Chapter NLP:II

II. Text Models

- Text Structure
- Text Preprocessing I
- Text Preprocessing II
- Text Representation
- Text Similarity
- Sequence Modeling
- Language Modeling
The goal of text preprocessing is its conversion into a canonical form.
Text Preprocessing

Overview

The goal of text preprocessing is its conversion into a canonical form.

Chapter 1

Introduction

The idea of giving computers the ability to process human language is as old as the idea of computers themselves. This book is about the implementation and implications of that exciting idea. We introduce a vibrant interdisciplinary field with many names corresponding to its many facets, names such as speech and language processing, computational linguistics, and computational linguistics. The goal of this new field is to get computers to perform useful tasks involving human language, tasks like enabling human-computer communication, improving human-computer communication, or simply doing useful processing of text or speech.

One example of a useful such task is a conversational agent. The HAL 9000 computer in Stanley Kubrick’s film 2001: A Space Odyssey is one of the most recognizable characters in twentieth-century cinema. HAL is an artificial agent capable of such advanced language-processing behavior as speaking and understanding English, and at a crucial moment in the plot, even reading lips. It is now clear that HAL’s creator Arthur C. Clarke was a little optimistic in predicting when an artificial agent such as HAL could be available. But just how far off was he? What would it take to create at least language-related parts of HAL? We call programs like HAL that converse with humans via natural language conversational agents or dialogue systems. In this text we study the various components that make up modern conversational agents, including language input (automatic speech recognition and natural language understanding) and language output (natural language generation and speech synthesis).

Let’s turn to another useful language-related task, that of making available to non-English-speaking readers the vast amount of scientific information on the Web in English. Or translating for English speakers the hundreds of millions of Web pages written in other languages like Chinese. The goal of machine translation is to automatically translate a document from one language to another. We will introduce the algorithms and mathematical tools needed to understand how modern machine translation works. Machine translation is far from a solved problem; we will cover the algorithms currently used in the field, as well as important component tasks.

Many other language processing tasks are also related to the Web. Another such task is Web-based question answering. This is a generalization of simple web search, where instead of just typing keywords a user might ask complete questions, ranging from easy to hard, like the following:

- What does “divergent” mean?
- What year was Abraham Lincoln born?
- How many states were in the United States that year?
Text Preprocessing

Overview

Rationale:

- **Ease implementation of subsequent processing steps**
 A unified input format simplifies implementing processing steps. Example: In web search engines, all documents are converted to HTML. All indexing steps can expect HTML as input.

- **Avoid processing errors and model bias**
 Many rule-based and learning-based processing steps in an NLP pipeline may fail or be misled because of random text artifacts. High-level processing steps presume clean text. Examples: Text classifications may learn to exploit PDF-to-text conversion artifacts rather than a text’s contents; parsers require grammatical text.

Constraints:

- **Task-dependence**
 The canonical form depends on the task at hand and its requirements.

- **Provenance**
 The possibility to determine from where in a raw text corpus, a preprocessed text originated.

- **Reversibility**
 The capability to render a preprocessed text in human-readable form.
Text Preprocessing

Overview

Common preprocessing steps:

- Conversion to plain text
- Encoding detection and unification
- Line break unification (\n – UNIX, \r\n – Windows)
- Extraction of main content and meta information
- Normalization and/or paraphrasing
- Annotation

Plain text formats:

- unformatted, raw
- formatted and/or markup
- inline or external annotations
Text Preprocessing
Overview

Normalization and/or paraphrasing:

- Faithful to the original text
- Departure from the original text
 - Unification across texts
 - Canonicalization
 Whitespace, spelling, grammar; translation of text messages to common text norms
 - Expansion and/or abstraction
 Abbreviations, anaphora, translation to spoken language, canonicalization of tokens

Annotation:

- Syntactic units: phonemes, morphemes, tokens (esp. words), sentences
- Discourse units: paragraphs, sections, chapters
- Typographic units: lines, pages (layout, meta-information), documents
- Meta-information: title, authors, date, properties, ...
Text Preprocessing

Tokenization

Tokenization turns a sequence of characters into a sequence of tokens.

