
An Empirical Comparison of Web Content Extraction Algorithms
Janek Bevendorff

Bauhaus-Universität Weimar
Weimar, Germany

Sanket Gupta
Bauhaus-Universität Weimar

Weimar, Germany

Johannes Kiesel
Bauhaus-Universität Weimar

Weimar, Germany

Benno Stein
Bauhaus-Universität Weimar

Weimar, Germany

ABSTRACT
Main content extraction from web pages—sometimes also called
boilerplate removal—has been a research topic for over two decades.
Yet despite web pages being delivered in a machine-readable
markup format, extracting the actual content is still a challenge
today. Even with the latest HTML5 standard, which defines many
semantic elements to mark content areas, web page authors do not
always use semantic markup correctly or to its full potential, mak-
ing it hard for automated systems to extract the relevant informa-
tion. A high-precision, high-recall content extraction is crucial for
downstream applications such as search engines, AI language tools,
distraction-free reader modes in users’ browsers, and other gen-
eral assistive technologies. For such a fundamental task, however,
surprisingly few openly available extraction systems or training
and benchmarking datasets exist. Even less research has gone into
the rigorous evaluation and a true apples-to-apples comparison of
the few extraction systems that do exist. To get a better grasp on
the current state of the art in the field, we combine and clean eight
existing human-labeled web content extraction datasets. On the
combined dataset, we evaluate 14 competitive main content extrac-
tion systems and five baseline approaches. Finally, we build three
ensembles as new state-of-the-art extraction baselines. We find that
the performance of existing systems is quite genre-dependent and
no single extractor performs best on all types of web pages.

CCS CONCEPTS
• Applied computing → Document analysis; • Information
systems → Data extraction and integration.

KEYWORDS
Main Content Extraction, Boilerplate Removal,WebData Extraction

ACM Reference Format:
Janek Bevendorff, Sanket Gupta, Johannes Kiesel, and Benno Stein. 2023. An
Empirical Comparison of Web Content Extraction Algorithms. In Proceed-
ings of the 46th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR ’23), July 23–27, 2023, Taipei, Taiwan.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3539618.3591920

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9408-6/23/07.
https://doi.org/10.1145/3539618.3591920

1 INTRODUCTION
Since its public release in 1991, the World Wide Web has become
humanity’s largest open information source with roughly two bil-
lion web sites and about 60 billion indexed pages [5, 33]. At the base
level, this information is presented as machine-readable markup,
but most of it must nevertheless be considered unstructured, which
poses a big challenge to information extraction and retrieval sys-
tems, or general convenience and accessibility tools further down
the line. Besides classical IR systems, an accurate extraction of
text from web pages has become increasingly crucial also for data-
hungry AI language technologies in recent years (although for that
specific use case, an individual page’s extraction precision may not
be too important and some noise may actually be desireable).

Unfortunately, web pages contain not only the primary informa-
tion which directly satisfies a visitor’s information need and which
we call the main content. Most often, they further contain headers
and footers with branding and copyright information, blocks of
navigational links, advertisements, and other secondary informa-
tion. This secondary information, although not always irrelevant,
is often referred to as boilerplate content. The distinction between
main content and boilerplate content is not necessarily clear or may
even warrant more than only two classes (e.g., do user comments
below an article qualify as main content?). Authors of content ex-
traction systems often use their own intuition of what they regard
as boilerplate content. Hence, varying definitions can be found in
the literature, such as “ads, hyperlink lists, navigation, previews of
other articles, banners, etc.” [32], “navigational elements, templates,
and advertisements” [23], “irrelevant information such as copyright
notices, advertising, links to sponsors, etc.” [12], or “elements which
constitute noise for the application of the Web data” [29]. For the
sake of a search engine indexing a page, the main content can be as-
sumed to be either the central article text of a page (if one exists) or
anything else which is not part of the website’s repeated template.
For information retrieval, one could thus define the main content
as the part of the page that most visitors would expect to see if
they came from elsewhere, such as a search engine. For this paper,
however, we are relying on existing data, so the implementation of
this definition is, for the most part, out of our hands and we have
to go with what the original annotators saw as main content.

Plenty of main content extraction systems have been developed
over the years, but only few are openly available [4] and even
fewer have been evaluated under comparable and reproducible
conditions from which general conclusions can be drawn. Not
only the availability of the systems themselves is an issue, also the
availability of (consistently) annotated datasets of adequate size is.
Attempts at developing benchmarking suites for extraction systems

https://orcid.org/0000-0002-3797-0559
https://orcid.org/0000-0001-8019-667X
https://orcid.org/0000-0002-1617-6508
https://orcid.org/0000-0001-9033-2217
https://doi.org/10.1145/3539618.3591920
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3539618.3591920

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Janek Bevendorff, Sanket Gupta, Johannes Kiesel, and Benno Stein

have been made, though they also suffer greatly from this lack of
data and deeper formal analysis thereof (see Section 2).

In this paper, we (1) combine, clean, and unify existing web
content extraction datasets; (2) categorize pages by their potential
extraction complexity and propose a simple page-level classification
approach for approximating these categories without a ground
truth; (3) perform and review a systematic benchmark of existing
extraction systems on the combined dataset (taking into account
the complexity classes); and (4) develop three ensemble content
extractors based on the outputs of the individual systems, which
outperform the current state of the art.

The new combined dataset and all code written for this study is
publicly available.1

2 RELATEDWORK
The task of main content extraction has been first described as
“Body Text Extraction” by Finn et al. [12] in 2001. Since then, re-
searchers and practitioners have presented several algorithms to
tackle the task, of which the most notable are summarized in our
review (Section 2.1). Moreover, several other approaches have been
developed for closely related tasks (Section 2.2). Despite this atten-
tion to the task in the literature, a thorough reproducibility study
such as this one has been missing so far (Section 2.3).

2.1 Main Content Extraction Algorithms
One can broadly distinguish main content extraction algorithms
based on heuristics from those based on machine learning.

Heuristic approaches. Heuristic approaches use either a single
measure or a list of heuristic rules, often in the form of a tree, to
identify one or more blocks of main content. They are generally
more efficient than machine learning approaches, but rely heavily
on human expertise in designing the rules. Since efficiency if often
key when applying main content extraction algorithms and training
data is scarce, heuristic approaches are still in wide use today.

The first category of heuristic approaches is based on the as-
sumption that the main content’s markup contains fewer HTML
tags than that of boilerplate regions in the HTML code. The first
approach, BTE [12], falls in this category. It finds the single re-
gion with fewest HTML elements per text using a plateau-finding
algorithm. Gottron [14] later extended the algorithm to find mul-
tiple plateaus. Following the same core idea but using a different
approach, Gottron [15] encodes HTML documents as so-called
Code-Content Vectors (CCV) where each token is either “code” or
“content.” The individual vector components are then successively
smoothed (“blurred”) to find consecutive areas where most of the
tokens are content. Similarly, Weninger et al. [36]’s CETR method
detects peaks in the line-wise tag ratio distribution.

