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ABSTRACT
We describe the Webis group’s participation in the TREC 2021 Deep
Learning, Health Misinformation, and Podcasts tracks. Our three
LambdaMART-based runs submitted to the Deep Learning track
focus on the question whether anchor text is an effective retrieval
feature in the MS MARCO scenario. In the Health Misinforma-
tion track, we axiomatically re-ranked the top-20 results of BM25
and MonoT5 for argumentative topics. As for the Podcasts track,
our submitted six runs focus on supervised classification of pod-
casts as entertaining, subjective, or containing discussion by using
audio and text embeddings.

1 INTRODUCTION
We have participated in three TREC 2021 tracks: Deep Learning,
Health Misinformation, and Podcasts. With our three runs submit-
ted to the Deep Learning track, we investigate the effectiveness of
anchor texts in the current MS MARCO setup inspired by the two
decades old statement that anchors “often provide more accurate
descriptions of web pages than the pages themselves” [6]. There-
fore, we use the Webis MS MARCO Anchor Text 2022 dataset [13]
consisting of anchor text pointing to MS MARCO documents and
combine anchor text with other features in LambdaMART models.

Our runs for the Health Misinformation track target topics that
seem to be of argumentative nature, and we then attempt to rank
documents higher that contain “good” argumentation. The under-
lying assumption is that well-argued texts contain fewer wrong,
unreliable, or misleading information. Respective results for queries
like “Should I apply ice to a burn?” then might not lead searchers
to wrong decisions that negatively affect their health.

In the Podcasts Track, for retrieval, we classify episodes as en-
tertaining, subjective, or containing discussions by using models
that we had trained on a small set of manually labeled episodes.
We test re-rankings of standard result lists by using the classi-
fiers’ confidences based on audio embeddings, text embeddings, or
both combined. To generate engaging summaries, we employ only
sentences classified as entertaining by our combined model. We
investigate both extractive and abstractive summarization.
∗These authors contributed to the paper equally.
TREC 2021, November 15–19, 2021, Gaithersburg, Maryland
2021. Webis group [webis.de].

2 DEEP LEARNING TRACK
Transformer-based re-rankers caused a paradigm shift in informa-
tion retrieval [19]—also evident in the Deep Learning tracks with
transformer-based approaches being the most effective in the previ-
ous years [10, 11]. We submitted three traditional learning-to-rank
runs to the TREC 2021 Deep Learning track to help to diversify the
judgment pool and to allow the comparison of modern transformer-
based rankings with more traditional baselines. Within our three
runs, we focus on the research question of whether anchor text
is an effective feature in the MS MARCO scenario. We train two
LambdaMART [7] models that use anchor texts as feature type
(among others) and one LambdaMART model without anchor text.

Table 1 provides an overview of the 50 feature types that we use
in the learning-to-rank models. To calculate the query–document
similarity, we use four types of text: (1) the document body, (2) the
document title, (3) the URL, and (4) anchor text pointing to the
document. For each of these four text types, we calculate nine
feature types using Anserini [31]: BM25, F2Exp, F2Log, PL2, QL,
QLJM, SPL, TF, and TF · IDF scores. In addition, we use eight query-
independent document feature types including the Alexa Rank1 or
Harmonic Mean and PageRank of the domain provided by the Com-
mon Crawl,2 as well as six query features since such features can
be used by LambdaMART to learn different subtrees for different
types of queries [22].

As our anchor text source, we use the Webis MS MARCO An-
chor Text 2022 dataset [13].3 This dataset enriches 1,703,834 doc-
uments for Version 1 and 4,821,244 documents for Version 2 of
the MS MARCO document collection with up to 1000 anchor texts
extracted from six Common Crawl snapshots from the years 2016
to 2021 (1.7–3.4 billion documents). The anchor text dataset already
is filtered to remove “low quality” anchor texts (intra-site anchor
texts, very long anchor texts that are very long, and stopword-only
anchor texts). Here, we use only anchor texts extracted from the
Common Crawl snapshot 2021-04 since it seems to be the snapshot
in the Webis MS MARCO Anchor Text 2022 dataset closest to the
crawling time of Version 2 of MS MARCO. We thus use 60.62 million
anchor texts pointing to 1.14 million documents.

