Logarithmic Space Instances of Monotone
Normal Form Equivalence Testing

Matthias Hagen *

Friedrich-Schiller-Universitéat Jena, Institut fiir Informatik, D-07737 Jena,
hagen@cs.uni-jena.de

Abstract. We examine the problem MONE—given a monotone DNF
and a monotone CNF, decide whether they are equivalent. The exact
complexity of MONE is a long standing open problem. On the one hand,
MONE is probably not coNP-complete. But on the other hand, MONE
is not known to be in P, although for numerous restrictions on the in-
put formulas polynomial time algorithms exist. We improve the resource
bound for several of these “easy” instances of MONE by showing that ac-
tually logarithmic space suffices for their decision. Among these instances
are MONE-instances with a DNF that is regular, aligned, 2-monotonic,
or that contains only very large monomials.

1 Introduction

Two Boolean formulas are equivalent if they have the same truth table. Mono-
tone formulas are Boolean formulas with A and V as only connectives. No nega-
tion signs are allowed. We consider the problem MONE (Monotone Normal form
Equivalence) of deciding equivalence of a monotone DNF and a monotone CNF.
A monotone formula is in DNF (disjunctive normal form) if it is a disjunction of
conjunctions of variables. Analogously, a monotone formula is in CNF' (conjunc-
tive normal form) if it is a conjunction of disjunctions of variables. A conjunc-
tion (disjunction) of variables is also called monomial (clause). Monomials and
clauses are also called terms. A monotone normal form g is irredundant if there
are no two terms in ¢ such that one is contained in the other. It is well-known
that the irredundant DNF and CNF of a monotone formula are unique [Qui53].
And since monomials in ¢ (clauses in ¢) that contain other monomials (clauses)
do not increase the complexity of MONE, we only concentrate on irredundant
formulas as input. The problem MONE is defined as follows.

MONE: instance: irredundant, monotone formulas ¢ in DNF and
1 in CNF with variable set V'
question: are and ¥ equivalent?

The size n of a MONE-instance (i,) is the number of variable occurrences in
@ and 1. Besides their representation as formulas we often view ¢ and ¥ as
families of subsets of V. Thereby, a term ¢ is represented by the subset of the

* Supported by a Landesgraduiertenstipendium Thiiringen.

variables that occur in t. Assignments can also be viewed as sets of variables,
with variable x being set to true if and only if x appears in the set. In this
way, terms can be interpreted as assignments. Note that we do not have to
take into account the complexity of testing whether the two inputs are well-
formed formulas (correct parenthesis structure etc.), monotone, in normal form,
irredundant, and have the same variable set, since these properties can be easily
checked in space logarithmic in n (see Appendix A to E).

The problem MONE is equivalent to the well-known problems DuUAL—given
two monotone DNF's, decide whether they are mutually dual-—and TRANSHYP—
given two hypergraphs, decide whether one is the transversal hypergraph of
the other. The currently best known algorithms for these problems are quasi-
polynomial or use O(log® n) nondeterministic bits [FK96, EGMO03, KS03]. Thus,
on the one hand, MONE is probably not coNP-complete, but on the other hand
a polynomial time algorithm is not yet known. Such a polynomial time algo-
rithm solving MONE would also yield an output-polynomial algorithm for the
generation of ¥ out of ¢ [BI95]. Both variants of MONE—the generational as
well as the decisional—have many applications in such different fields like ar-
tificial intelligence and logic [EG02, EG95], computational biology [Dam06],
databases [MR92], data mining and machine learning [GKMT97], mobile com-
munication systems [SS98], and distributed systems [GB85].

In this paper, we focus on known “easy” instances of MONE. These are re-
strictions of the input formulas for which polynomial time algorithms deciding
the corresponding restricted versions of MONE are known. Such easy instances
are an important branch of research concerning MONE, since they reveal infor-
mation about the really hard parts of the problem. But how easy are these easy
instances? The only known logspace instance of MONE is MONE where ¢ consists
of monomials of constant size [GHMO05]. We augment this first result by giving
logarithmic space algorithms for several other easy instances of MONE improving
the known polynomial time bounds.

We only examine restrictions of the DNF ¢, since they can be easily trans-
formed to be restrictions of the CNF 9 by switching V to A and vice versa. The
discussed restrictions can be divided into two groups. The first group comprises
restrictions on the size of ¢ in the broader sense, such as the number of mono-
mials or the size of the monomials. The second group contains rather structural
restrictions of the DNF ¢, such as being regular, aligned or 2-monotonic.

The paper is organized as follows. In Section 2 we examine restrictions on the
size of the DNF . MONE-instances with a DNF ¢ that contains only a constant
number of monomials or that contains only monomials of large enough size are
known to be polynomial time decidable [EG91, EG95]. We show that already
logarithmic space is enough. Section 3 is dedicated to the more structural restric-
tions. MONE-instances with a DNF ¢ that is regular [BS87], aligned [Bor94] or
2-monotonic [BHIK97] are known to be polynomial time decidable. We improve
the resource bound by showing that logarithmic space suffices. Some concluding
remarks follow in Section 4.

2 Restrictions on the Size of the DNF ¢

In this section we examine restrictions of the DNF ¢ of a MONE-instance (¢, 1)
that concern the size of ¢ in a broad sense. A first already examined limitation is
to restrict the DNF ¢ to contain only monomials of size at most ¢ for a constant
¢. The corresponding restricted version MONEc,pp, (MONE with a constant upper
bound for the monomial size) is already known to be decidable in logarithmic
space [GHMO05]. We focus on two related size restrictions. The first is MONE¢ym,
where the DNF ¢ contains only a constant number of monomials. The second is
MONE|ow, Where the DNF ¢ contains only monomials that have a size of at least
|V |—c for a constant c. Here the name comes from the somehow “constant” lower
bound for the monomial size. Both variants, MONE¢,, as well as MONEc|ow, are
known to be decidable in polynomial time [EG91, EG95]. We show them to be
already decidable in logarithmic space.

2.1 The DNF Contains Only a Constant Number of Monomials

MONEenm: instance: irredundant, monotone formulas ¢ in DNF and
1 in CNF with variable set V, where ¢ contains
only ¢ monomials for a constant ¢

question: are ¢ and Y equivalent?

Theorem 2.1. MONE.., s decidable in logarithmic space.

Proof. Let n be the size of the MONE-instance (¢,). We assume that the vari-
ables are x1,xa,...,xy|. We describe the work of an appropriate machine.

Whether (¢, 1) really is a MONEym-instance, can be checked in logarithmic
space. The reason is that counting the monomials of ¢ suffices and since the
number of monomials of ¢ is bounded by n, logarithmic space is enough. Let ¢
be the constant bounding the number of monomials of .

Having tested the constant number of monomials property, the machine has
to perform the equivalence test of ¢ and 1. The machine systematically gener-
ates candidates for clauses of a CNF equivalent to ¢ (the first candidate consists
of the first variables from each monomial; the second candidate consists of the
second variable from the last monomial and the first variables from all the other
monomials; [...]; the last candidate consists of the last variables from all mono-
mials). There are at most |V|¢ possible candidates and the machine counts the
already tested ones. This counter is logarithmic in n. By counting the already
tested candidates the machine knows which is the next candidate because of
the systematic generation. Since a candidate consists of at most ¢ variables and
since an index of one variable has size log |V, the machine could write down the
indices of the variables forming the current candidate in space < clog|V| which
is clearly logarithmic in n.