The second category of heuristic approaches use several rules
to identify regions of main content. Sun et al. [31] still calculate a
page’s “text density,” but also takes the DOM tree into account. Insa
et al. [18] calculate the “words-leaves-ratio” (WLR) for each node,
i.e., the ratio between a node’s content words and the number of
child nodes. Other approaches, like jusText by Pomikálek [29], first
segment the HTML tree into regions and then employ heuristics

1https://github.com/chatnoir-eu/web-content-extraction-benchmark

to classify each region. Rule-based approaches are in widespread
use today, like the Readability extractor,2 which is implemented
and directly available in Mozilla’s Firefox web browser to provide
distraction-free reading. Readability was originally developed for a
(now-defunct) bookmarking service [37] and, despite its focus on
article-like pages, is reported to be effective for at least 22% of the
Alexa top-1000 websites [13].

Since heuristic approaches are fast, some approaches are combi-
nations of others. Trafilatura [6] is mainly based on high-precision
heuristic rules in the form of XPath expressions, but uses jusText
and Readability as fallbacks. News-please [16] is (besides being
a crawler) also a meta extractor, implementing rules that specify
how different other approaches are employed to extract specific
information from news portals.

Machine learning approaches. The second paradigm em-
ploys machine learning to classify regions into main content or
boilerplate. The earliest approach, Boilerpipe [23] uses structure,
text, and text density features to classify individual regions of the
HTML code.3 Newer approaches use sequence labelingmethods and
deep neural networks. For example, Web2Text [32] uses a hidden
Markov model to classify regions depending on the classification
of neighboring regions, and a convolutional neural network based
on regional features. BoilerNet [24] and SemText [38] both employ
LSTMs. However, the training data for main content extraction is
scarce. For example, Leonhardt et al. [24] used a dataset of only
180 pages. Moreover, some new approaches render web pages in
the browser to extract visual features (e.g., Jung et al. [20]), which
requires additional resources (JavaScript and style sheet files, im-
ages, . . .) that are not available for most datasets.

While the above-mentioned algorithms employ only page-level
features (which Kohlschütter et al. argue are quite sufficient in
most cases), Endrédy and Novák [11]’s GoldMiner algorithm learns
global features that repeat on multiple pages under a domain. A sim-
ilar algorithm was presented later by Alarte et al. [3], who built on
previous work on domain-specific HTML template detection. How-
ever, the available benchmark datasets for main content extraction
are too small to test such algorithms in a fair manner.

2.2 Tasks Related to Main Content Extraction
A closely related task is that of extracting clean—but not necessarily
main—text, the prime example being the OSCAR corpus [2], which
is created using the project’s Ungoliant [1] extractor. Ungoliant uses
a FastText [19] language classifier to identify natural-language text
in large amounts of web data from the Common Crawl. Although
extraction precision is a concern, the focus is clearly on recall.

A more specific task than main content extraction is the task of
list web page extraction, which focuses on information extraction
from list-like websites, such as online shops. A large resource for
this task is PLAtE [30], a dataset of list websites annotated using
crowd-sourcing. To distinguish between article-like and list-like
web pages and to choose the correct extraction algorithm for each,
Nguyen-Hoang et al. [27] developed a CNN-based genre classifica-
tion using image features from a page rendering.

2https://github.com/masukomi/arc90-readability
3https://commoncrawl.org/

https://github.com/chatnoir-eu/web-content-extraction-benchmark
https://github.com/masukomi/arc90-readability
https://commoncrawl.org/

An Empirical Comparison of Web Content Extraction Algorithms SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Yet more specific is the task of structured information extrac-
tion, which is to extract information from tabular or otherwise
structured pieces of information. For this task, the largest avail-
able resource is the Structured Web Data Extraction (SWDE)
dataset [17], a silver standard corpus labeled using regular expres-
sions. State-of-the-art models employ deep neural architectures
such as CNNs / LSTMs [39] or Transformers [10, 34]. WebSRC [9]
employs semantic embeddings of the page structure.

A more general task than main content extraction is the task
of web page segmentation. Based on their review of the literature,
Kiesel et al. [21] define web page segments as a “part of a web page
containing those elements that belong together as per agreement
among a majority of viewers.” Though segmentation does not have
a concept of “main” content, content within a segment is semanti-
cally coherent and should hence be either all main content or not.
Segmentation can therefore be seen as a generalization of main
content extraction. In fact, some main content extraction datasets
provide more than binary labels for parts of a page, though they are
rarely used in training or evaluation. Unlike most of the analyzed
approaches to main content extraction, web page segmentation
approaches tend to focus more on visual and layout analysis, go-
ing back to the classic VIPS algorithm of 2003 [8], which is still
competitive today [22].

2.3 Lack of Reproducibility Studies
Despite themany approaches developed formain content extraction
over the decades, comparably little effort has been spent on devel-
oping resources for reproducible experiments. The CleanEval [7]
shared task was held in 2007 to improve the state of HTML page
cleaning. The task had five submissions and no follow-up tasks
were ever organized. The task’s dataset with as few as 738 anno-
tated pages, however, has become its long-lasting legacy and has
since been used for evaluating almost all main content extractors
to date. A few other datasets have been made available since, but
to the best of our knowledge this paper describes the first effort to
combine them to a larger dataset.

Perhaps caused by the lack of sufficiently large datasets, there is
also a lack of systematic reviews of the literature on main content
extraction. Though the CleanEval dataset is frequently used, few
authors benchmark their systems against others using comparable
metrics. Moreover, besides algorithms from the scientific literature,
there are also many software libraries without associated research
or white papers, which are rarely considered in the literature at all.
The closest we could find to a survey and reproduction study is the
one done by Alarte et al. [4], who reimplemented five systems and
compare them on the CleanEval dataset. Lopukhin [26] benchmark
six open source extraction libraries against their own proprietary
extraction service, but use a custom dataset of only 181 pages.4 The
WEE benchmarking tool performs a similar benchmark of eight
algorithms on the same small dataset.5

In conclusion, we find that previous studies of main content ex-
traction mostly worked on inadequately small datasets. To remedy
this problem, the paper at hand presents the largest reproduction
study to date. We collect datasets with a combined size more than

4https://github.com/scrapinghub/article-extraction-benchmark
5https://github.com/Nootka-io/wee-benchmarking-tool

Table 1: Page counts of all datasets in total and split by ex-
traction complexity quartile ranges (see Section 3.3).

Total By Extraction Complexity

Dataset Low Medium High

CETD 700 158 (23%) 488 (70%) 54 (8%)
CleanEval 738 524 (71%) 171 (23%) 43 (6%)
CleanPortalEval 71 0 (0%) 41 (58%) 30 (42%)
Dragnet 1,379 139 (10%) 694 (50%) 546 (40%)
Google-Trends-2017 180 25 (14%) 95 (53%) 60 (33%)
L3S-GN1 621 74 (12%) 368 (59%) 179 (29%)
Readability 115 57 (50%) 36 (31%) 22 (19%)
Scrapinghub 181 24 (13%) 96 (53%) 61 (34%)

Total 3,985 1,001 (25%) 1,989 (50%) 995 (25%)

five times as large as CleanEval and evaluate a total of 14 main
content extraction algorithms and five baselines.

3 DATASET
We base our analysis on a unified and cleaned combination of
eight different annotated datasets for web content extraction. In
this section, we describe the individual datasets and steps taken to
combine them into a single, larger dataset. Table 1 shows the final
page counts of all datasets.