Example:

Friends, Romans, Countrymen, lend me your ears!

Terminology: (simplified)

- A **token** is a character sequence forming a useful semantic unit.
- A type is to a token what a class is to an object.

Token-granularity:

- **Word-level**: may or may not include whitespace between words
- **Phrase-level**: identification of multi-term named entities and common phrases
- **Sentence-level**: one token corresponds to one clause, or one sentence
Remarks:

- A related philosophical concept is the type-token distinction (see unit about corpus linguistics in this course). Here, a token is a specific instance of a word (i.e., its specific written form), and a type refers to its underlying concept as a whole. This is comparable to the distinction between class and object in object-oriented computer programming. For example, the sentence “A rose is a rose is a rose.” comprises nine token instances but only four types, namely “a”, “rose”, “is”, and “.”.

- Tokenization is strongly language-dependent. English is already among the easiest languages to be tokenized, and there are still many problems to be solved. In Chinese, for example, words are not separated by a specific character, rendering the process of determining word boundaries much more difficult.
Text Preprocessing
Tokenization: Special Cases

- **Contractions**
 Apostrophes can be a part of a word, a part of a possessive, or just a mistake: it’s, o’donnell, can’t, don’t, 80’s, men’s, master’s degree, shriner’s

- **Hyphenated compounds**
 Hyphens may be part of a word, a separator, and some words refer to the same concept with or without hyphen: winston-salem, e-bay, wal-mart, active-x, far-reaching, loud-mouthed, 20-year-old.

- **Compounds**
 English: wheelchair, German: Computerlinguistik for computational linguistics.

- **Other special characters**

- **Numbers**
 Numbers form tokens of their own, and may contain punctuation as well: 6.5, 1e+010.

- **Phrase tokens: named entities, phone numbers, dates**
Text Preprocessing

Tokenization Approaches

- **Heuristics**
 - Whitespace: A token is every character sequence separated by whitespace characters.
 - TREC: A token is every alphanumeric sequence of characters of length > 3, separated by a space or punctuation mark.

- **Rule-based**
 Applications of rules to a text so that tokens are separated by whitespace from each other. This allows subsequent processing steps to apply the whitespace heuristic.

- **Machine learning-based**
 Based on sufficiently large training data of correctly tokenized text, a model can be trained to decide at every character position whether to split tokens.
Text Preprocessing
Rule-based Tokenization [Jurasky and Martin, 2007] [Grefenstette, 1999]

Algorithm: Tokenization with Regular Expressions.

Input: d. Document in the form of a string.
A. Dictionary of abbreviations.

Output: The document with space in-between its tokens.

$\text{Tokenize}(d, A)$

1. alnum = [A-Za-z0-9]; nalnum = [^A-Za-z0-9]; alwayssep = [?!()";'\|'\']
2. clitic = (’|:|’|S|’D|’M|’LL|’RE|’VE|N’T|’s|’d|’m|’ll|’re|’ve|n’t)
3. // Put whitespace around unambiguous separators.
4. // Put whitespace around commas that aren’t inside numbers.
5. // Segment single quotes not preceded by letter (not apostrophes).
6. // Segment unambiguous word-final clitics and punctuation.
7. Split d by whitespace (/\s+/) to obtain a list of tokens T.
8. // Segment periods from each $t \in T$ that isn’t an abbreviation in A or like one (letter period sequence or letter followed by consonants).
9. // Optionally expand clitics to normalize them.
10. Return a whitespace-separated string of T.
Text Preprocessing

Rule-based Tokenization [Jurasky and Martin, 2007] [Grefenstette, 1999]

Algorithm: Tokenization with Regular Expressions.