Using the official training and validation labels for Version 2
of the MS MARCO document collection, we train LambdaMART
1web.archive.org/web/202104010000/s3.amazonaws.com/alexa-static/top-1m.csv.zip
2commoncrawl.org/2021/05/host-and-domain-level-web-graphs-feb-apr-may-2021/
3Data available at https://github.com/webis-de/ECIR-22 or https://zenodo.org/record/
5883456 but also integrated in ir datasets [21].

webis.de
web.archive.org/web/202104010000/s3.amazonaws.com/alexa-static/top-1m.csv.zip
commoncrawl.org/2021/05/host-and-domain-level-web-graphs-feb-apr-may-2021/
https://github.com/webis-de/ECIR-22
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Table 1: (Left) Feature types employed in our Deep Learning track runs (9 anchor text-based query–document feature types not
used in run webis-dl-2). (Right) Most important feature types of the LambdaMART model with 5,000 trees in our pilot study.

Query–Document Document/Domain Query

Description Count Description Count Description Count

BM25 score 4 Alexa Rank 1 Is 5W1H question 1
F2Exp score 4 Body length 1 Geopol. entities 1
F2Log score 4 Dots in host 1 Is comparative [3] 1
PL2 score 4 Harmonic Mean 1 Length in tokens 1
QL score 4 PageRank 1 ORG entities 1
QLJM score 4 Slashes in URL 1 Person entities 1
SPL score 4 Title length 1
TF score 4 URL length 1
TF · IDF score 4

Total: 50 feature types, 9 query–document ones are anchor text-based TF
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Table 2: The Deep Learning track’s official effectiveness re-
sults for our three runs in comparison to the official baseline—
our runs re-rank this baseline’s top-100 results.

nDCG@3 nDCG@10 P@1 P@3 P@10 MRR@10

webis-dl-1 0.63 0.58 0.91 0.85 0.74 0.94
webis-dl-2 0.61 0.57 0.91 0.84 0.73 0.94
webis-dl-3 0.63 0.59 0.93 0.86 0.75 0.95

baseline 0.54 0.51 0.75 0.74 0.67 0.84

models—a feature-based learning to rank approach [7, 16, 30]. In a
pilot study, we trained LambdaMART models with 100, 1,000, and
5,000 trees optimized for MRR using the LightGBM framework [17]
on all 50 feature types; other hyperparameters at their default values.
The model with 5,000 trees had a higher MRR on the validation set
than the models with 1,000 or 100 trees. The right plot in Table 1
shows the 10 most important feature types for the model with
5,000 trees: TF · IDF-scored titles are the most important but QL-
and QLJM-scored anchor texts follow at positions 5 and 7.

To also assess the effectiveness of anchor text in the TREC 2021
Deep Learning track setup, we submitted the following three runs.

webis-dl-1. LambdaMART model with 5,000 trees (other hyper-
parameters at their default values) trained on all 50 feature types (cf.
Table 1); re-ranks the top-100 results of the track’s official baseline.

webis-dl-2. LambdaMART model with 5,000 trees (other hyper-
parameters at their default values) trained on the 41 feature types
without the anchor text-based feature types; re-ranks the top-100
results of the track’s official baseline.

webis-dl-3. LambdaMART model with 1,000 trees (fewer param-
eters to prevent overfitting on the training data; other hyperpa-
rameters at their default values) trained on all 50 feature types (cf.
Table 1); re-ranks the top-100 results of the track’s official baseline.

Table 2 shows the official effectiveness results of our runs and of
the official baseline. All our runs improve upon the baseline but
none of the improvements are statistically significant at a p-value
of 0.05 with Bonferroni correction. Our webis-dl-3 run (1,000 trees)
achieves the highest effectiveness, indicating that using 5,000 trees

might overfit to the training data (even though 5,000 trees obtained
higher MRR scores on the validation set in our pilot study). Com-
paring webis-dl-1 (with anchor text) to webis-dl-2 (without anchor
text) shows that anchor text can very slightly improve the effec-
tiveness. Still, since anchor text is assumed to be most effective for
navigational queries [9, 13] and since none of the TREC 2021 Deep
Learning track’s topics are intended to be navigational, probably
no larger effect was to be expected.