3.1 Source Datasets
The following eight publicly available datasets were used to create
a larger combined dataset for web content extraction:

CleanEval. The CleanEval dataset was created for the 2007
CleanEval shared task [7]. Despite its age, it is still the de-facto
standard dataset for main content extraction. We merged the devel-
opment and final evaluation split, resulting in 797 source HTML
pages and 738 ground truth text files (with minimal structural
markup). The 59 excess HTML files without a ground truth were
discarded. Besides the 738 English pages, there is also a Chinese
CleanEval set, which we omitted.

CleanPortalEval. CleanPortalEval is an extension to CleanEval
created by Endrédy and Novák [11], containing an additional
71 cases in the same format. The pages were taken from the online
news portals of the BBC, MSNBC, the Wall Street Journal, and the
Washington Post.

CETD. The abbreviation stands for Content Extraction via Text
Density and the dataset was created for evaluating Sun et al. [31]’s
density-based extractor. The dataset is divided into six main genre
verticals with content from (1) Ars Technica, (2) the BBC, (3) the
New York Times, (4) Wikipedia, (5) Yahoo!, and (6) “Chaos” (i.e.,
general content from Google News, Wordpress, Blogger). The cor-
pus consists of 700 pairs (100 per vertical, 200 in Chaos) of source
HTML pages and plain text files containing the ground truth.

Dragnet. The Dragnet dataset is the largest in this list and was
created to accompany the Dragnet content extractor.6 The dataset
6https://github.com/dragnet-org/dragnet

https://github.com/scrapinghub/article-extraction-benchmark
https://github.com/Nootka-io/wee-benchmarking-tool
https://github.com/dragnet-org/dragnet

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Janek Bevendorff, Sanket Gupta, Johannes Kiesel, and Benno Stein

Clea
nP

ort
alE

val

Drag
net

Scra
pin

ghu
b

L3S
-GN1

Goog
le-T

ren
ds

CETD

Read
abi

lity

Clea
nE

val

0.00

0.25

0.50

0.75

1.00

Pa
ge

 C
om

ple
xit

y

Figure 1: Median page complexity scores per dataset. Com-
plexity is defined as the ratio between HTML text tokens
and tokens in the ground truth. Whiskers mark 1.5× the in-
terquartile range. The CleanEval dataset is clearly an outlier.

consists of 1,381 HTML and text file pairs, similar to CleanEval (but
without the structural markup in the ground truth).

L3S-GN1. This corpus was created by Kohlschütter et al. [23],
the author of Boilerpipe, and it contains 621 pages. Unlike the other
corpora, the ground truth is given in the form of annotated HTML
pages. The leaf nodes are wrapped in span elements with CSS
classes indicating the leaf’s class. There are five labels indicating
different levels of content relevance from main heading to user
comments, as well as one negative label.

Google-Trends-2017. The Google-Trends-2017 dataset was cre-
ated by the Boilernet authors [24] and contains 180 annotated
HTML pages. The labels are specified as CSS classes on the leaf
nodes, but unlike in the L3S-GN1 dataset, they are only binary.

Readability. The Readability dataset is a test collection for
Mozilla’s Readability.js reader mode implementation.7 It consists
of 115 test cases with raw HTML pages and cleaned versions with
only the main content and reduced markup.

Scrapinghub. This is the dataset created for the Zyte (formerly:
Scrapinghub) article extraction benchmark [26]. It was designed
to benchmark a proprietary web extraction service against other
open source extractor and comes with 181 zipped HTML pages and
their ground-truth text extracts as a single JSON file.

3.2 Data Preparation
For each dataset, we wrote an individual parser, which tries to
detect the correct encoding of all pages and converts them into a
common JSON format. Since some of the datasets come with only
a plaintext truth, we used this as the lowest common denominator
and converted the L3S-GN1, Google-Trends-2017, and Readability
ground truths to simple plaintext. We also stripped the pseudo
markup from the CleanEval and CleanPortalEval text files. To align
the L3S-GN1 ground truth with the other datasets, we kept only
text annotated with one of the first three positive labels.

Unfortunately, we noticed that many of the CleanEval ground
truth files have uncorrectable encoding errors. In the Dragnet
7https://github.com/mozilla/readability

dataset, we had to correct several cases of text duplication in the
truth files. There was also one such case in the CleanEval dataset,
where almost the full file was duplicated, resulting in a cleaned
text much longer than the original HTML. We also had to correct
a few glaring issues in the raw HTML pages from the L3S-GN1
corpus, stemming from seemingly successful cross-site-scripting.
These obscured the </title> end tags in some of the documents,
so they looked totally empty to a correct parser. The issue was
already corrected in the annotated HTML, but not in the raw files.
We also noticed that particularly in the CETD set, some elements
were annotated as main content that were loaded dynamically via
JavaScript and therefore didn’t exist in the source HTML (partic-
ularly DISQUS comments). As it was too much effort, we did not
correct all of these cases (and a browser-based extractor could tech-
nically extract such content). We did, however, remove two pages
from the Dragnet set, whose HTML was virtually empty.

3.3 Page Complexity
The complexity of a page may inform the choice of the correct
extractor and has an influence on its performance. A simple page
without boilerplate can be extracted even using a simple XPath ex-
pression with high precision and high recall. The more boilerplate
there is, however, the more difficult an accurate extraction becomes.
We therefore categorize pages based on a simple complexity heuris-
tic. We define the page complexity 𝑐 as

𝑐 = 1 − |{𝑡 ∈ 𝑇 : truth(𝑡) = 1}|
|𝑇 | ,

where 𝑇 is a multiset of DOM text tokens and truth(𝑡) returns 1
if token 𝑡 belongs to the ground truth. Negative scores resulting
from a faulty ground truth with duplicated text or text not in the
source HTML are clipped to zero. Figure 1 shows the median page
complexity per dataset and the distribution. The CleanEval dataset
is clearly the least complex of the datasets with outliers towards
the top. Upon inspection, we found that the dataset does indeed
contain many simplistic pages with little to no boilerplate that are
often closer to plaintext documents than to modern web pages.
Obviously, such pages need hardly any sophisticated extraction
logic. The Readability dataset is also significantly less complex than
others, probably due to its focus on article-like pages.

Complexity levels can be defined as quantile ranges on this com-
plexity metric, but since in a real-world scenario there is—unlike
in our analysis—no ground truth available to determine the com-
plexity, one has to estimate it. To show that such an estimation is
possible, we extracted the relative counts of h1–h6, a, br, strong,
em, div, p, ul, and table elements, and the overall ratio of HTML
element tokens to non-element tokens. We trained a logistic regres-
sion classifier on 25% of the pages to separate page complexities
into two balanced classes (split at the median), which achieved an
accuracy of 80% on the remaining pages. With such a high result
from this simple model with only basic features, one can expect
that more complex models with better features can estimate page
complexity levels quite accurately before choosing an appropriate
extraction method.

https://github.com/mozilla/readability

An Empirical Comparison of Web Content Extraction Algorithms SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Table 2: Overview of the employed extractors.