The machine tests for each such candidate whether it is a maxterm of p. A
clause is a maxterm of ¢ if it is contained in the irredundant, monotone CNF
of ¢. The test can be performed in logarithmic space (see Appendix F). For

candidates that are maxterms, the machine has to ensure that they are included
in 9, since otherwise ¢ and 1 cannot be equivalent. Hence, the machine looks for
a clause of 1, that contains the same variables as the current candidate. This is
done via comparing the indices of the variables. A counter that counts the already
tested clauses ensures that the machine knows the next clause of 1. This counter
is logarithmic in n. If all candidates that are maxterms could be verified to be
contained in v, the machine tests for each clause of ¢ (systematically one after
the other) if it is a maxterm of ¢. Again, this can be done in logarithmic space
(see Appendix F). If a clause is found that is not a maxterm of ¢, then (p,) ¢
MONEc,, with this clause as a counter-example. Otherwise, the machine can
conclude (¢,1%) € MONEcnm. Altogether, logarithmic space is enough. O

2.2 The DNF Contains Only Very Large Monomials

MONEow: instance: irredundant, monotone formulas ¢ in DNF and
1 in CNF with variable set V', where ¢ contains
only monomials of size at least |V| — ¢ for a con-
stant ¢

question: are and Y equivalent?

Before proving that MONE.w is decidable in logarithmic space we need some
technical definitions and an important fact due to Eiter and Gottlob [EG95].
The complement V'’ of a subset V/ of V and the complement F of a family F
of subsets of V are defined as V/ = V\V’ and F = {F : F € F}. For an
irredundant, monotone DNF ¢ with the set M, of monomials we define the
operator 7 as 7(My) = {m\ {z} : m € M,,z € m}.

Proposition 2.2 ([EG95]). Let ¢ be an irredundant, monotone DNF with the
set M, of monomials. Every clause of the irredundant, monotone CNF' 1) equiv-

alent to ¢ is contained in T(M,).

With Proposition 2.2 at hand, we can give an algorithm deciding MONEjoy in
logarithmic space.

Theorem 2.3. MONE o s decidable in logarithmic space.

Proof. Let n be the size of the MONEow-instance (¢,v) and M, the set of
monomials of ¢. Whether (@, 1) is a MONEjow-instance can be tested in loga-
rithmic space. Counting the variables in each monomial of ¢ is enough and the
counter clearly stays logarithmic in n. Let the lower bound for the monomial
size be |V| — ¢ for constant c.

It remains to check the equivalence of ¢ and 1. From Proposition 2.2 it follows
that the only candidates for clauses of a CNF equivalent to ¢ are contained in
7(M,). The machine performs a candidate generation and check procedure very
analogous to the one from the proof of Theorem 2.1. Each candidate arises from
a monomial and includes all variables that are not included in the monomial plus
one variable from the monomial. Hence, the candidate size is bounded by ¢+ 1.
For such a candidate the machine can check in logarithmic space whether it is a

maxterm (see Appendix F). If a candidate is a mexterm, the machine searches it
in 9 like the machine from the proof of Theorem 2.1 does. To know the current
candidate the machine may write it down because of the constant size. To know
the next candidate the machine systematically generates them and counts the
number of already generated candidates. It starts by generating all candidates
from the first monomial m of ¢. The first candidate is the set of all variables
not contained in m; and the first variable from mj. The second candidate is
the set of all variables not contained in m; and the second variable from mg,
etc. After finishing the generation of all candidates from the first monomial, the
machine generates all candidates from the second monomial in the same way.
After that, all candidates from the third monomial, etc. Altogether, there are
at most (¢ + 1) - |[M,| many candidates. Hence, the counter stays logarithmic
in n. If a candidat that is a maxterm is not found in ¢, the machine rejects.
After finishing the candidate generation, the machine has to test all clauses of
1 whether they are maxterms of ¢ like the machine in the proof of Theorem 2.1
does. As we have seen, logarithmic space suffices to decide MONE gy - O

3 Structural Restrictions on the DNF ¢

Having examined size restrictions, we now adress more structural restrictions. We
focus on MONE-instances with a DNF ¢ that is regular, aligned, or 2-monotonic.
All three instances allow for polynomial time algorithms [BS87, Bor94, BHIK97].
We improve the resource bounds by giving logarithmic space algorithms.

3.1 The DNF is Regular

Definition 3.1 (regular). A formula ¢ with the set V = {x1,..., 2y |} of vari-
ables is regular, if for every pair of variable indices i < j and every assignment A

with x; ¢ A and x; € A it holds that A(p) < A’(o), where A" = (A\{z;})U{z;}.
As an example consider the regular DNF
p=(x1 Ax2)V (1 ANa3)V (x1 Axa ANxs) V (2 A3 A x4).

We examine the following special case of MONE.

MONE;¢g: instance: irredundant, monotone formulas ¢ in DNF and
1 in CNF with variable set V', where ¢ is regular
question: are ¢ and ¥ equivalent?

It is known that MONE,e is decidable in polynomial time [BS87]. We show that
already logarithmic space suffices.

Theorem 3.2. MONE,, 15 decidable in logarithmic space.

Proof. Let n be the size of the MONE-instance (¢,%) and V' = {w1,..., 2y} be
the set of variables. Regularity testing of ¢ can be managed in logarithmic space
(see Appendix G).

As for the equivalence test, we slightly adapt the Procedure RSC of Berto-
lazzi and Sassano [BS87]. RSC computes all the clauses of the irredundant, mono-
tone CNF of a given regular, irredundant, monotone DNF ¢. Bertolazzi and
Sassano have found the following coherence between a regular DNF and its
maxterms. For each monomial m of ¢ and every variable x; € m whose index is
larger than [the set F;(m) U {z;} is a maxterm of . Thereby, [is the smallest
index of a variable contained in monomial m of ¢ but not in the lexicographic
predecessor of m and Fj(m) = {x € m : k < j}. The lexicographic ordering
means that the monomials are ordered lexicographically by their characteristic
vectors. The characteristic vector of monomial m is |V'|-dimensional and contains
a 1 at position k if z;, € m; otherwise the entry is 0. Monomial m; is lexico-
graphic larger than monomial mj, m; >.; m;, if and only if the characteristic
vector of m; is larger than the characteristic vector of m;.

The above property for the maxterms of ¢ is used in lines 05 and 06 of our
equivalence test (listing below). It computes the maxterms of ¢, one after the
other, and checks whether they are contained in . Afterwards we have to check
whether each clause of the given CNF 1) really is a maxterm of ¢.