3 HEALTH MISINFORMATION TRACK
Our six runs for the Health Misinformation track focus on inves-
tigating whether re-ranking with axioms that capture facets of
argumentativeness can improve the “helpfulness” while reducing
the “harmfulness” of results for queries that seem to be of argumen-
tative nature (i.e., not just factual look-ups).

3.1 Initial Retrieval with BM25 and MonoT5
We index the document collection using Anserini [31] (plain text
extraction with Jsoup, stopword removal with Lucene’s default
stopword list for English, Porter stemming). Our first baseline run
webis-bm25 uses Anserini’s BM25 implementation (default values
𝑘 = 0.9, 𝑏 = 0.4), our second baseline run webis-t5 uses PyGaggle’s4

default MonoT5 model [26] castorini/monot5-base-msmarco to re-
rank the top-50 BM25 results.

3.2 Argumentative Axiomatic Re-ranking
For each of the two baselines (BM25 and MonoT5), we have two fur-
ther runs that re-rank the baseline’s top-20 results for queries that
seem to be argumentative (i.e., not just “simple” factual look-ups).
The re-ranking is based on axioms capturing argumentativeness
and we largely applying the same re-ranking strategy as in our
previous TREC participations [2, 4, 5].

3.2.1 Identifying Argumentative Queries. Based on the assump-
tion that users submitting “argumentative” queries (i.e., not sim-
ple factual look-ups) will prefer documents containing good argu-
mentation—that then might contain fewer wrong or misleading
4https://github.com/castorini/pygaggle

https://github.com/castorini/pygaggle


Table 3: The Health Misinformation track’s official effectiveness results for our runs. U: useful, Co: correct, Cr: credible, Incor.:
incorrect.

Run Compatibility nDCG (binary) P@10 (binary) nDCG (graded)

Help Harm U & Co U & Cr U & Co & Cr U & Co Incor. Useful

webis-bm25 0.13 0.14 0.43 0.49 0.38 0.31 0.29 0.58
webis-bm25-ax1 0.13 0.14 0.43 0.49 0.39 0.31 0.28 0.58
webis-bm25-ax3 0.13 0.14 0.43 0.49 0.38 0.31 0.28 0.58

webis-t5 0.13 0.14 0.24 0.26 0.19 0.32 0.30 0.34
webis-t5-ax1 0.13 0.14 0.24 0.27 0.19 0.35 0.33 0.34
webis-t5-ax3 0.13 0.14 0.24 0.26 0.19 0.34 0.33 0.34

information—, we first check which of the Health Misinformation
track’s topics are argumentative. We manually inspected all topics
and, given their non-factual health-related nature (e.g., “Should I
apply ice to a burn?”), concluded that all of them could be labeled
as argumentative queries.

3.2.2 Re-ranking Axioms. To re-rank the top-20 baseline results,
we use three axioms that prefer argumentative documents from
our previous years’ runs submitted to the Common Core, Decision,
and Health Misinformation tracks [2, 4, 5].

Retrieval axioms (i.e., formally defined constraints applied to
retrieval models) have been developed within the field of axiomatic
thinking in information retrieval [1] to define heuristic constraints
that good retrieval models should probably fulfill. A basic example
is the term frequency axiom TFC1 [12]: for a single-term query,
from two documents of the same length, the document with more
query term occurrences should receive a higher retrieval score. We
follow the ideas of axiomatic thinking and apply three axioms that
capture document argumentativeness. In contrast to the restrictive
“same length”-assumption in TFC1, we relax the preconditions to
ensure the axioms’ practical applicability.

Axiom ArgUC (Argumentative Units Count). The general idea
of the ArgUC axiom is to favor documents that contain a larger
number of argumentative units.

Formalization. Let 𝑄 be an argumentative query, 𝐷1 and 𝐷2 be
two documents retrieved for 𝑄 , let countArg (·) be the number of
argumentative units in a document, and let ≈10% indicate “equal-
ity” up to a 10% difference. If length(𝐷1) ≈10% length(𝐷2) and
countArg (𝐷1) > countArg (𝐷2), then 𝐷1 should be ranked higher
than 𝐷2.

Axiom QTArg (Query Term Occurrence in Argumentative Units).
Retrieved documents usually consist of argumentative and non-
argumentative units or text passages. The general idea of the
QTArg axiom is to favor documents where the query terms ap-
pear closer to or in more argumentative units.