Extractor Ref. Approach

Main content extractors
BTE [12] Heuristic: HTML tag distribution
Goose3 Heuristic: rule-based
jusText [29] Heuristic: rule-based
Newspaper3k Heuristic: rule-based (for news)
Readability Heuristic: rule-based
Resiliparse Heuristic: rule-based
Trafilatura [6] Heuristic: rule-based
news-please [16] Meta heuristic: rule-based (for news)
Boilerpipe [23] AI: text node classification
Dragnet [28] AI: text node classification
ExtractNet AI: text node classification
Go DOM Distiller AI: text node classification
BoilerNet [24] AI: sequence labeling (LSTM)
Web2Text [32] AI: sequence labeling (HMM+CNN)

Text conversion tools
BS4 Text node concatenation
lxml Cleaner Text node concatenation
XPath Text Text node concatenation
html_text Text rendering
inscriptis [35] Text rendering

4 EXTRACTOR EVALUATION
We evaluated the performance of 14 dedicated main content extrac-
tion systems from the literature and the open source community.
Further, we tested five HTML-to-text conversion tools without
main-content or boilerplate semantics as a baseline comparison.
Finally, we compiled three ensemble models from these systems.

4.1 Main Content Extractors
Based on our review of related work (Section 2) and an extensive
online search, we selected 14 main content extractors for our com-
parison. We distinguish heuristic extractors and extractors based
on machine learning (“AI” in Table 2).

BTE. The Body Text Extraction algorithm [12] is a heuristic algo-
rithm based on the HTML tag distribution. Specifically, it employs
the cumulative tag distribution within a document and finds the
largest plateau (region of fewest tags per text). The corresponding
text is extracted as main content. We use the Python implementa-
tion by Pomikálek [29].

Goose3. This extractor is a heuristic algorithm based on hand-
crafted rules. Since the original Java (before 2011) and later Scala
project was abandoned, we use a Python reimplementation that is
still being maintained.8

jusText. The justText extractor [29] is a heuristic algorithm
based on hand-crafted rules. In a first pass, HTML element blocks
(separated using a list of block-level elements) are classified using
heuristics on block size, link density, and stopword density. In a

8https://github.com/goose3/goose3

second pass, blocks not directly classified as content or boilerplate
are heuristically classified based on their surrounding blocks. We
use a fork of the original project that is still being maintained.9

Newspaper3k. This extractor is a heuristic algorithm (and web
scraper) based on hand-crafted rules, specifically targeting news
article pages. We use its Python implementation.10

Readability. This extractor is another heuristic algorithm based
on hand-crafted rules. It is implemented in Firefox for providing a
“reader view” that removes distracting elements. On news article
pages it can be enabled inside the browser with one click. We use a
Python reimplementation.11

Resiliparse. The Resiliparse HTML2Text extractor is a heuristic
algorithm based on hand-crafted rules that was created by this
paper’s first author. It is based on tag rules and regular expressions
and it focuses on extraction precision and speed.12

Trafilatura. The Trafilatura extractor [6] is a heuristic algo-
rithm (and web scraper) that uses hand-crafted rules. It employs a
cascade of XPath queries for finding the main content, falling back
to jusText and Readability (see above) should the extraction fail.

news-please. This extractor is a heuristic meta extractor (and
web scraper) that uses hand-crafted rules to combine the output of
other extractors, specifically targeting news article pages [16]. We
use the default rules that employ the Readability and Newspaper3k
extractors (see above).

Boilerpipe. This extractor by Kohlschütter et al. [23] is a ma-
chine learning algorithm that classifies text blocks (sequences of
text without tags except links) into content and boilerplate. It is one
of the earliest machine-learning-based main content extractors and
uses decision trees constructed on structural, shallow text, and text
density features. We use a Python wrapper13 around the original
Java implementation.

Dragnet. The Dragnet extractor [28] is a machine learning al-
gorithm that combines the approaches of Boilerpipe and CETR [36].
It uses text (density) features on block level and word frequen-
cies from class and id attributes. The latest version also includes
features from Readability.

ExtractNet. This extractor is based on Dragnet, but uses models
trained on different data and also extracts structured information
from article pages, such as title, author, date etc.14

Go DOM Distiller. This extractor is a machine learning algo-
rithm loosely based on Boilerpipe. Analogously to Readability, the
original DOM Distiller is part of Chromium-based browsers for
providing a “reader view” that removes distracting elements. The
feature can be enabled inside the browser with a hidden setting un-
der chrome://flags/#enable-reader-mode. We use a Golang port
of the original Java implementation via a command line interface.15

9https://pypi.org/project/jusText/
10https://newspaper.readthedocs.io/en/latest/
11https://github.com/buriy/python-readability
12https://resiliparse.chatnoir.eu/en/stable/api/extract/html2text.html
13https://github.com/slaveofcode/boilerpipe3
14https://github.com/currentslab/extractnet
15https://github.com/markusmobius/go-domdistiller

https://github.com/goose3/goose3
https://pypi.org/project/jusText/
https://newspaper.readthedocs.io/en/latest/
https://github.com/buriy/python-readability
https://resiliparse.chatnoir.eu/en/stable/api/extract/html2text.html
https://github.com/slaveofcode/boilerpipe3
https://github.com/currentslab/extractnet
https://github.com/markusmobius/go-domdistiller

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Janek Bevendorff, Sanket Gupta, Johannes Kiesel, and Benno Stein

BoilerNet. This extractor by Leonhardt et al. [24] is a machine
learning algorithm that treats extraction as a sequence labeling
task. Specifically, it employs an architecture with one LSTM layer.
According to the authors, the model outperforms Web2Text (below)
in block classification 𝐹1 on CleanEval and Google-Trends-2017. We
used the provided code to retrain the model on a split of the Google-
Trends-2017 corpus according to the reproduction steps given by
the authors. The reference implementation requires Tensorflow 2.1,
but we were able to load the trained model with a newer version
for the inference step.

Web2Text. This extractor by Vogels et al. [32] is a machine
learning algorithm that treats extraction as a sequence labeling
task. It uses a hidden Markov model on top of a CNN-based repre-
sentation of blocks (DOM leaf nodes). Structural features from each
block and its neighboring blocks are fed to the CNN. The reference
implementation comes with a pre- and post-processing tool written
in Scala and the CNN part written in Python using Tensorflow 1.15.
We use the provided pre-trained model, but since the individual
tools are written in different languages and Tensorflow 1.15 requires
Python 3.7, we could interface with it only via the command line,
making it by far the slowest tool. Due to the repeated loading of
the JVM and the trained model, classification of a single example
took several seconds, which would be unacceptable for practical
real-world applications.

4.2 Text Conversion Tools
Besides these main content extraction systems, we also use five
HTML-to-text conversion tools as baselines. We distinguish tools
that simply concatenate text nodes and those that “render” a web
page trying to retain basic layout information (see Table 2).

BS4. This tool uses the Beautiful Soup (version 4) Python DOM
parsing library16 to extract all text from aweb page.We concatenate
all text nodes, but exclude script, style, and noscript elements.
This baseline aims for full recall but low precision.

lxml Cleaner. This tool is a component of the lxml XML /
HTML parser library for Python.17 It uses a set of built-in and user-
supplied rules for stripping “offending” elements and attributes
from the DOM to produce an overall cleaner document. We defined
a blacklist of common HTML5 elements that are likely to be part of
the boilerplate (e.g., noise elements such as object or iframe, but
also footer or aside) and use it together with lxml’s own clean-
ing rules to render a cleaned text representation of the document.
Afterwards, BeautifulSoup is used to extract text nodes from the
cleaned DOM.