RSC precomputes a lexicographic ordering of the monomials and an |M]|-
dimensional vector v containing the smallest variable indices that distinguish
lexicographic adjacent monomials. Our algorithm does not have enough space to
store such precomputations. Instead, it processes the monomials in the ordering
they are given and computes the index (in the given ordering) of the predecessor
in a lexicographic ordering (function pred in the listing below) every time it is
needed. Analogously, the smallest variable index that distinguishes the current
monomial from its predecessor (function least.diff in the listing below) is
computed every time it is needed.

input: MONEcg-instance (¢, 1) with the set M,, of monomials and
the set Cy of clauses

01 fori=1to |[M,|do

02 p = pred(m;, M)

03 | = least_diff(m;, my)

04 for j=1to |V] do

05 if (z; € m;) A(j > 1) then

06 if ¢ = Fj(m;) U {x;} ¢ Cy then reject
07 endif

08 endfor

09 endfor

10 fori=1to |Cy| do

11 if ¢; is not a maxterm of ¢ then reject
12 endfor

13 accept

The listings of pred and least_diff may be found in Appendix J and Ap-
pendix K. Since they are correct, the correctness proof of the above algorithm

is straightforward. It follows from the the correctness of Procedure RSC [BS87],
which is very similar to our algorithm.

We have to examine the space requirement of the algorithm. All three for-
loops could manage counters that contain the number of the already tested
monomials in the original ordering, the index of the current variable, or the
number of already tested clauses to know which are the current monomial, vari-
able or clause. Such counters stay logarithmic in n. Both, p and [, store indices
that remain logarithmic in n.

The “c ¢ Cy”-test in line 06 is answered by an oracle. Therefor, Cy;, is written
on the oracle tape. Afterwards, each variable x1,...,z;_1 (logspace counter till
j — 1) is tested whether it is contained in m; (using a logspace counter for
searching through m; systematically). If the variable is not contained in m;,
then it belongs to F;(m;) and is written on the oracle tape. Finally, z; is written
on the oracle tape and it is asked whether the clause F;(m;) U {z;} as a set is
contained in Cy as a set of subsets of variables. The oracle machine is a logspace
machine (see Appendix I) and since L = L, the oracle does not increase the
resource requirements.

The maxterm-test in line 11 is implemented as an oracle query as well. There-
for, ¢; and ¢ are written on the oracle tape. The oracle is a logspace oracle (see
Appendix F). Hence, it does not increase the space requirement.

Since pred (see Appendix J) and least_diff (see Appendix K) run in log-
arithmic space, our above algorithm decides MONE,¢g in logarithmic space. 0O

3.2 The DNF is Aligned

A monomial m is a prime implicant of a monotone formula p, if it is contained
in the irredundant, monotone DNF of p.

Definition 3.3 (aligned). A monotone formula o with the variable set V =
{x1,..., 2y} is aligned, if for all prime implicants m of o and all variables x; &
m with i < max,, = max{j: x; € m} the assignment m' = (m\{Tmaa,, })I{x:}
also satisfies o.

Every regular formula is aligned (compare Proposition G.1 and the last defi-
nition). But the converse does not hold, as can be seen by the following example.

o= (x1)V (r2 Ax3)V (x2 AN24) V (X2 A5) V (T3 Ag) V
($3 /\.Z‘5/\$G)V($4/\.Z‘5/\$6/\.1‘7)V(3?5/\.1‘6A$7/\.1‘8).
The DNF ¢ is aligned but it is not regular, since {z5,xs, 27,28} — {27} U

{z4}(¢) = 0. Hence, aligned formulas are a generalization of regular ones. In
this section, we consider the following special case of MONE.

MONE,};: instance: irredundant, monotone formulas ¢ in DNF and
1 in CNF with variable set V', where ¢ is aligned
question: are and Y equivalent?

It is known that MONE,); is decidable in polynomial time [Bor94]. We show that
already logarithmic space suffices.

Theorem 3.4. MONE,; is decidable in logarithmic space.

Proof. Let n be the size of the MONE-instance (p,) with variable set V =
{@1,..., 2y} Testing whether ¢ is aligned can be managed in logarithmic
space (see Appendix L). As for the equivalence test, we use an approach of
Boros [Bor94] but modify the algorithm to show that it works in logarithmic
space.

For an assignment A let max 4 denote the largest variable index that is in-
cluded in A. An assignment A satisfying a monotone formula g is called leftmost,
if A\ {@maz 4 }(0) = 0. Boros has shown that the irredundant, monotone DNF of
an aligned formula g exactly comprises of all leftmost assignments of ¢ [Bor94].
Furthermore, he has shown that a special type of binary decision tree (BDT)
representation of aligned formulas is polynomial space bounded in its size. He
uses this BDT to give a polynomial time algorithm for MONE,);. We will modify
this algorithm to achieve a logarithmic space bound.

A binary decision tree (BDT) T is a directed binary tree. The nodes of the
tree have either two or no outgoing edges. The nodes reachable from node v are
the succesors of v and together with v they form the subtree T'(v). The nodes
w # v for which v € T'(w) are the predecessors of v. There is only one node with-
out predecessors, the root r. The nodes with two outgoing edges are the inner
nodes of T'. The nodes with no outgoing edges are the leaves of T'. The leaves of
T have labels 0 (false leaves) or 1 (true leaves) such that there is no inner node v
for which T'(v) only contains leaves with the same label. Let Lo (L1) be the set
of all false (true) leaves of T'. The set of predecessors of node v form a directed
path D(v) = {v1 = r,v2,...,04(y) = v}, where d(v) denotes the depth of v (the
distance from the root). Each inner node gets a variable as label. In our case, the
label of node v is x4(,). Let v be an inner node with the outgoing edges (u,v)
and (u,w). We say that v and w are the sons of u and u is their father. One son
is the true-son ts(u) and the other the false-son fs(u). For the path D(v) we de-
fine the sets true(v) = {Tq(y,) : Ver1 = ts(vr),k =1,...,d(v)} and false(v) =
{%4v) + vkr1 = fs(vg),k = 1,...,d(v)} of nodes appearing as true-sons re-
spectively false-sons. Each such BDT T represents a DNF of a Boolean formula
o and its dual in the following way, 0 = V,cr, Au,ctrue(w) Ti Nuse fatse(w) Ti
and 0% =\, 1. Nsiefatse(v) Ti Nasetrue(w) "%i- For the dual o of a formula g it
holds that A(g) = —.A(—0%). Note that the irredundant CNF of an irredundant,
monotone DNF ¢ can be produced by switching the roles of A and V in the irre-
dundant DNF of ¢¢. This will be the key for our algorithm. Namely, Boros has
proven that for each monotone formula o there exists an unique BDT T, whose
true-leaves (false-leaves) correspond one-to-one to the leftmost assignments of o
(¢%) [Bor94]. We have 0 = \/, ¢, Nsictrue(w) Ti and ot = Voero Naic ratse(w) T
Remember that our input is an irredundant, monotone DNF ¢ that is aligned.
Boros has shown that for aligned formulas the BDT is only polynomial in size
and constructs an algorithm that computes the BDT and from it the CNF of
¢ [Bor94].