Formalization. Let 𝑄 = {𝑞} be an argumentative single-term
query, 𝐷1 and 𝐷2 be two retrieved documents, and let 𝐴𝑟𝑔𝐷 be the
set of argumentative units of a document 𝐷 . If length(𝐷1) ≈10%
length(𝐷2) and 𝑞 ∈ 𝐴𝐷1 for some 𝐴𝐷1 ∈ 𝐴𝑟𝑔𝐷1 but 𝑞 ∉ 𝐴𝐷2 for all
𝐴𝐷2 ∈ 𝐴𝑟𝑔𝐷2 , then 𝐷1 should be ranked higher than 𝐷2.

Axiom QTPArg (Query Term Position in Argumentative Units).
Following the general observation that in relevant documents the
first occurrences of query terms are closer to the beginning of the

document [24, 29], the QTPArg axiom favors documents where the
first appearance of a query term in an argumentative unit is closer
to the beginning of the document.

Formalization. Let 𝑄 = {𝑞} be an argumentative single-term
query, 𝐷1 and 𝐷2 be two retrieved documents, and let the first
position in an argumentative unit of a document𝐷 where the term𝑞

appears be denoted by 1stposition(𝑞,𝐴𝑟𝑔𝐷 ). If length(𝐷1) ≈10%
length(𝐷2) and 1stposition(𝑞,𝐴𝑟𝑔𝐷1 ) < 1stposition(𝑞,𝐴𝑟𝑔𝐷2 ), then
𝐷1 should be ranked higher than 𝐷2.

3.2.3 Argumentative Unit Detection. The above argumentative
axioms are based on argumentative units. To detect argumentative
units in documents, we use the BiLSTM-CNN-CRF-based argument
tagging tool TARGER [8]; available via an API.5 As input, TARGER
accepts a text, and it returns markers indicating the beginning and
end of argument premises and claims (argumentative units).

3.2.4 Actual Runs. In addition to the three argumentative ax-
ioms, we also employ the axiom ORIG [14] that simply returns the
preferences of the initial BM25 or MonoT5 ranking. We do this
to “balance” argumentativeness and topical relevance. Differing
from the the original axiomatic re-ranking pipeline [14], we do not
train the weights for the axioms but apply two simple strategies
distributing a total weight of 1.0 to the four axioms: (a) we manually
set the weights such that at least two argumentative axioms have
to agree to “overrule” the ORIG preference (runs webis-bm25-ax1
and webis-t5-ax1; weights: ORIG gets 0.22 and the argumentative
axioms each get 0.26) or (b) we manually set the weights such
that all three argumentative axioms have to agree to overrule the
ORIG preference (runs webis-bm25-ax3 and webis-t5-ax3; weights:
ORIG gets 0.49 and the argumentative axioms each get 0.17).

3.3 Evaluation
In the Health Misinformation track, the retrieval effectiveness of the
submitted runs is evaluated using nDCG, precision, and a compati-
bility measure. To this end, NIST assessors labeled the usefulness,
correctness, and credibility of documents. The compatibility mea-
sure combines these three aspects into preference orderings for the
document helpfulness and harmfulness.

The results for our runs in Table 3 show that no real effect of
the axiomatic re-ranking can be observed. The reason is that the
axioms very rarely overrule the ORIG preference.
5API: https://demo.webis.de/targer-api/apidocs/; Python library: https://pypi.org/
project/targer-api/

https://demo.webis.de/targer-api/apidocs/
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https://pypi.org/project/targer-api/


Table 4: F1 scores for our Podcast track runs’ SVM classifi-
cation of segments as entertaining, subjective, or contain-
ing a discussion; 10-fold cross validation on our annotated
1,000 podcast segments.

Run Entertaining Subjective Discussion

Webis pc cola 0.54 0.69 0.71
Webis pc rob 0.58 0.78 0.77
Webis pc cola rob 0.63 0.75 0.80

4 PODCASTS TRACK
We participated in the retrieval and summarization tasks of the
TREC 2021 Podcasts track.

4.1 Retrieval Task
We submitted four runs for this task employing Elasticsearch’s
BM25 retrieval model. These four runs consist of one baseline with-
out re-ranking and three runs including a supervised re-ranking
method that use audio features, text features, and both, respectively.