XPath Text. As the simplest baseline, we use the XPath expres-
sion //body[1]//*[not(name() = "script") and not(name() =

"style")]/text() to extract all DOM text nodes under the body el-
ement, except for scripts and styles. This baseline aims for a similar
result as BS4, but is slightly less robust, as it would be unable to
extract pages without an explicit body element.

16https://pypi.org/project/beautifulsoup4/
17https://lxml.de/4.9/apidoc/lxml.html.clean.html

html_text. This tool18 strips invisible elements, normalizes
white space and tries to retain a basic block layout. It is based
on lxml Cleaner.

inscriptis. This tool by Weichselbraun [35] tries to retain most
of a page’s layout information in the output text. It attempts to
preserve table layouts and CSS attributes (e.g., margin) without a
time-intensive browser-based rendering.

4.3 Performance Measure
Since the ground truth for our combined dataset is unstructured
text and not annotated HTML documents, we need to score the
model performances with a text-based performance measure. We
decided on using ROUGE-L [25], a relaxed measure for the token
overlap between two texts that is popular for the evaluation of
machine translation. We calculated also other metrics, such as the
normalized Levenshtein distance or the Jaccard index, but found
them to be highly correlated with ROUGE-L and hence we will
omit them for the purpose of this paper.

ROUGE-L looks for the Longest Common Subsequence (LCS),
which is the longest sequence of tokens that are in agreement
between the two texts. The sequence may be interrupted as long
as the token order is retained. In particular, we use ROUGE-LSum,
which is the summary-level ROUGE-L across multiple sentences.
The LSum-LCS precision between a reference text 𝑇 of 𝑛 sentences
and a candidate text 𝐶 is defined as

𝑃lcs =

∑𝑛
𝑖 LCS(Ti, ,C)
|𝐶 |words

and the recall, accordingly

𝑅lcs =

∑𝑛
𝑖 LCS(Ti,C)
|𝑇 |words

.

The 𝐹1 measure is the symmetric harmonic mean of both.
We split sentences using NLTK’s punkt tokenizer and tokenize

the sentences into Unicode word tokens at white-space boundaries,
which works well for most texts in the English-centric datasets.

4.4 Results
We find that, expectedly, almost all extractors perform reasonably
well on pages of low extraction complexity (for which most tokens
are main content). Since it is easy to achieve both high precision and
high recall on these pages, this also extends to the simple HTML
extractors without main content semantics. In fact, at very low
extraction complexity, these extractors perform better than many
actual main content extractors due to their virtually perfect recall.
On more complex pages, however, they fall off quickly. The median
baseline performance over all datasets is relatively high (median
baseline 𝐹1 = 0.738), meaning that most pages consist primarily
of main content and not only boilerplate. Figure 2 shows the 𝐹1
distribution for all extractors at different levels of page extraction
complexity. Table 3 lists in detail each model’s mean and median
performance in terms of ROUGE-LSum precision, recall, and 𝐹1.

As can be seen, no single extractor performs best on all datasets
at all complexity levels, but there are a few candidates tied for
18https://pypi.org/project/html-text/

https://pypi.org/project/beautifulsoup4/
https://lxml.de/4.9/apidoc/lxml.html.clean.html
https://pypi.org/project/html-text/

An Empirical Comparison of Web Content Extraction Algorithms SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

(Best
 weig

hte
d)

(Best
 on

ly)

(M
ajo

rity
 all

)

Read
abi

lity

Traf
ilat

ura

DOM Disti
ller

new
s-p

lea
se

New
spa

per
3k

Boile
rpip

e

Drag
net

Goos
e3

Resi
lipa

rse BTE

Web2
Text

jus
Text

Extra
ctN

et

Boile
rNet

lxm
l C

lea
ner

htm
l_te

xt BS4

ins
crip

tis

XPath
 Text

0.00

0.25

0.50

0.75

1.00

Co
m

ple
xit

y:
Al

l

(Best
 weig

hte
d)

(Best
 on

ly)

(M
ajo

rity
 all

)

Web2
Text

Read
abi

lity

DOM Disti
ller

Resi
lipa

rse BTE

Traf
ilat

ura
jus

Text

htm
l_te

xt

lxm
l C

lea
ner

ins
crip

tis

New
spa

per
3k

new
s-p

lea
se

Extra
ctN

et

Boile
rNet BS4

Drag
net

Boile
rpip

e

XPath
 Text

Goos
e3

0.00

0.25

0.50

0.75

1.00

Co
m

ple
xit

y:
Lo

w

Read
abi

lity

(M
ajo

rity
 all

)

(Best
 on

ly)

new
s-p

lea
se

New
spa

per
3k

(Best
 weig

hte
d)

Traf
ilat

ura

Boile
rpip

e

Goos
e3

Drag
net

DOM Disti
ller

Resi
lipa

rse
jus

Text

Extra
ctN

et BTE

Web2
Text

Boile
rNet

lxm
l C

lea
ner

htm
l_te

xt

XPath
 Text BS4

ins
crip

tis

0.00

0.25

0.50

0.75

1.00

Co
m

ple
xit

y:
Hi

gh

ROUGE-LSum Median F1 Page Scores

Figure 2: ROUGE-LSum 𝐹1 scores of the extractors on (1) all pages and (2) pages with low (< 25th percentile) or (3) high
extraction complexity (> 75th percentile). Boxes indicate the interquartile range (IQR or: “middle 50%”), the whiskers the
1.5× IQR spread. Ensembles are in parentheses and highlighted in blue, baselines in gray. Almost all models perform well on
pages of low extraction complexity, including the baselines. At higher complexity, the baseline models fall off substantially,
whereas the heuristic models in particular keep performing well. Although Web2Text also performs quite well on pages of
low complexity, the performance of the neural models is in general surprisingly weak. All three majority ensembles beat the
individual extractors, though differences among the top systems are very minor.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Janek Bevendorff, Sanket Gupta, Johannes Kiesel, and Benno Stein

Table 3: Macro mean and median ROUGE-LSum precision,
recall, and 𝐹1 across all datasets and page complexity levels.
The table is sorted in descending order of mean 𝐹1. Ensemble
extractors are written in parentheses and italics.

