondition holds:

sim(〈D′, S′〉, p) > sim(〈D, S〉, p)Adaptation poses several requirements to a domainand a design problem respeting feasibility and evalu-ability. These requirements an be quanti�ed. Thenext subsetions develop a hierarhy of adaptations,whih is ordered by their omplexity.2.1 Level 0�No AdaptationDesign problems that an be solved without a mod-i�ation (Level 0 adaptation) form the basis of thehierarhy. Given a ase base CB and a query p, themost similar ase is used as a solution for p. In(Watson, 1997; Weÿ, 1995) this situation is alled�null adaptation�.
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the other hand, the similarity measure needs not toenode a ase's adaptability.A (nearly) null adaptation approah has been em-ployed suessfully within Clavier (Barletta andHennessy, 1989; Hennessy and Hinkle, 1991), a CBRsystem that guides autolave loading for graphite-thread omposites.2.2 Level 1�Automati AdaptationHaving retrieved a ase from the ase base, adapta-tion is usually neessary. If the adaptation an be per-formed automatially, and if the adapted ase doesnot require an evaluation, an adaptation of Level 1 isgiven.Automati adaptation an be performed in severalways. Two important onepts in this onnetion aresalability and omposibility.
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Figure 4: Automati adaptation is possible without a subse-quent evaluation (Level 1 adaptation). The Figure hints threeadaptation variants.De�nition 2.2 (Sale Funtion, Salable, Sal-ing). Given is a query p = 〈Dp, ·〉 and a demandsubset D′

p ⊆ Dp. A funtion scale : P(D) × CB →
D×S is alled sale funtion of a ase respeting D′

p,if the following onditions hold:(i) scale(D′

p, c) = c′ = 〈D′, S′〉, where D′

p ⊆ D′, c ∈
CB, and(ii) sim(c′, p) > sim(c, p)

c is alled salable with respet to Dp, c′ is alledsaling of c.In other words, with respet to a demand subset D′

pthere is a ase c = 〈D, S〉 in the ase base whose sys-tem S an be modi�ed�saled�towards S′ in suh away that S′ omplies with D′

p and c′ is more similarto p than is c.



De�nition 2.3 (Composable). Given is a query
p = 〈Dp, ·〉 and two ases c1 = 〈D1, S1〉 and c2 =
〈D2, S2〉, c1, c2 ∈ CB. Moreover let the sets D′

1
⊆

D1, S′

1
⊆ S1, D′

2
⊆ D2, and S′

2
⊆ S2 be given. c1and c2 are alled omposable respeting a query p, ifa funtion comp : D × CB × CB → D × S an bestated suh that the following onditions hold:(i) comp(Dp, c1, c2) = c3 = 〈D3, S3〉 where D′

1
, D′

2

⊆ D3 and S′

1
, S′

2
⊆ S3, and(ii) sim(c3, p) > sim(c1, p) ∧

sim(c3, p) > sim(c2, p)Adaptation by saling is realized among others inWayland, a CBR system that advises on the setupof aluminum pressure die-asting mahines (Prieand Peglar, 1995). Adaptation by omposing requiresthe analysis of several pattern ases eah of whihontributing a partiular aspet to the new ase. Thisapproah is pursued by the systems Fabel (Voss,1997). A speial omposition variant is the frametransformation (Maher and de Silva Garza, 1997)where a �master� ase de�nes the basi struture ofthe new ase, whih then is ompleted with otherases. Composer (Purvis and Pu, 1996) is a systemof this type; it has been used to plan the assemblysequene of eletri motor assemblies.Remarks. Note that Level 1 adaptation gets by with-out an extra evaluation step. I. e., the e�ets of anadaptation an ompletely be foreseen, or, at least,they an be estimated within narrow bounds.2.3 Level 2�Automati Adaptation Plus ReviseExat the last point of the previous subsetion an-not be guaranteed for Level 2 adaptations. Here, anadaptation's e�et annot be predited at a su�ientauray, and onsequently an additional evaluationbeomes neessary.De�nition 2.4 (Evaluable). Given is a ase c =
〈D, S〉 ∈ CB. c is alled evaluable if a funtion ε :
S → D with ε(S) = D an be stated.Evaluability forms the basis for further adaptations.Using CBR terminology, these adaptations are alled�repair� or�along with a preeding evaluation��revise�. Obviously adaptation plus evaluation an beperformed several times, leading to a yle that ren-ders the design yle presented at the outset in Fig-ure 2. Here CBR forms a frame where an approahfor design problem solving is embedded.The CBR appliation Julia (omposition of menus)operationalizes an expliit evaluation/repair step(Hinrihs and Kolodner, 1991). Note that automati
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Premise:

Figure 5: Automati adaptation is possible, but must be eval-uated and applied more than one (Level 2 adaptation).evaluation an turn out to be a omplex job involvingdemanding reasoning and simulation tasks (Goel etal., 1997; Stein, 1998).2.4 Level 3�User AdaptationA ommon feature of all preeding adaptation typesis automation: Computable funtions and tratablealgorithms an be stated, rendering a supervision bythe user super�uous. However, adaptation and eval-uation is left to the user in the following ases:
• The appliation domain is weakly strutured.
• An automated adaptation is too expensive.
• Human designers an perform neessary adap-tations or evaluations easily.
• Creativity is essential for getting the knak ofthe design problem.
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al., 1997), and Cadet (Narashiman et al., 1997),whih supports the design of mehanial devies.Table 7 puts together the di�erent types of adapta-tion. Note that the omplexity of adaptation withinase-based design problem solving must not be ofa unique level. The next setion presents a designproblem, where adaptation jobs vary from level 1 tolevel 2.
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Level of adaptation:Figure 7: An overview of adaptations and their omplexities.3. CASE ADAPTATION IN HYDRAULICSThis setion provides examples for adaptation, whihstem from the �eld of �uid engineering (= hydraulisand pneumatis). Based on researh and experienesin �uid engineering, we have realized tools for draw-ing, simulating, and struture visualization of eletro-�uidi iruits (Stein et al., 1998). At present, re-searh onentrates on design support within hy-draulis.Fluidi manipulation jobs vary from simple liftingproblems up to the realization of omplex robot kine-matis, and, given a demand desription D for suh amanipulation task, the design of an appropriate driveis a truly reative job (Gero, 1990; Brown and Chan-drasekaran, 1983). Thus our working hypothesis isthat we still have a preliminary design S of a sys-tem whih has been retrieved by CBR methods, andwhih an be adapted to omply with D.The next subsetions illustrate that various adapta-tion jobs in hydraulis an be takled by saling andomposition tehniques.3.1 Adaptation by SalingConsider the simple example of designing a liftinghoist. Moreover, let's assume that c = 〈D, S〉, themost similar ase found respeting the query p =

〈Dp, ·〉, does not ful�ll the maximum fore onstraint
(F, vFp

) ∈ Dp. Given this situation, c an be saledup to ful�ll Dp if the fore di�erene between theexisting and the desired system is of the same orderof magnitude (see Figure 8).
Figure 8: Saling a ylinder respeting a desired fore.Notie that the saling of the fore is possible sinethe responsible underlying physial onnetions anbe quanti�ed: F = P · A. 1A reasonable sale funtion applies this law as fol-lows. It adapts the fore value vF of c aording tothe required value vFp

by saling the piston area to anew value vA′ with respet to the maximum pressure
pmax:

vA′ =
vFp

pmaxFormally, the sale funtion takes two arguments (re-all De�nition 2.2); the �rst of whih de�nes the sub-set of D to be saled, the seond is the ase to bemodi�ed:
scale

(

{(F, vFp
)}, c

)