Our algorithm cannot compute the whole BDT since it would require poly-
nomial space to store it. But remember that our input is the DNF ¢ and it is

aligned. Hence, from the results of Boros it follows that the monomials of ¢ are
in a one-to-one relation with the true-leaves of the BDT for ¢. We only have
to search all false-leaves v and check whether false(v) is contained in v since
no other maxterms exist. But how do we search through all false-leaves? It can
be easily proven that they are sons of nodes lying on the path to a true-leave
(see Appendix M). Our algorithm will test each node in the BDT described by
the monomials of ¢ as a potential father of a false-leave. Therefor, it checks
each branch on the way described by a monomial whether the false-son is a
false-leave and if so whether the corresponding maxterm is contained in . In a
second step our algorithm checks whether all clauses of 1 are maxterms of ¢.
We give the listing in the following. Let m? = m N {x1,...,z;} for a monomial
m and $=V \ s for a subset s of V.

input: MONE,j;-instance (¢,) with the set M, of monomials and
the set C'y, of clauses

01 fori=1to |M,| do

02 for each variable x; € m; do

03 if mfl U {z;+1} is not a subimplicant of ¢ then begin
04 if —3ep € Cyp e C mg_l N{z1,...,x;} then reject
05 endif

06 endfor

07 endfor

08 fori=1to|Cy|do

09 if ¢; is not a maxterm of ¢ then reject

10 endfor

11 accept

The correctness proof of the above algorithm is straightforward, since it just
implements the techniques described above. A monomial m is subimplicant of ¢
if it is subset of a monomial contained in M. In the lines 01 to 07 the algorithm
tests for all false-branchs, that are not subimplicants of ¢, on the path to any
true-leave whether they are covered by any clause of ¢. Thereafter, it is tested
whether each clause of v is a maxterm of .

We analyse the space requirement. All three for-loops can know the current
monomial, variable or clause by using logarithmically space bounded counters.
The if-tests in lines 03, 04 and 09 are answered by three oracles. In line 03 the
algorithm writes mfl U{x;41} together with ¢ on the oracle tape. In line 04 the

algorithm writes mg_l N{z1,...,2;} and 9 on the oracle tape. And in line 09
it writes ¢; and ¢ on the oracle tape. All three oracles have logarithmically
space bounded decision algorithms (see Appendices N, O and F). Since Lt = L
the oracles do not increase the space requirement. Altogether, logarithmic space
suffices to decide MONE,;;. O

3.3 The DNF is 2-monotonic

Another generalization of regular formulas are 2-monotonic formulas.

Definition 3.5 (2-monotonic). A monotone formula o is 2-monotonic if there
exists a permutation w of the variables such that w(p) is regular.

We consider the following version of MONE.

MONE2y,: instance: irredundant, monotone formulas ¢ in DNF and
1 in CNF with variable set V, where ¢ is 2-
monotonic

question: are and v equivalent?

It is known that MONEgy,, is decidable in polynomial time [BHIK97]. We show
that already logarithmic space suffices. Therefor, we use the following result
about 2-monotonic formulas.

Proposition 3.6 ([Win62]). Let ¢ be a 2-monotonic formula with the set V =
{x1,...,2v|} of variables. For every x; € V' let position k of a |V'|-dimensional
vector a9) be

oz,(vj) = |{m is a prime implicant of ¢ : x; € m,|m| = k}|.

Let o) > al2) > 0 > a(j\"\), where >0 denotes the lexicographic
order between |V |-dimensional vectors, and let © be a permutation of variables
such that m(x;,) = x; for all i. Then 7(p) is regular.

We refer to permutation 7 from Proposition 3.6 as the w-permutation.

Theorem 3.7. MONEqy, is decidable in logarithmic space.

Proof. Let n be the size of the MONE-instance (p,) with variable set V =
{1‘1, cen ,.Z“V|}.

Note that in order to test whether the DNF ¢ of a MONE-instance is 2-
monotonic, we could test whether 7(¢p) is regular with the w-permutation 7 from
Proposition 3.6. Since 7(y) can be written on an oracle tape using logarithmic
space only (see Appendix P), we can test 2-monotonicity in logarithmic space
using the logarithmic space regularity test (see Appendix G) as an oracle.

As for the equivalence test, we again use the algorithm writing 7(¢) on the
oracle tape and it is obvoius that a slight adaption could also write m(¢)) on the
oracle tape. Then the logarithmic space algorithm for MONE,¢s is invoked as
oracle. Since Lt = L, the oracles do not increase the resource requirements.

Altogether, this is a logarithmic space algorithm deciding MONEay,. ad

4 Concluding Remarks

Easy instances of MONE are restrictions of the DNF that allow for a polynomial
time solution of the corresponding restricted version of MONE. Many such in-
stances are known but how easy are they? Nothing is known about hardness of
the easy instances for classes like NL or P. But there is already an easy instance
of MONE that can be decided using logarithmic space only. It restricts the DNF
to contain only monomials of constant size [GHMO5].

10

Our goal was to find more such logarithmic space instances of MONE improv-
ing the already known polynomial time bounds. Among our results are instances
of MONE, where the DNF is allowed to contain only a constant number of mono-
mials or MONE, where each monomial of the DNF is only allowed not to contain
a constant number of variables.

As for the more structural restrictions, we have shown that MONE with a
2-monotonic or aligend DNF is decidable in logarithmic space improving the
already known polynomial time bounds. This implies that also MONE with a
regular DNF is solvable in logarithmic space.

Nevertheless, it would be very interesting to find logarithmic space algorithms
for other easy instances of MONE or to prove hardness results for easy instances.
Such hardness results for special cases may be useful when proving hardness of
MONE. No hardness results for MONE are known yet. They should be adressed
in future research.

References

[BHIK97] Endre Boros, Peter L. Hammer, Toshihide Ibaraki, and Kazuhiko
Kawakami. Polynomial-time recognition of 2-monotonic positive Boolean
functions given by an oracle. SIAM Journal on Computing, 26(1):93-109,
1997.

[BI95] Jan C. Bioch and Toshihide Ibaraki. Complexity of identification and
dualization of positive Boolean functions. Information and Computation,
123(1):50-63, 1995.

[Bor94] Endre Boros. Dualization of aligned Boolean functions. Technical Report
RRR 9-94, RUTCOR, Rutgers University, March 1994.

[BS87] Paola Bertolazzi and Antonio Sassano. An O(mn) algorithm for regular
set-covering problems. Theoretical Computer Science, 54:237—247, 1987.

[Dam06] Peter Damaschke. Parameterized enumeration, transversals, and imper-
fect phylogeny reconstruction. Theoretical Computer Science, 351(3):337—
350, 2006.

[EGI1] Thomas Eiter and Georg Gottlob. Identifying the minimal transversals

of a hypergraph and related problems. Technical Report CD-TR 91/16,
TU Wien, January 1991.

[EGI5] Thomas Eiter and Georg Gottlob. Identifying the minimal transversals
of a hypergraph and related problems. SIAM Journal on Computing,
24(6):1278-1304, 1995.

[EG02] Thomas Eiter and Georg Gottlob. Hypergraph transversal computation
and related problems in logic and AI. In Sergio Flesca, Sergio Greco,
Nicola Leone, and Giovambattista Ianni, editors, Logics in Artificial In-
telligence, Furopean Conference, JELIA 2002, Cosenza, Italy, September,
23-26, Proceedings, volume 2424 of Lecture Notes in Computer Science,
pages 549-564. Springer, 2002.

[EGMO03] Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on
monotone dualization and generating hypergraph transversals. SIAM
Journal on Computing, 32(2):514-537, 2003.