Mean Median

Model Prec. Recall F1 Prec. Recall F1

(Best weighted) 0.922 0.912 0.899 0.986 0.981 0.970
(Best only) 0.926 0.892 0.889 0.992 0.976 0.973
(Majority all) 0.930 0.879 0.885 0.996 0.971 0.974

Trafilatura 0.913 0.895 0.883 0.989 0.965 0.957
Readability 0.921 0.856 0.861 0.991 0.972 0.970
Resiliparse 0.863 0.901 0.859 0.940 0.993 0.942
DOM Distiller 0.894 0.864 0.858 0.983 0.970 0.959
Web2Text 0.797 0.944 0.841 0.885 0.984 0.917
Boilerpipe 0.908 0.825 0.834 0.973 0.966 0.946
Dragnet 0.901 0.810 0.823 0.980 0.950 0.943
BTE 0.796 0.897 0.817 0.927 0.965 0.936
Newspaper3k 0.896 0.803 0.816 0.994 0.961 0.958
news-please 0.895 0.802 0.815 0.994 0.961 0.958
Goose3 0.899 0.779 0.810 0.999 0.919 0.940
BoilerNet 0.840 0.816 0.798 0.944 0.938 0.895
ExtractNet 0.858 0.773 0.791 0.963 0.915 0.911
jusText 0.794 0.769 0.759 0.949 0.921 0.904

lxml Cleaner 0.615 0.964 0.717 0.670 0.995 0.798
html_text 0.567 0.992 0.683 0.506 1.000 0.667
BS4 0.563 0.990 0.680 0.506 0.997 0.669
inscriptis 0.557 0.990 0.673 0.483 1.000 0.649
XPath Text 0.550 0.965 0.664 0.510 0.997 0.674

first place: Readability has the highest median score (𝐹1 = 0.970,
macro-median over datasets) and the lowest IQR spread. Trafilatura
achieves the best overall mean performance (macro 𝐹1 = 0.883,
micro 𝐹1 = 0.867). Web2Text is a direct runner-up in micro-average
mean performance (𝐹1 = 0.861; score slightly inflated, see below).
Goose3 achieves a very impressive median precision of 0.999. Un-
fortunately, it suffers badly from severe recall outliers, costing it
the top spot in the ranking and making it the worst on pages of low
complexity. In fact, most models have similar strengths and weak-
nesses which make for a relatively high variance across datasets
and complexity levels. The only exception to the rule is Readability,
which seems like a true jack of all trades, being the most robust
model at all complexities.

Some models, like Goose3, suffer from heavy recall outliers with
many answers that are either too short or entirely empty. The prob-
lem is particularly impactful at low page complexity, where many
models are outperformed even by the baselines. We found that this
can be attributed in some part to the Dragnet and CETD datasets.
Excluding them from the evaluation alleviates these outliers to a
degree. But since not all models suffer from this to the same extent,
we cannot attribute the problem to the data alone. We did, however,
notice problems with content duplication or passages in the ground
truth not being present in the source HTML particularly in the
Dragnet dataset earlier (see Section 3.2). This would explain some

of the lower-than-expected recall scores, but not the (relatively)
frequent zero scores.

An important observation to be made in this regard is that com-
paring the mean and median performances of all models reveals
a very skewed, non-normal distribution of the scores. In fact, the
frequencies of the scores of all models (apart from the baselines) fol-
low roughly a power distribution with over-represented zero scores
from empty answers. For visual comparison to the median score
distribution in Figure 2, we show the global mean 𝐹1 performance
in Figure 3 and overlay the score bars with errors bars indicating
the 𝑄2–𝑄3 interquartile range. For many models (particularly at
the top), the global mean falls only barely within this range. Hence
one should be very careful when reporting the mean performance
of a content extractor without showing the actual distribution of
the scores (as is done often in the literature). With a distribution
like this one, the median represents quite an optimistic measure
of central tendency, whereas the arithmetic mean is much more
conservative. For better understanding, we therefore report both.

It seems that overall, heuristic content extractors perform the
best and are the most robust models across the board, whereas the
large neural models perform surprisingly badly. Web2Text does in-
deed achieve the best mean performance, but this can be attributed
mostly to a very good and consistent performance on pages of low
complexity and in (small) part to being trained on CleanEval. It is
worth mentioning that Web2Text and BoilerNet where trained on
splits of the CleanEval and Google-Trends-2017 datasets, respec-
tively, which are both part of the test collection. The inclusion of
CleanEval in the evaluation does indeed inflate Web2Text’s mean
performance slightly (micro mean 𝐹1 = 0.861) and excluding it
moves it down one place in the ranking (𝐹1 = 0.849). However,
since (a) the effect is very small, (b) CleanEval and Google-Trends-
2017 make for only a small part of the whole dataset, and (c) neither
model showed a particularly outstanding performance with or with-
out a leak of training data, we decided to not make an exception in
the evaluation procedure to keep things simple. Moreover, we were
at all unable to reproduce the supposedly superior performance of
BoilerNet from the original paper, although this doesn’t necessarily
mean that the model’s performance itself is worse than previously
reported. (Part of) this discrepancy could well be a result of the
different evaluation method, where instead of comparing individual
DOM elements, we measure performance on the final text output.
In general, the neural models apparently do not deliver on the
most complex pages, for which they were primarily designed (in
fact, they both perform quite poorly as can be seen in Figure 2).
Considering their computational complexity, it begs the question
whether their application is a worthwhile investment or if a simpler
heuristic model isn’t a better choice.

4.5 Ensemble Extractors
To see whether we can actually improve the extraction quality, we
defined the following three ensembles on top of the results of the
individual extraction systems discussed previously.

Majority Vote. We performed a simple HTML-to-text conver-
sion of all text nodes (excluding the script, style, and noscript)
of the document and split the result into white-space delimited
tokens. Then for each token 𝑡𝑖 and for all extraction systems, we

An Empirical Comparison of Web Content Extraction Algorithms SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

(Best
 weig

hte
d)

(Best
 on

ly)

(M
ajo

rity
 all

)

Traf
ilat

ura

Web2
Text

Read
abi

lity

DOM Disti
ller BTE

Boile
rpip

e

Drag
net

Resi
lipa

rse
jus

Text

New
spa

per
3k

new
s-p

lea
se

Goos
e3

Boile
rNet

Extra
ctN

et

lxm
l C

lea
ner

htm
l_te

xt BS4

ins
crip

tis

XPath
 Text

0.00

0.25

0.50

0.75

1.00

Co
m

ple
xit

y:
Al

l

ROUGE-LSum Mean F1 Page Scores (Macro Average)

Figure 3: Mean extraction performance. The error bars indicate the interquartile range (IQR), i.e., the middle 50% of ROUGE-
LSum 𝐹1 scores. As a result from the score distribution, the mean performance is skewed towards the bottom with some bars
falling only barely inside the IQR. Scores are macro averages over the datasets to compensate for the page count imbalance.

checked whether either the left 𝑛-gram (𝑡𝑖−𝑛+1, . . . , 𝑡𝑖) or the right
𝑛-gram (𝑡𝑖 , . . . , 𝑡𝑖+𝑛−1) appeared in the extractor’s output. If this
was the case, we recorded a “vote” for this token. In the end, we
labeled all tokens as main content which had received votes from at
least two thirds (66%) of the extractors. As 𝑛-gram size, we chose 5
and we padded the texts with 𝑛 − 1 zero tokens on either side to
also capture tokens at the beginning and at the end of a text.

Majority Vote Best. This ensemble works by the same princi-
ple as the simple majority voting ensemble, but we included only
the models that are actual main content extractors and that per-
formed best both in terms of mean 𝐹1 performance and variance.
The included models are: Readability, Trafilatura, Go DOM Distiller,
Goose3, Web2Text, Resiliparse, BTE, justText, and Boilerpipe. We
excluded BoilerNet, Newspaper3k, news-please, Dragnet, and Ex-
tractNet due to their rather unstable performance (although the
latter two performed well on complex pages).