= c′ = 〈D′, S′〉 ∈ D × S,where
D′ = D \ {(F, vF )} ∪ {(F, vFp

)},

S′ = S \ {(A, vA)} ∪ {(A, vA′)}, with vA′ =
vFp

pmax
D′ and S′ result from the demand set D and the sys-tem desription S respetively by simply substitutingthe new parameter-value-pairs for the old ones.Note that it remains to be shown that ondition(ii) of De�nition 2.2,

sim(c′, p) > sim(c, p),is ful�lled when applying the above funtion scale.For a typial similarity funtion, whih is based onthe Eulidean distane measure, this is easily under-stood. Observe that the di�erene (and hene the Eu-lidean distane) between the desired maximum forevalue, vFp
, and the maximum fore value produed by

c′, vA′ · pmax, is zero:
vFp

− vA′ · pmax = vFp
−

vFp

pmax · pmax = 0

1 The ylinder fore equals the pressure times the piston area.



As a onsequene, the similarity between the saledase c′ and the query p is stritly larger than thesimilarity between the original ase c and p.To formulate and to operationalize suh type of sal-ing knowledge, we have developed a prototypi de-sign language, whih is tailored to the �uidi domain(Stein and Vier, 1998; Shlotmann, 1998).3.2 Adaptation by Case CompositionCase omposition in hydraulis is more sophistiated.Note that a prerequisite for applying the ompositionparadigm is a deomposition of existing ases intofuntional units.In �uidi systems the funtional level is re�eted byso-alled hydrauli or pneumati axes, whih are re-sponsible to ful�ll a partiular funtion. Figure 9shows three ases ontributing a supply unit and twohydrauli axes to a new system.
Supply
 unit

Hydraulic
 axis 1

Hydraulic
 axis 2

Figure 9: Creating a solution by omposition.Shemebuilder pursues this omposition approah(Oh et al., 1994; da Silva and Dawson, 1997): A de-mand set D is interatively deomposed into sub-tasks, assuming that eah of the subtasks is realizedby means of a single hydrauli axes. The axes in turnare retrieved from a database ontaining arefully se-leted design prototypes.At present, the Shemebuilder approah laks inthe following respets:(i) Axes an only be onneted in parallel, whih re-strits the possible designs to an uniform iruittype.

(ii) The evaluation of a omposed iruit is not in-tegrated.(iii) The ase base must be maintained by a humanengineer.Remarks. The problem of automatially analyzinghydrauli systems respeting their funtional unitshas been addressed in (Stein and Shulz, 1998).The authors developed graph-theoretial onepts toidentify hydrauli axes�a onept whih may also beextended to solve the ase retaining problem men-tioned under (iii).4. SUMMARY AND FURTHER WORKThe design of tehnial systems is a �eld where hu-man problem solving mehanisms annot be resem-bled properly. Case-based reasoning may show a wayout, for instane by reating a starting position forexisting problem solving approahes to draw up: Apreviously solved design problem that ontributes agood deal to the desired solution an bound di�-ult synthesis and adaptation tasks to a tratable restproblem.The adaptation of ases plays the key role in ase-based design. The paper in hand investigated aseadaptation and formulated premises to disrimi-nate between di�erent levels of adaptation. Thesepremises have been formalized and illustrated at aomplex design problem, the design of hydrauli sys-tems.Current work is onerned with the operationaliza-tion of ase-based design in �uidis. Based on ourdevelopments that inlude a prototypi design lan-guage, algorithms that break up omplex iruits intouseful piees, and e�ient simulation algorithms, aseadaptation in �uidis shall be automated and testedin partiular design senarios.Future work shall onentrate on the improvementof riteria (theoretially and exemplary) that help todeide a-priori whether or not a retrieved ase an beupgraded to the solution of a given design problem.ReferenesAamodt, Agnar and Enri Plaza (1994). Case-BasedReasoning: Foundational Issues, MethodologialVariations, and System Approahes. AICOM pp. 39�59.Barletta, R. and D. Hennessy (1989). Case adaptation inautolave layout design. In: Proeedings: Case-BasedReasoning Workshop (K. J. Hammond, Ed.). MorganKaufmann Publishers. pp. 203�207.Brown, D. C. and B. Chandrasekaran (1983). An Approahto Expert Systems for Mehanial Design. In: Trends
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