[FK96] Michael L. Fredman and Leonid Khachiyan. On the complexity of du-
alization of monotone disjunctive normal forms. Journal of Algorithms,
21(3):618-628, 1996.

11

[GBS5]

[GHMO5]

[GKMT97]

[KS03]

[MR92]

[Mur71]
[Qui53]

[SS98]

[Win62]

Hector Garcia-Molina and Daniel Barbard. How to assign votes in a
distributed system. Journal of the ACM, 32(4):841-860, 1985.

Judy Goldsmith, Matthias Hagen, and Martin Mundhenk. Complexity
of DNF and isomorphism of monotone formulas. In Joanna Jedrzejowicz
and Andrzej Szepietowski, editors, Mathematical Foundations of Com-
puter Science 2005, 30th International Symposium, MFCS 2005, Gdansk,
Poland, August 29 - September 2, 2005, Proceedings, volume 3618 of Lec-
ture Notes in Computer Science, pages 410-421. Springer, 2005.
Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, and Hannu Toivo-
nen. Data mining, hypergraph transversals, and machine learning. In Pro-
ceedings of the Sizteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 12-14, 1997, Tucson, Arizona,
pages 209-216. ACM Press, 1997.

Dimitris J. Kavvadias and Elias C. Stavropoulos. Monotone Boolean
dualization is in coNP[log?n]. Information Processing Letters, 85(1):1-6,
2003.

Heikki Mannila and Kari-Jouko R&ih&. On the complexity of inferring
functional dependencies. Discrete Applied Mathematics, 40(2):237-243,
1992.

Saburo Muroga. Threshold Logic and Its Applications. Wiley-Interscience,
New York, 1971.

Willard van Orman Quine. Two theorems about truth functions. Boletin
de la Sociedad Matemdtica Mezicana, 10:64-70, 1953.

Saswati Sarkar and Kumar N. Sivarajan. Hypergraph models for cellular
mobile communication systems. IEEE Transactions on Vehicular Tech-
nology, 47(2):460-471, 1998.

Robert O. Winder. Threshold Logic. PhD thesis, Mathematics Depart-
ment, Princeton University, 1962.

12

A Well-formed Test

We say that an input is a well-formed formula if and only if it can be interpreted
as a Boolean formula. That means that only variable symbols, “A”, “V”, “=",
“(”, and “)” are allowed symbols, that the parenthesis structure is correct, and
that the sequence of variables and connectives does not include situations like

“x1 V Vag” or “(V” or “zy Axoxws Vs’ ete.

Lemma A.1. Whether an input is a well-formed formula can be decided in
logarithmic space.

Proof. Let n be the length of the input. We describe the work of an appropriate
machine. During a first scan of the input the machine tests whether only allowed
symbols are involved. No additional space is needed.

A second scan of the input is used to examine the parenthesis structure.
Therefor, a counter is used that is initially set to 0. The machine scans through
the input searching parentheses. When a left parenthesis is found, the counter is
incremented by 1. When a right parenthesis is found, the counter is decremented
by 1. The parenthesis structure of the input is correct if and only if the counter
always contains a value > 0 and the counter is 0 when the input scan is com-
pleted. Since at most n parentheses may be contained in the input of length n,
the space needed for the counter is bounded logarithmically.

In a last scan of the input the sequence of variables and connectives has to
be tested as well. There are only few syntactic rules that have to be checked.
After the occurrence of a variable only “V”, “A” or “)” are allowed. After a left
parenthesis only a variable or a negation are allowed. After a right parenthesis
only “A” and “V” are allowed. After a “A” or a “V” only “=” or a variable are
allowed. And after a “—=” only a variable or a left parenthesis are allowed. No
additional space is needed while scanning the input and checking these syntactic
rules.

All three scans of the input could also be tested in only one scan. Altogether,
logarithmic space suffices. a

From now on, we assume that input formulas are well-formed since we could test
it in advance using only logarithmic space.

B Monotony Test

Lemma B.1. Whether a given Boolean formula is monotone can be decided
without using any additional space.

Proof. An appropriate machine scans through the input searching a negation

sign. The formula is monotone if and only if no negation sign is found. One cycle
through the input is enough and no additional space is needed. O

13

C Normal Form Test

A monotone formula is in normal form if and only if it is a conjunction of
disjunctions of variables (CNF) or a disjunction of conjunctions of variables
(DNF).

Lemma C.1. Whether a given monotone formula is in normal form can be
decided without using any additional space.

Proof. An appropriate machine has to perform two tests. First, it checks whether
the parenthesis structure of the input formula is “()()...()”. Secondly, the cor-
rect usage of the connectives is tested. The machine checks whether the con-
nectives within a pair “()” are “A” (respectively “V” for a CNF) and whether
between two pairs of parentheses “()()” the connectives are “V” (respectively
“A” for a CNF). For both tests the machine does not need any additional space.

O

D Irredundancy Test

Lemma D.1. Whether a given monotone formula in normal form is irredun-
dant can be decided in logarithmic space.

Proof. We give an algorithm that solves the problem and uses logarithmic space.
A term is a monomial respectively a clause of the normal form.

input: monotone formula ¢ in normal form with variable set V'
output: Yes, if o is irredundant, and No, otherwise

01 b=1;

02 for all terms ¢; of o do

03 for all other terms t; of o do

04 count = 0;

05 for all variables x € t; do

06 if x € t; then count = count + 1;
07 endfor

08 if count = |t;| then b = 0;

09 endfor

10 endfor

11 if b= 1 then output Yes;
12 else output No;

The correctness proof of the above algorithm is straightforward. We have to
analyse the space requirement.

The size n of g is the number of variable occurences. We assume that o
consists of [terms. The for-loops in line 02 and 03 have to know the index
of the current terms. Therefore, we can assume that the algorithm numbers the
terms of o by 1,2,3...,1 (the first term of g gets number 1, the second number 2,
etc.) and the for-loops test the terms by increasing indices. Hence, the for-loops

14

can count the already tested terms and know the current term. These are two
logarithmically in n space bounded counters. The for-loop in line 04 has to know
the index of the current variable. We analogously assume that the variables have
indices 1,2,3...,|V|. Hence, the index is logarithmically in n space bounded.
Two other logarithmically in n space bounded counters are needed for count and
to evaluate the size |t;| needed in line 08. The variable b only needs constant
space.

As can be seen from the algorithm, the terms of g need not to be copied to
be compared. Hence, logarithmic space is enough. a

E Variable Set Test

Lemma E.1. Whether a given irredundant, monotone DNF ¢ and a given ir-
redundant, monotone CNF ¢ have the same variable set can be decided in loga-
rithmic space.

Proof. Let the input size n be the number of variable occurences in ¢ and .
We assume that the variables have indices 1,2, ..., |V].

An appropriate machine cycles through the DNF ¢ from the beginning to the
end. For each variable occurence it tests whether this variable is present in 1) via
looking for the index of the variable in ¢ from the beginning to the end. When a
variable is found in ¢ that is not present in v, the machine rejects. Otherwise it
exchanges the roles and cycles through . For each variable occurence of i the
machine searches ¢ for this index. If also no variable of ¢ is not present in ¢,
the variable sets are the same. If on the other hand the machine finds a variable
in one formula that is not present in the other, the variable sets cannot be the
same.