Majority Vote Best (Weighted). For the third and final en-
semble, we chose the same nine content extractors as above, but
doubled the voting power of Readability and Trafilatura (most ro-
bust systems overall) and Goose3 (highest median precision).

All ensembles outperform the individual extractors in mean and
median macro-average 𝐹1 with the weighted vote ensemble being
the strongest of the three (see Table 3). Only on the most complex
pages does Readability outperform the simple majority vote by an
edge (Figure 2, bottom). In general, the differences between the top
models are very minor, but it shows that we can indeed improve
the state of the art further by reducing the variance of the models
and reducing outliers towards the bottom.

5 CONCLUSION
We performed an extensive literature research into existing web
page main content extraction (or boilerplate removal) systems and
annotated datasets for this task. We identified 14 state-of-the art
extraction systems in the academic literature and in the open source
community, as well as eight datasets. We cleaned the datasets of

certain artifacts, such as duplicated ground truths, categorized the
pages according to their extraction complexity, and combined them
into a coherent gold-standard dataset for main content extraction
from HTML web pages. While some of the datasets we found were
quite recent, the majority of the web pages contained are rather
old and the web has changed quite a bit since the datasets were
assembled. Hence there is a clear need for more up-to-date (and
larger) annotated datasets for main content extraction. Particularly
the CleanEval dataset with a majority of overly simplistic pages
should find a worthy successor. Our combined dataset is a small step
in this direction, but no replacement for an entirely new large-scale
gold-standard corpus of recent web pages.

We benchmarked the 14 main content extractors together with
five HTML-to-text conversion baselines on all eight datasets and
evaluated their ROUGE-LSum scores based on the ground-truth
plain texts. Finally, we defined three different majority voting en-
sembles on the outputs of the individual extractors.

Apart from our ensemble systems, no single extractor clearly
outperforms all the others. Most systems perform reasonably well
on pages of low extraction complexity, but only few also perform
well onmore complex pages. Mean andmedian performance deviate
substantially as all systems struggle with outlier pages. Of all tested
systems, Readability performs the best, followed by other rule-based
extractors. The deep neural extractors performwell on simple pages,
but otherwise lag behind the heuristic models. While there is still
some performance to be gained (as demonstrated by our ensemble
methods), this challenges the assumption that more complexmodels
are needed for a more accurate extraction. Combining multiple
simple models may be a better way forward, instead. In any case,
one should carefully choose the correct model for each page based
on its estimated extraction complexity, as there is no one-size-fits-
all extractor at the moment.

ACKNOWLEDGMENTS
This work has been funded by the European Commission under
GA 101070014 (OpenWebSearch.eu)

https://openwebsearch.eu

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Janek Bevendorff, Sanket Gupta, Johannes Kiesel, and Benno Stein

REFERENCES
[1] Julie Abadji, Pedro Suàrez, Javier Ortiz, Laurent Romary, and Benoît Sagot. 2021.

Ungoliant: An optimized pipeline for the generation of a very large-scale multilin-
gual web corpus. In Proceedings of the Workshop on Challenges in the Management
of Large Corpora (CMLC-9) 2021. Limerick, 12 July 2021 (Online-Event). Leibniz-
Institut für Deutsche Sprache, 1–9.

[2] Julien Abadji, Pedro Ortiz Suarez, Laurent Romary, and Benoît Sagot. 2022. To-
wards a Cleaner Document-Oriented Multilingual Crawled Corpus. (Jan. 2022).
arXiv:2201.06642 [cs.CL]

[3] Julian Alarte, David Insa, Josep Silva, and Salvador Tamarit. 2018. Main Content
Extraction from Heterogeneous Webpages. In Web Information Systems Engineer-
ing – WISE 2018. Springer International Publishing, 393–407.

[4] Julián Alarte, Josep Silva, and Salvador Tamarit. 2019. What Web Template
Extractor Should I Use? A Benchmarking and Comparison for Five Template
Extractors. ACM Trans. Web 13, 2 (March 2019), 1–19.

[5] Martin Armstrong. 2021. Infographic: How many websites are there?
https://web.archive.org/web/20230131222529/https://www.statista.com/chart/
19058/number-of-websites-online/ Captured: 31 Jan, 2023.

[6] Adrien Barbaresi. 2021. Trafilatura: A Web Scraping Library and Command-Line
Tool for Text Discovery and Extraction. In Proceedings of the Joint Conference of
the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, ACL 2021 -
System Demonstrations, Online, August 1-6, 2021. Association for Computational
Linguistics, Online, 122–131.

[7] Marco Baroni, Francis Chantree, Adam Kilgarriff, and Serge Sharoff. 2008.
CleanEval: a competition for cleaning webpages. In Lrec. European Language
Resources Association (ELRA), Marrakech, Morocco.

[8] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2003. Extracting Content
Structure for Web Pages Based on Visual Representation. In Web Technologies
and Applications, 5th Asian-Pacific Web Conference, APWeb 2003, Xian, China,
April 23-25, 2002, Proceedings. Springer Berlin Heidelberg, 406–417.

[9] Xingyu Chen, Zihan Zhao, Lu Chen, Danyang Zhang, Jiabao Ji, Ao Luo, Yuxuan
Xiong, and Kai Yu. 2021. WebSRC: A Dataset for Web-Based Structural Reading
Comprehension. (Jan. 2021). arXiv:2101.09465 [cs.CL]

[10] Xiang Deng, Prashant Shiralkar, Colin Lockard, Binxuan Huang, and Huan Sun.
2022. DOM-LM: Learning Generalizable Representations for HTML Documents.
(Jan. 2022). arXiv:2201.10608 [cs.CL]

[11] István Endrédy and Attila Novák. 2013. More Effective Boilerplate Removal -
the GoldMiner Algorithm. Polibits - Research journal on Computer science and
computer engineering 48 (2013), 79–83.

[12] Aidan Finn, Nicholas Kushmerick, and Barry Smyth. 2001. Fact or Fiction: Content
Classification for Digital Libraries. In Proceedings of the Second DELOS Network
of Excellence Workshop on Personalisation and Recommender Systems in Digital
Libraries, DELOS 2001, Dublin, Ireland, June 18-20, 2001. ERCIM.

[13] Mohammad Ghasemisharif, Peter Snyder, Andrius Aucinas, and Benjamin
Livshits. 2019. SpeedReader: Reader Mode Made Fast and Private. In The World
Wide Web Conference (San Francisco, CA, USA) (WWW ’19). Association for
Computing Machinery, New York, NY, USA, 526–537.

[14] Thomas Gottron. 2007. Evaluating content extraction on HTML documents.
In Proceedings of the 2nd International Conference on Internet Technologies and
Applications (ITA’07). researchgate.net, 123–132.

[15] Thomas Gottron. 2008. Content Code Blurring: A New Approach to Content
Extraction. In 19th International Workshop on Database and Expert Systems Appli-
cations (DEXA 2008), 1-5 September 2008, Turin, Italy. ieeexplore.ieee.org, 29–33.

[16] Felix Hamborg, Norman Meuschke, Corinna Breitinger, and Bela Gipp. 2017.
news-please : a Generic News Crawler and Extractor. In Everything changes,
everything stays the same : Understanding Information Spaces; Proceedings of the
15th International Symposium of Information Science (ISI 2017), Berlin, Germany,
13th-15th March 2017 (Schriften zur Informationswissenschaft). Verlag Werner
Hülsbusch, 218–223.

