Chapter NLP:V

V. Syntax

- Introduction
- Phrase Structure Grammars
- Dependency Grammars
- Features and Unification
Introduction

Problem: Given a set of symbols, how do they incur meaning?

Sun, Leipzig, the, shine, warm, in

- Leipzig shone warm in the sun.
- In Leipzig warm the sun is shining.
- Warm is the shining sun.
- The sun shines in Leipzig.
Introduction

Problem: Given a set of symbols, how do they incur meaning?

Sun, Leipzig, the, shine, warm, in

- Leipzig shone warm in the sun.
- In Leipzig warm the sun is shining.
- Warm is the shining sun.
- The sun shines in Leipzig.

Definition 1 (Grammar [Saussure])
A grammar is a system that describes the relationship between concepts (signified, langue) and expressions (signifier, parole).
Introduction

Grammars

Definition 2 (Grammar [Chomsky])

A (generative) grammar of a language is a device that parses and generates all grammatical sentences of a language and rejects ungrammatical ones.

1. **Parse**: Determine the syntactic structure of a given sequence of symbols.
2. **Generate**: Produce valid sequence of symbols given a set of structural rules.

Diagram:

```
Syntax

Morphosyntax

Morphemes: colorless green ideas sleep furiously

Parse

Generate
```

Color

JJ JJ NN VB ADV

Structure

S → NP VP

NP → JJ JJ

NP → NN

VP → VB ADV
Grammaticality is usually understood as **intuitively acceptable to a native speaker**. A grammatical sentence does **not** need to:

- have ever been observed in a corpus,
- be statistically probable, or
- be meaningful.
Remarks:

- There are different ways of thinking about grammar, based on the underlying theory of language. Computer scientists prefer the formalist perspective.
 - **Formalist**: Grammar is a system of rules (a formal, generative model) that describe if a sentence is grammatical.
 - **Functional**: Grammar describes how utterances are constructed to serve a function in discourse.

 Discourse Act (Intent, Speaker, Addressee) → Semantics → Morphosyntax → Phonology

- Chomsky’s proposed model of grammar is called ’generative transformational grammar’. It subsumes phrase structure, transformational, and morphophonemic rules. The first is determines the syntactic structure of a string, the latter two transform a string, given his phrase structure, into phonetic morphemes, a representation of the spoken sentence.

- The generative aspect of Chomsky’s theories is widely adapted and different models develop the idea further. The transformational aspect is controversial.
The syntax structure of a clause is hierarchical and modeled as either:

Phrase Structure Grammar (top-down):
- Clauses and phrases are divided into **one or many constituents**.
- Top-level constituents are often *Subject/Noun Phrase* (NP) and *Predicate/Verb Phrase* (VP).
- The leaves are always words.

Dependency Grammar (bottom-up):
- Each morpheme has **one head** node in the syntax structure and **zero or many dependents**.
- The root node is usually the main verb.
Introduction
Syntax Parsing

Determining the syntax structure automatically is used for:

- Grammar checkers
- Complex named entity recognition (e.g., in biological or legal domains).
- Entity relation extraction
- Syntax-based sentence compression
- Mining of opinions on aspects of products
- Source-sentence analysis for machine translation
- High precision question answering
Introduction

Ambiguity

Every sentence can have several grammatical syntax structures due to structural ambiguity. Common forms are attachment ambiguity and coordination ambiguity.

Attachment ambiguity:

- The attachment of many constituents (prepositional phrases, adverbial phrases, infinitives, ...) is ambiguous:

 The board approved
 its acquisition
 by Royal Trustco Ltd.
 of Toronto
 for $27 a share
 at its monthly meeting.

 → attaches to “approved”
 → attaches to “its acquisition”
 → attaches to “by Royal Trustco Ltd.”
 → attaches to “its acquisition”
 → attaches to “approved ... for $27 a share”

- Number of potential attachments grows exponentially with the number n of constituents according to the Catalan numbers:

$$C_n = \frac{(2n)!}{(n+1)! \cdot n!}$$
Introduction
Ambiguity

Every sentence can have several grammatical syntax structures due to structural ambiguity. Common forms are attachment ambiguity and coordination ambiguity.

Coordination ambiguity:

- It is often unclear which phrase is coordinated by a conjunction:

 \[
 [\text{old}] \ [\text{man and woman}] \ vs. \ [\text{old man}] \ and \ [\text{woman}]
 \]
Introduction

Ambiguity

Every sentence can have several grammatical syntax structures due to structural ambiguity. Common forms are attachment ambiguity and coordination ambiguity.

Syntactic disambiguation:

- Many parses are grammatical.
- Few parses are semantically plausible:

 Scientists observe [whales] [from space].
 vs.

 Scientists observe [whales from space].

- Parsers should choose one, the most probable parse. This is called syntactic disambiguation.