The machine needs two counters and a possibility to store a variable index.
The first counter contains the number of variable occurences that were already
checked in the first formula. Another storage is needed for the index of the
current sought-after variable. The second counter contains the number of variable
occurences in the second formula that were already tried to match the current
index. Both counters are logarithmically in n space bounded. The variable index
that has to be stored is also logarithmically in |V| space bounded. Hence, the
machine only needs logarithmic space. a

F Maxterm Test

A clause ¢ is a mazterm of a monotone formula p if it is contained in an irre-
dundant, monotone CNF that is equivalent to p.

Lemma F.1. Let ¢ be an irredundant, monotone DNF and c be an irredundant,
monotone clause. It can be decided in logarithmic space whether C is a mazterm

of .

15

Proof. Let M, = {my,...,ma|} be the set of monomials of ¢ and V =
{x1,... ,xM} be the set of variables in ¢ and c. Let the input size n be the
number of variable occurences in ¢ and c.

It has to be checked whether ¢ has a non-empty intersection with every
monomial of ¢ (lines 01 to 07 of the listing below). Thereafter, it has to be
tested whether ¢\ {z} has a non-empty intersection with all monomials for
every variable x € ¢ (lines 08 to 18). If one such variable can be found, then ¢ is
not a maxterm. An appropriate algorithm is given in the following.

input: irredundant, monotone DNF ¢ and an irredundant, monotone clause ¢

output: Yes, if ¢ is a maxterm of ¢, and No, otherwise

01 fori=1to |M,| do

02 count = 0;

03 for j =1 to |m;| do

04 if z; € c then count = count + 1;

05 endfor

06 if count = 0 then output No and stop;
07 endfor

08 fori=1to || do;

09 hit = |M,|;

10 for j =1 to |M,| do

11 count = 0;

12 for k=1 to |m;| do

13 if (xp € ¢) A (k # i) then count = count + 1;
14 endfor

15 if count > 0 then hit = hit — 1;

16 endfor

17 if hit = 0 then output No and stop;
18 endfor

19 output Yes;

The correctness proof of the above algorithm is straightforward. We have to
analyse the space requirement.

To know the current monomial, the for-loops in line 01 and line 10 could
manage counters that give the number of already checked monomials. These
counters have to count till |[M,|. Hence, they are logarithmically bounded in
n. An analogous argumentation holds for the for-loops in line 03 and line 12.
To know the current variable, they manage counters that count till |m| for the
current monomial m, which is clearly logarithmic in n. And again, the for-loop
in line 08 is handled analogously. Here, the counter has to count till |¢|, which
is also logarithmic in n.

It remains to check the variables count and hit. The maximal value of count
is the size of a largest monomial of ¢. Hence, count remains logarithmic in n.
The maximal value of hit is |M,|. Hence, it is also logarithmic in n. Altogether,
logarithmic space suffices to run the described algorithm. 0O

16

G Testing Regularity

A monotone formula p is regular if for every pair of variable indices i < j and
every assignment A with z; € A and x; € A it holds that A(p) < A'(g), where
A= (AN {;}) U{i}.

A monomial m is a prime implicant of g if it is contained in the irredundant,
monotone DNF of p.

Muroga showed the following.

Proposition G.1 ([Mur71]). A monotone formula o with variable set V =
{@1,..., 2y} is reqular if and only if for all prime implicants m of o and all
variables ©; ¢ m and x;41 € m the assignment m’ = (m\{z;+1})U{z;} satisfies
0.

We use Proposition G.1 to design a logspace regularity test for irredundant,
monotone DNFs.

Lemma G.2. The regularity test for an irredundant, monotone DNF ¢ can be
implemented to run in logarithmic space.

Proof. Note that the irredundant, monotone DNF ¢ already consists of all
prime implicants of ¢. Let V' = {z1,...,2y|} be the variable set and M, =
{m1,...,mp, |} be the set of monomials (prime implicants) of ¢. A regularity
tester for irredundant, monotone DNF's could process the following algorithm.

input: irredundant, monotone DNF ¢
output: Yes, if ¢ is regular, and No, otherwise

01 fori=1to [M,|do

02 for j=1to |V] do

03 if x; ¢ m; and 241 € m; then

04 if (mi \ {zj+1}) U{z;}(¢) = 0 then output No
05 endif

06 endfor

07 endfor

08 output Yes

The correctness proof of the above algorithm is straightforward. The algo-
rithm implements the test of the property stated in Proposition G.1. We have
to analyse the space requirement.

Both for-loops could manage counters that contain the number of the cur-
rently tested monomial and the index of the current variable to know which are
the current monomial and variable. Such counters stay logarithmic in the input
size.

The two containedness tests of the if in line 03 require only one additional
counter to store the index j + 1. This counter is logarithmic in the input size.
The containedness tests just have to search the indices j and j + 1 in m;. They
need no additional storage other than the two logarithmic counters of the for-
loops and the logarithmic index j 4+ 1 to know the current monomial and the

17

current variables. The if-test in line 04 is answered by an oracle. The assignment
(mi\{zj+1})U{z,} as a set together with is written on an oracle tape and the
oracle answers “No” if and only if (m; \ {z;+1}) U {z;}(¢) = 0. This oracle is a
logspace oracle (see Appendix H) and since LY = L the oracle does not increase
the resource requirements.

Hence, the whole regularity test runs in logarithmic space.]

H Evaluate a DNF

Lemma H.1. Given an irredundant, monotone DNF ¢ and an assignment A,
it can be decided in logarithmic space whether A(p) = 1.

Proof. Let V = {z1,...,7y|} be the set of variables and M, = {m1,...,m |}
be the set of monomials of ¢. It has to be tested whether A contains at least
one monomial of . An appropriate algorithm could look like the following.

input: irredundant, monotone DNF' ¢ and an assignment A
output: Yes, if A(p) =1, and No, otherwise

01 fori=1to |M,| do

02 eval :=1;

03 for j =1 to |my| do

04 if z; ¢ A then eval := 0;

05 endfor

06 if eval =1 then output Yes and stop;
07 endfor

08 output No

The correctness proof of the above algorithm is straightforward. We have to
analyse the space requirement.

Both for-loops could manage counters that contain the number of the cur-
rently tested monomial and the index of the current variable to know which are
the current monomial and variable. Such counters stay logarithmic in the input
size. The if-test in line 04 does not need any additional space, since it is just a
search in A for the index of the variable. The eval-variable only needs constant
space.

Hence, the algorithm runs in logarithmic space. O

I Test if a set is contained in a set of sets

Lemma I.1. Given a set S of subsets of V and a subsett C V', it can be decided
in logarithmic space whether t is contained in S.

Proof. We give an algorithm with the desired properties.

input: set S = {s1,..., g} of subsets of V" and subset t C V'
output: Yes, if t € S, and No, otherwise

18

01 fori=1to|S|do

02 if |s;| = |¢| then

03 1sin = 0;

04 forallz €t do

05 if x € s; then isin = isin + 1;

06 endfor

07 if isin = |S| then output Yes and stop;
08 endif

09 endfor

10 output No;

The correctness proof of the above algorithm is straightforward.