[17] Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang. 2011. From one tree to a forest:
a unified solution for structured web data extraction. In Proceedings of the 34th
international ACM SIGIR conference on Research and development in Information
Retrieval (Beijing, China) (SIGIR ’11). Association for Computing Machinery, New
York, NY, USA, 775–784.

[18] David Insa, Josep Silva, and Salvador Tamarit. 2013. Using the words/leafs ratio
in the DOM tree for content extraction. The Journal of Logic and Algebraic
Programming 82, 8 (Nov. 2013), 311–325.

[19] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017. Bag
of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers. Association for Computational Linguistics, Valencia, Spain, 427–
431.

[20] Geunseong Jung, Sungjae Han, Hansung Kim, Kwanguk Kim, and Jaehyuk Cha.
2021. Don’t read, just look: Main content extraction from web pages using visual
features. (Oct. 2021). arXiv:2110.14164 [cs.IR]

[21] Johannes Kiesel, Florian Kneist, Lars Meyer, Kristof Komlossy, Benno Stein, and
Martin Potthast. 2020. Web Page Segmentation Revisited: Evaluation Framework
and Dataset. In 29th ACM International Conference on Information and Knowledge
Management (CIKM 2020). ACM, 3047–3054.

[22] Johannes Kiesel, Lars Meyer, Florian Kneist, Benno Stein, and Martin Potthast.
2021. An Empirical Comparison of Web Page Segmentation Algorithms. In
Advances in Information Retrieval. 43rd European Conference on IR Research (ECIR
2021) (Lecture Notes in Computer Science, Vol. 12657). Springer, Berlin Heidelberg
New York, 62–74.

[23] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. 2010. Boilerplate
detection using shallow text features. In Proceedings of the third ACM international
conference on Web search and data mining (New York, New York, USA) (WSDM
’10). Association for Computing Machinery, New York, NY, USA, 441–450.

[24] Jurek Leonhardt, Avishek Anand, and Megha Khosla. 2020. Boilerplate Removal
using a Neural Sequence Labeling Model. In Companion Proceedings of the Web
Conference 2020 (Taipei, Taiwan) (WWW ’20). Association for Computing Ma-
chinery, New York, NY, USA, 226–229.

[25] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74–81.

[26] Konstantin Lopukhin. 2021. In-depth analysis and evaluation on the quality of
article body extraction. Technical Report. Zyte.

[27] Bao-Dai Nguyen-Hoang, Bao-Tran Pham-Hong, Yiping Jin, and Phu T V Le.
2018. Genre-Oriented Web Content Extraction with Deep Convolutional Neural
Networks and Statistical Methods. In Proceedings of the 32nd Pacific Asia Confer-
ence on Language, Information and Computation. Association for Computational
Linguistics, Hong Kong.

[28] Matthew E Peters and Dan Lecocq. 2013. Content extraction using diverse feature
sets. In 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro,
Brazil, May 13-17, 2013, Companion Volume (Rio de Janeiro, Brazil) (WWW ’13
Companion). International World Wide Web Conferences Steering Committee /
{ACM}, New York, NY, USA, 89–90.

[29] Jan Pomikálek. 2011. Removing Boilerplate and Duplicate Content from Web
Corpora. Ph. D. Dissertation. Masaryk University Brno.

[30] Aidan San, Jan Bakus, Colin Lockard, David Ciemiewicz, Yangfeng Ji, Sandeep
Atluri, Kevin Small, and Heba Elfardy. 2022. PLAtE: A Large-scale Dataset for
List Page Web Extraction. (May 2022). arXiv:2205.12386 [cs.CL]

[31] Fei Sun, Dandan Song, and Lejian Liao. 2011. DOM based content extraction
via text density. In Proceeding of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2011, Beijing, China, July
25-29, 2011 (Beijing, China) (SIGIR ’11). Association for Computing Machinery,
New York, NY, USA, 245–254.

[32] Thijs Vogels, Octavian-Eugen Ganea, and Carsten Eickhoff. 2018. Web2Text:
Deep Structured Boilerplate Removal. In Advances in Information Retrieval - 40th
European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29,
2018, Proceedings. Springer International Publishing, 167–179.

[33] Michael Völske, Janek Bevendorff, Johannes Kiesel, Benno Stein, Maik Fröbe,
Matthias Hagen, and Martin Potthast. 2021. Web Archive Analytics. In 50.
Jahrestagung der Gesellschaft für Informatik, INFORMATIK 2020 (Lecture Notes in
Informatics, LNI, Vol. P-307). Gesellschaft für Informatik, GI, 61–72.

[34] Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiaojun Quan, and Dongfang
Liu. 2022. WebFormer: The Web-page Transformer for Structure Information
Extraction. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon,
France) (WWW ’22). Association for Computing Machinery, New York, NY, USA,
3124–3133.

[35] AlbertWeichselbraun. 2021. Inscriptis - A Python-based HTML to text conversion
library optimized for knowledge extraction from the Web. Journal of open source
software 6, 66 (Oct. 2021), 3557.

[36] Tim Weninger, William H Hsu, and Jiawei Han. 2010. CETR: Content extraction
via tag ratios. In Proceedings of the 19th international conference on World wide
web (Raleigh, North Carolina, USA) (WWW ’10). Association for Computing
Machinery, New York, NY, USA, 971–980.

[37] the free encyclopediaWikipedia. 2022. Readability (service). https://en.wikipedia.
org/wiki/Readability_(service) Accessed: 18 Feb, 2023.

[38] Hao Zhang and Jie Wang. 2021. Boilerplate Detection via Semantic Classification
of TextBlocks. In International Joint Conference on Neural Networks (IJCNN’21).
IEEE, 1–8.

[39] Yichao Zhou, Ying Sheng, Nguyen Vo, Nick Edmonds, and Sandeep Tata. 2021.
Simplified DOM Trees for Transferable Attribute Extraction from the Web. (Jan.
2021). arXiv:2101.02415 [cs.LG]

https://arxiv.org/abs/2201.06642
https://web.archive.org/web/20230131222529/https://www.statista.com/chart/19058/number-of-websites-online/
https://web.archive.org/web/20230131222529/https://www.statista.com/chart/19058/number-of-websites-online/
https://arxiv.org/abs/2101.09465
https://arxiv.org/abs/2201.10608
https://arxiv.org/abs/2110.14164
https://arxiv.org/abs/2205.12386
https://en.wikipedia.org/wiki/Readability_(service)
https://en.wikipedia.org/wiki/Readability_(service)
https://arxiv.org/abs/2101.02415

	Abstract
	1 Introduction
	2 Related Work
	2.1 Main Content Extraction Algorithms
	2.2 Tasks Related to Main Content Extraction
	2.3 Lack of Reproducibility Studies

	3 Dataset
	3.1 Source Datasets
	3.2 Data Preparation
	3.3 Page Complexity

	4 Extractor Evaluation
	4.1 Main Content Extractors
	4.2 Text Conversion Tools
	4.3 Performance Measure
	4.4 Results
	4.5 Ensemble Extractors

	5 Conclusion
	Acknowledgments
	References