For the supervised methods, we manually annotated 1,000 pod-
cast segments (length of 2 minutes) for each of the three re-ranking
criteria: entertaining, subjective, discussion. Each podcast segment
was annotated by a single annotator. We used the training queries
and our baseline to retrieve these segments. Using an SVM classi-
fier, the different feature sets are then employed to train (on the
annotated data) and predict (on the segments retrieved for each
topic in the final evaluation) whether a segment is entertaining,
subjective, or contains a discussion. The results are then re-ranked
by multiplying their BM25 score with the SVM’s confidence for the
respective criterion (a value between 0 and 1).

4.1.1 Actual Runs. The run Webis pc bs retrieves the top-1,000
BM25 results and serves as the baseline that the other runs re-rank.
The SVM for the run Webis pc cola employs audio embeddings
extracted from the podcast audio clips using a COLA model [28].
We trained the embedding model on 10,000 hours of randomly
selected podcast episodes from the corpus. The SVM for the run
Webis pc rob employs text embeddings from the podcast transcripts
using an out-of-the-box RoBERTa model [20]. The SVM for the run
Webis pc co rob employs the audio and the text embeddings.

4.1.2 Evaluation. Table 4 shows the F1 scores of the classifiers
used in the non-baseline runs with respect to the three ranking
criteria (entertaining, subjective, discussion) in a 10-fold cross vali-
dation on our annotated sample of 1,000 podcast segments. Overall,
the effectiveness of the classifier using audio and text features is
best on the entertaining and discussion criteria, while employing
text features only is the most effective for the subjective criterion.

Table 5 shows the effectiveness of our runs for each ranking cri-
terion. Each re-ranking method actually reduced the performance
according to all measures. Further investigations are needed to
identify the reasons for this consistent drop. Possible explanations
are a misconception of the ranking criteria on our side (leading to
false annotations of the training data) or general problems in the
generalizability of our approach.

Table 5: The Podcast track’s official effectiveness results for
our retrieval task runs and each ranking criterion.
Criterion Run nDCG@30 nDCG@1000 P@10

Entertaining Webis pc bs 0.12 0.23 0.10
Webis pc cola 0.05 0.17 0.05
Webis pc rob 0.04 0.16 0.03
Webis pc co rob 0.03 0.16 0.03

Subjective Webis pc bs 0.17 0.34 0.20
Webis pc cola 0.06 0.24 0.06
Webis pc rob 0.04 0.23 0.04
Webis pc co rob 0.04 0.23 0.06

Discussion Webis pc bs 0.16 0.32 0.16
Webis pc cola 0.06 0.23 0.06
Webis pc rob 0.04 0.21 0.04
Webis pc co rob 0.05 0.22 0.06

4.2 Summarization Task
We submitted two runs for this task, an abstractive and an extractive
summarization system. We tested to generate summaries biased
towards the most entertaining sentences of the episodes, which we
expect to be especially suitable to encourage consumers to listen
to the whole episode. We employ the combined features model of
the retrieval task (Section 4.1) to determine which sentences are
entertaining, and use the confidence of the classifier as a proxy for
how entertaining a sentence is.

4.2.1 Actual Runs. The run Webis pc abstr (abstractive) em-
ploys a DistilBART6 summarization model [18], finetuned on the
CNN/DailyMail corpus [15, 25] to create a textual summary for
an episode. As input to the model, we use a concatenation of up
to 25 sentences in their original relative ordering in the episode:
the 5 sentences with the highest confidence for being entertaining
according to our SVM classifier, as well as the respective previous
and following two sentences (when they exist). The audio sum-
mary of this run is not abstractive but simply concatenates the up
to 25 selected sentences in their original relative ordering in the
episode until a length of one minute is reached or all 25 sentences
are included.

The run Webis pc extr (extractive) employs the TextRank algo-
rithm [23] to rank the episode’s sentences, using the 10 highest
ranked sentences as the summary—in their original relative or-
dering in the episode. TextRank applies PageRank on a weighted
graph with nodes representing sentences and the starting edge
weights being the “similarity” of the sentences. As the similarity,
we employed a sum of two components: (1) the cosine similarity of
their sentence embeddings, extracted using a sentence transformer
model7 [27], and (2) the sum of our SVM classifier’s entertainment
confidences for the two sentences. The audio summary concate-
nates the 10 sentences until a length of one minute is reached or
all 10 sentences are included.