The for-loops need two logarithmic counters to count till |S| and |¢|. The
if-test in line 02 can be implemented using two other logarithmic counters. The
isin-variable needs logarithmic space as well, since the largest value stored is |¢|.

Altogether, this gives logarithmic space. O

J Function pred

Lemma J.1. The function pred, used in the proof of Theorem 3.2, can be im-
plemented to run in logarithmic space.

Proof. The function pred should return the index p in the given ordering of
monomials of the predecessor of the current monomial in a lexicographic order-
ing. We give an algorithm with the desired properties.

Function pred(m;, M,):

input: monomial m; of an irredundant, monotone DNF ¢ with the set
M, of monomials and variable set V'
output: index of the lexicographic predecessor monomial of m; in M,

01 p=1

02 for j=1to|M,|do

03 if leq-lex(m;,m;) = j then begin
04 if leq-lex(m;,m,) =p thenp=j
05 endif

06 endfor

07 return p

The for-loop can be managed via a logarithmic counter and since p contains
monomial indices, it is also logarithmic. Hence, it is obvious that pred works
correctly and in logarithmic space if leq_lex does.

The function leq-lex(m;,m;) is intended to return the index of the lexico-
graphic smaller of the two monomials. We give an appropriate algorithm in the
following.

Function leq_lex(m;,m;):

19

input: two monomials m;, m; of an irredundant, monotone DNF ¢ with
the set M, of monomials and variable set V'
output: index of the lexicographically smaller monomial

01 fork=1to|V]|do

02 if (zr € m;) A (xx € m;) then return j
03 elseif (zy € m;) A (xx € m;) then return i
04 endfor

05 return ¢

The correctness proof of the above algorithm is straightforward. Hence, pred
is correct.

The for-loop can be managed via a logarithmic counter. The “z € m”-
tests can also be managed using a logarithmic counter. Hence, leq_lex runs in
logarithmic space and so does pred. O

K Function least diff

Lemma K.1. The function least diff, used in the proof of Theorem 3.2, can
be implemented to run in logarithmic space.

Proof. Given two monomials, the function least_diff should return the small-
est index [of a variable that is contained in only one of the monomials. We give
an algorithm with the desired properties.

Function least_diff(m;, m;):

input: two monomials m; >;.; m; of an irredundant, monotone DNF ¢ with
the set M, of monomials and variable set V'
(m; =iez m; only when m; is the lexicographically first monomial of ¢)
output: smallest index &, such that =, € m; and x;, € m;

01 if ¢ = j then return 0
02 fork=1to|V]|do

03 if (zx € mj) A () € m;) then return k
04 endfor
end

The correctness proof of the above algorithm is straightforward. As for the
space requirement, the for-loop requires a logarithmic counter. The “z € m”-
tests can also be managed using a logarithmic counter. O

L Aligned Test

A monotone formula ¢ with variable set V' = {z1,...,2)y|} is aligned if for all
prime implicants m of p and all variables z; ¢ m with ¢ < max,, = max{j :
x; € m} the assignment m’ = (m \ {Zmaq,, }) U {z:} satisfies o.

Lemma L.1. Whether an irredundant, monotone DNF ¢ is aligned can be de-
cided in logarithmic space.

20

Proof. We slightly adapt the algorithm of the regularity test (see Appendix G),
since we do not have to test all what we have tested there (compare the definition
of an aligned formula with Proposition G.1).

Note that the irredundant, monotone DNF ¢, that is input for the test, al-
ready consists of all prime implicants of . Let V' = {z1,..., 2y} be the variable
set and My, = {ma, ..., maz, |} be the set of monomials (prime implicants) of ¢.
Let furthermore max,, denote the largest variable index appearing in monomial
m. An algorithm, testing whether ¢ is aligned, could look like the following.

input: irredundant, monotone DNF ¢
output: Yes, if ¢ is aligned, and No, otherwise

01 fori=1to [M,|do

02 for j =1 to maz,,, do

03 if x; ¢ m; then

04 if (mi —{ZTmaz,., }) U{x;}(¢) = 0 then output No
05 endif

06 endfor

07 endfor

08 output Yes

The correctness proof of the above algorithm is straightforward, since the
algorithm just tests the property given in the definition of aligned formulas. We
have to analyse the space requirement.

Both for-loops could manage counters that contain the number of the cur-
rently tested monomial and the index of the current variable to know which are
the current monomial and variable. Such counters stay logarithmic in the input
size. The variable index max,,, can be stored using logarithmic space, too.

The containedness test of the if in line 03 just has to search the index
j in m; which can be done with logarithmic space as described in the proof
of Lemma G.2. Analogously to the regularity testing algorithm, the if-test in
line 04 is answered by an oracle. The assignment (m; — {Zmaz,., })U{z;} as a set
together with ¢ is written on the oracle tape and the oracle answers whether this
assignment satisfies ¢. The oracle machine using logarithmic space is described
in Appendix H. Since L- = L the usage of the oracle does not increase the space
requirement.

Hence, the whole algorithm runs in logarithmic space.

M Where are the False-Leaves?

Lemma M.1. There is no false-leave in a BDT T that is not the false-son of
a father contained in D(v) for a true-leave v.

Proof. Assume that we could find a false-leave u that is the true-son of a node
w. Then true(u) is a leftmost assignment of a formula represented by T'. But
then u cannot be a false-leave. A contradiction. Hence, false-leaves are false-sons
of their fathers.

21

Assume now that the father w of the false-leave u is not contained in any
D(v) for a true-leave v. Hence, the leaves in T'(w) all are false-leaves. Again, a
contradiction. O

N Subimplicant Test

A monomial m is an implicant of a formula g if m(g) = 1. An implicant is prime
if none of its subsets is an implicant. A monomial m is a subimplicant of g if m
is subset of a prime implicant of o.

Lemma N.1. Whether a subset s of the set V. = {x1,...,xv|} of variables
of an irredundant, monotone DNF ¢ is a subimplicant of ¢ can be decided in
logarithmic space.

Proof. Note that the DNF ¢ contains all prime implicants of . Let the input
size n be the number of variable occurences in ¢ and s. We give an algorithm
with the desired properties.

input: irredundant, monotone DNF ¢ with the set M, = {m1,...,mp, |} of
monomials and a subset s of the set V' = {z1,...,2)y|} of variables
output: Yes, if s is a subimplicant of ¢, and No, otherwise

01 fori=1to |[M,|do

02 test 1= 1,

03 for all x € s do

04 if x ¢ m; then test := 0;

05 endfor

06 if test = 1 then output Yes and stop;
07 endfor

08 output No;

The correctness proof of the above algorithm is straightforward. We have to
analyse the space requirement.

Both for-loops can be managed using logarithmic counters to know the cur-
rent monomial or variable. The test-variable needs constant space. Altogether,
logarithmic space suffices. O

O Superclause Test

A clause ¢ is a superclause of a formula g if ¢ contains a maxterm of p.

Lemma O.1. Whether a subset s of the set V. = {x1,...,2v|} of variables
of an irredundant, monotone CNF 1 is a superclause of ¥ can be decided in
logarithmic space.

Proof. Note that the CNF ¢ contains all maxterms of . Let the input size n
be the number of variable occurences in ¢ and s. We give an algorithm with the
desired properties.