Input: d. Document in the form of a string.
A. Dictionary of abbreviations.

Output: The document with space in-between its tokens.

$\text{Tokenize}(d, A)$

1. $\text{alnum} = [\text{A-Za-z0-9}]; \text{nalnum} = [\^\text{A-Za-z0-9}]; \text{alwayssep} = [?!()";'\|/]$
2. $\text{clitic} = (\,|\,-|\,'S|\,'D|\,'M|\,'LL|\,'RE|\,'VE|N'T|\,'s|\,'d|\,'m|\,'ll|\,'re|\,'ve|n't)$
3. Apply $s/$alwayssep/_\$&_/g$ to d.
4. Apply $s/([^0-9]),_/\$1_/g$ and $s/,([^0-9])_/\$1_/g$ to d.
5. Apply $s/^'/_/\$&_/g$ and $s/($nalnum)'/\$1_/g$ to d.
6. Apply $s/$clitic$/_/\$&_/g$ and $s/$clitic($nalnum)/_/\$1_/\$2_/g$ to d.
7. Split d by whitespace (/~\s+/) to obtain a list of tokens T.
8. Apply $s/\.\$/_/\.\$/ to $t \in T$ if t matches /$\text{alnum}\./$ and is not in A and doesn’t match /^(\[A-Za-z\].(\[A-Za-z\].)+|([A-Z][bcdfghj-np-tvxz]+\.))$/.
9. Optionally expand clitics: $s/'ve/have/$ and $s/'m/am/$ and so on.
10. Return a whitespace-separated string of T.
Text Preprocessing
Stopping (Token Removal)

Stopping refers to the removal of tokens from a token sequence that are not useful in order to reduce data and improve performance of subsequent tasks:

- **Frequent tokens (collection-specific)**
 Example: *Wikipedia* when processing *Wikipedia*.

- **Function word tokens (language-dependent)**
 the, *of*, *and*, etc; strong overlap with frequent tokens.
 Problem: *to be or not to be* would be completely lost.

- **Punctuation-only tokens**
 Counter-example: *; - *)

- **Number-only tokens**

- **Short tokens**
 Short words may be important. Examples: *xp*, *ma*, *pm*, *ben e king*, *el paso*, *master p*, *gm*, *j lo*, *world war II*.

Stop word lists are typically customized to the text domain.

The top 100 most common words account for up to 50% of all words. [Wikipedia]
Text Preprocessing

Stopping (Token Removal) (continued)

Example:

The idea of giving computers the ability to process human language is as old as the idea of computers themselves. This book is about the implementation and implications of that exciting idea. We introduce a vibrant interdisciplinary field with many names corresponding to its many facets, names like speech and language processing, human language technology, natural language processing, computational linguistics, and speech recognition and synthesis. The goal of this new field is to get computers to perform useful tasks involving human language, tasks like enabling human–machine communication, improving human–human communication, or simply doing useful processing of text or speech.
The idea of giving computers the ability to process human language is as old as the idea of computers themselves. This book is about the implementation and implications of that exciting idea. We introduce a vibrant interdisciplinary field with many names corresponding to its many facets, names like speech and language processing, human language technology, natural language processing, computational linguistics, and speech recognition and synthesis. The goal of this new field is to get computers to perform useful tasks involving human language, tasks like enabling human-machine communication, improving human-human communication, or simply doing useful processing of text or speech.
Text Preprocessing

Token Normalization

Application of heuristic rules to each token in an attempt to unify them.

- **Lower-casing**
 - Problem: Capitalization may carry distinctions between word semantics.
 - Examples: Bush vs. bush, Apple vs. apple.

- **Removal of special characters**
 - Example: U.S.A. → USA

- **Removal of diacritical marks**
 - Example: café → cafe

- **Spelling correction**
 - Example: My gramma got die of beaties → My grandma got diabetes

- **Reduction of morphology**
 - Lemmatization or stemming heuristics