4.2.2 Evaluation. Table 6 shows the effectiveness of both runs.
Without achieving any “excellent” score and only very few “good”
scores, both runs perform very poorly—substantially below the
one-minute baseline. Further investigations are needed to identify
6https://huggingface.co/sshleifer/distilbart-cnn-12-6
7https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1

https://huggingface.co/sshleifer/distilbart-cnn-12-6
https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1


Table 6: The Podcast track’s official effectiveness results
for our summarization task runs on 193 episodes. The
EGFB score is the average of all episodes, with E(xcellent)
as 4, G(ood) as 2, F(air) as 1, and B(ad) as 0.

Run EGFB score E G F B

Webis pc abstr 0.23 0 6 33 154
Webis pc extr 0.26 0 6 38 148
Baseline (one-minute) 0.81 7 26 76 84

reasons for this poor summarization quality. Like for retrieval,
possible explanations are a misconception of the ranking criteria
on our side (leading to false annotations of the training data) or
general problems in the generalizability of our approaches. An-
other problem might be that our hypothesis is wrong (focusing
on entertaining sentences leads to especially engaging summaries)
and would have led to a poor quality even if the classification had
worked perfectly.

5 CONCLUSION
In the Deep Learning track, we investigated the effectiveness of
anchor text-based features in LambdaMART-based re-rankings of
the official track baseline. The experimental evaluation only showed
some very slight improvements when anchor text-based features are
used—the non-navigational topics of the TREC 2021 Deep Learning
track simply do not really benefit from anchor text.

In the Health Misinformation track, we investigated whether
axiom-induced preferences that capture argumentativeness can
lead to more relevant and helpful search results. The experimental
evaluation showed no effect since the axioms hardly ever changed
the BM25 or MonoT5 baseline ranking preferences.

In the Podcasts track, we investigated the effectiveness of su-
pervised approaches using both text and audio embeddings. The
experimental evaluation showed that our re-ranking decreased the
effectiveness for every instance in the retrieval task while our sum-
maries generated from entertaining sentences could not reach the
one-minute baseline in the summarization task.
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Result Re-Ranking. In Proceedings of the 25th ACM International Conference on
Information and Knowledge Management (CIKM 2016). ACM, 721–730.

[15] Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt,
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and Bing Xiang. Abstractive Text Summarization using Sequence-to-sequence
RNNs and Beyond. In Proceedings of the 20th Conference on Computational Natural
Language Learning (CoNLL 2016). ACL, 280–290.



[26] Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. Document
Ranking with a Pretrained Sequence-to-Sequence Model. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)
(Findings of ACL). ACL, 708–718.

[27] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP 2019). ACL, 3980–3990.

[28] Aaqib Saeed, David Grangier, and Neil Zeghidour. Contrastive Learning of
General-Purpose Audio Representations. In Proceedings of the International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP 2021). IEEE, 3875–3879.

[29] Adam D. Troy and Guo-Qiang Zhang. Enhancing Relevance Scoring with Chrono-
logical Term Rank. In Proceedings of the 30th Annual International Conference on
Research and Development in Information Retrieval (SIGIR 2007). ACM, 599–606.

[30] Qiang Wu, Christopher J. C. Burges, Krysta M. Svore, and Jianfeng Gao. Adapting
Boosting for Information Retrieval Measures. Inf. Retr. 13, 3 (2010), 254–270.

[31] Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Enabling the Use of Lucene for
Information Retrieval Research. In Proceedings of the 40th International Conference
on Research and Development in Information Retrieval (SIGIR 2017). ACM, 1253–
1256.


	Abstract
	1 Introduction
	2 Deep Learning Track
	3 Health Misinformation Track
	3.1 Initial Retrieval with BM25 and MonoT5
	3.2 Argumentative Axiomatic Re-ranking
	3.3 Evaluation

	4 Podcasts Track
	4.1 Retrieval Task
	4.2 Summarization Task

	5 Conclusion
	References