22

input: irredundant, monotone CNF ¢ with the set Cy = {c1,...,¢|c,|} of
clauses and a subset s of the set V = {zq,... ,x‘v‘} of variables
output: Yes, if s is a superclause of ¥, and No, otherwise

01 fori=1to|Cy| do

02 test :=1;

03 for all ¢ € ¢; do

04 if = ¢ s then test := 0;

05 endfor

06 if test = 1 then output Yes and stop;
07 endfor

08 output No;

The algorithm is very similar to the one given in Appendix N. Hence, an
analogous argumentation gives the logarithmic space bound. a

P Winder-Permutation

Lemma P.1. Let ¢ be an irredundant, monotone DNF' with the variable set
V = {z1,...,7v|} and the set My, = {my,...,m, |} of monomials. The w-
permuted w(p) can be written on an oracle tape using logarithmic space only.

Proof. We give an algorithm with the desired properties. Let s1 o so denote the
concatenation of the two strings s, s2 on the oracle tape.

01 7(p) == “(*%
02 fori=1to [M,|do

03 c1:=0;

04 if ¢ =1 then 7(p) := m(p) o “(*

05 else m(p) := w(p) o “V (%

06 for j=11to |V] do

07 if (z; € m;) A (e1 #0) then 7(p) :=7(p) o “A %
08 if x; € m; then

09 c:=c1 + 1

10 max = get max(p);

11 Coy = 1;

12 while mazx # i do

13 max := getnext(p, mazx);
14 co = Co + 1

15 endwhile

16 7(p) = () 0 Ty

17 endif

18 endfor

19 T(p) = m(p) 0 “)%

20 endfor

21 7w(p) =7(p) o)

23

The algorithm writes the string m(¢) on an oracle tape recomputing new vari-
able indices each time they are needed. The algorithm does not store already
computed indices, since that would need more than logarithmic space. For each
variable occurence x; in ¢ the algorithm counts where in the lexicographic order-
ing of the a-vectors the vector (¥ appears. A variable with the corresponding
index is written on the oracle tape instead of x;. To derive the new index of x;
the algorithm computes the lexicographically last a-vector (get_max in line 10).
As long as a” is not found the algorithm computes the next element in the
ordering of the a-vectors (get next in line 13) and adds one to the counter co
that should contain the number of ¥ in the lexicographic ordering of Proposi-
tion 3.6. When (¥ is found, the counter ¢, contains the number of a(?) in the
ordering of Proposition 3.6. The formula 7(p) is composed as a string on the
oracle tape (lines 01, 04, 05, 07, 16, 19, and 21).

The counters ¢; (largest value is the size of a largest monomial) and co (largest
value is |V|) stay logarithmic in n. Both for-loops can also be managed via
logarithmically space bounded counters that contain the number of the current
monomial or the index of the current variable. And last but not least, the variable
max is logarithmically space bounded, since it only contains variable indices.

We have to analyse the listings of the functions get_max and get next to fully
describe the algorithm computing 7(¢). The function get max should return the
index i of the lexicographic largest of the a/(".

input: irredundant, monotone DNF ¢ with the set M, = {m1,...,m|a, |}
of monomials and the set V' = {x1,..., 2y} of variables

output: index max of the variable with the lexicographic largest a-vector

01 mazx = 1;

02 fori=2to|V|do

03 k:=0;

04 while k < |V| do

05 k=k+1

06 ez = |{m € My : Tmaz € m,|m| = k}|;
07 ca = |{m e My, : z; € m,|m| = k}|;
08 if ¢4 > c3 then

09 max = t;

10 kE:=V|+1;

11 elseif ¢y < c¢3 then k:=|V|+1;
12 endwhile

13 endfor

14 return max

Each variable is a candidate for having the lexicographic largest a-vector.
Hence, all variables are tested systematically by the above algorithm. In the
while-loop (line 04) the vector a(™*) which is so far the lexicographic largest
vector and the vector a(® of the current variable are tested componentwise to
decide which one is lexicographic larger. If it is (| then 7 is the new maximum
so far (line 09). The correctness proof is straightforward.

24

As for the space requirement, both counters ¢z and ¢4 remain logarithmic
in n, since their largest value is |M,|. They can be computed by checking the
monomials systematically whether they contain the tested variable. If so, another
counter is used to get the size of the current monomial. This counter is com-
pared to k. The largest value stored in variable k is [V| + 1 which is logarithmic
in n. Another logarithmically space bounded counter is used for the for-loop.
The variable max contains variable indices. Hence, it is logarithmically space
bounded. Altogether, the function get max can be computed using logarithmic
space.

The function get_next should return the index of the variable whose a-

vector is the succesor in the lexicographic ordering of Proposition 3.6 of the
current a(me),

input: irredundant, monotone DNF ¢ with the set M, = {m1,...,m|a, |}
of monomials and the set V = {x1,..., 2y} of variables
and a variable index max

output: index of the variable whose a-vector is the successor in the
lexicographic ordering of Proposition 3.6 of a/(™a®)

01 next := 0;
02 fori=1to|V|do

03 k:=0;

04 while k < |V| do

05 k=k+1

06 cs = |{m € My : Tpmaa € m,|m| = k}|;
07 cg = |{m € My, : z; € m,|m| = k}|;
08 if (06 < 05) then

09 next 1= 1;

10 kE:=V|+1;

11 elseif (cg > ¢5) then k :=|V| + 1;
12 endwhile

13 endfor

14 fori=1to |V]do

15 k:=0;

16 while k < |V| do

17 k=k+1

18 cs = |{m € My : Tpmaa € m,|m| = k}|;
19 ce = |{m € My, : Zpext € m,|m| = k}|;
19 cr = |{m e M, : z; € m,|m| = k}|;
20 if (cg < c¢7) A (e7 < ¢5) then

21 next 1= 1;

22 k= |V|+1;

23 elseif (¢ > ¢7) V (¢7 > ¢5) then k:=|V]+ 1;
24 endwhile

25 endfor

26 return next

25

In lines 01 to 13 the algorithm searches a variable whose a-vector is lexico-
graphically smaller than o), All variables whose a-vector is lexicographically
smaller than (™) are candidates for the variable having the lexicographically
next largest vector. Our algorithm simply checks all candidates. In the while-
loop of line 16 the algorithm tries to find a variable whose a-vector vector is
smaller than «(™%*) but larger than a("*!), the successor so far of a("%®) If
a® lies lexicographically in between a/™) and o("¢**) then i is a new candi-
date for the successor (lines 20 to 22). The correctness proof is straightforward.

The space needed for the three counters cs, cg, and c7 is logarithmically
bounded in n, since their largest value is |M,|. The values of these counters
are derived analogously to the counters c3 and c4. Hence, we only need three
other logarithmically space bounded counters that count size of monomials. The
for-loops in lines 02 and 14 manage two other logarithmic counters to know
the current variable. The variable k is also logarithmically space bounded, since
the largest value to store is |V| + 1. The variables next and max contain vari-
able indices which are logarithmically space bounded in n. Hence, the function
get_next can be computed using logarithmic space.

Altogether, we can conclude that the w-permutation 7 () of ¢ can be written
on an oracle tape using logarithmic space. O

26

