
Chapter NLP:IV

IV. Text Models
q Language Modeling
q Text Generation
q Large Language Models
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Language Modeling

Definition 1 (Language Model)

A language model is a probability distribution P (w1, ..., wn) over all sequences of
tokens 〈w1, ..., wn〉 ∈ V ∗ supported by a fixed-size vocabulary V, with:

1. ∀〈w1, ..., wn〉 ∈ V ∗ : P (w1, ..., wn) ≥ 0, and

2.
∑

〈w1,...,wn〉∈V ∗
P (w1, ..., wn) = 1.

Definition 2 (Language Modeling)

Language modeling is the task of estimating a probability function P (wn|w1, ..., wn−1).

q Alternative Fomulation: Predict the next token wn in a sequence given the
history w1, ..., wn−1.

q This can be seen as a classification task.
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Remarks:

q Modeling P (wn|w1, ..., wn−1) is sometimes called autoregressive or causal language
modeling.

q Consider the duality of the definitions: Language models can predict P (wn|w1, ..., wn−1), since
wn = max

wi∈V
P (w1, ..., wn−1, wi) is known.
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Language Modeling
Implications from the Definition

Likelihood estimation

q Given two different sequences, a language model can decide which
sequence is more likely.

– In spell- and grammarchecking, errors can be detected when sequences
become highly unlikely.

q Language model predictions depend on the sequences used to contruct the
model. So models constructed from different sources predict different
probabilities for the same sequence.

– In language identification, a phrase in an unknown languge can be scored
by language models constructed from texts in different languages.

– In information retrieval, a query can be scored by a language model
constructed from each document to be ranked.
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Language Modeling
Implications from the Definition

Prediction and Generation

q If a model estimates P (wn|w1, ..., wn−1), it estimates P (wn+1|w1, ..., wn) as well.
q Thus, language models can generate text of arbitraty length, given a prompt

of w1, ..., wn−1
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Language Modeling
Language Model Estimation

Language models can be estimated from observations in a corpus via maximum
likelihood estimation (MLE):

PMLE(w1, ..., wn) =
C(w1, ..., wn)

N

PMLE(wn|w1, ..., wn−1) =
C(w1, ..., wn−1, wn)∑
w C(w1, ..., wn−1, w)

=
C(w1, ..., wn)

C(w1, ..., wn−1)

1. Segment the corpus into all possible n-grams w1, ..., wn.
2. Count the occurrences C(w1, ..., wn) of each unique n-gram.
3. Get the probabilities P (w1, ..., wn) by dividing by the total (N).
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Language Modeling
Language Model Estimation

Language models can be estimated from observations in a corpus via maximum
likelihood estimation (MLE):

PMLE(w1, ..., wn) =
C(w1, ..., wn)

N

PMLE(wn|w1, ..., wn−1) =
C(w1, ..., wn−1, wn)

C(w1, ..., wn−1)

the quick brown fox jumps over the lazy dog

w1, ..., wn−1, wn C(w1, ..., wn−1) C(w1, ..., wn) P (wn|w1, ..., wn−1) P (w1, ..., wn)

the quick 2 1 1/2 = 0.5 1/45
the quick brown 1 1 1/1 = 1 1/45
the quick brown fox 1 1 1/1 = 1 1/45

What are the problems with this model?
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Language Modeling
Language Model Estimation

Chain rule of probability (see Bayes’ theorem):

P (X1...Xn) = P (X1)P (X2|X1)P (X3|P1,2)...P (Xn|X1,...,n−1) =

n∏
k=1

P (Xk|X1,...,k−1)

Chain rule applied to language:

P (w1, ..., wn) = P (w1)P (w2|w1)P (w3|w1, w2)...P (wn|w1, ..., wn−1) =

n∏
k=1

P (wk|w1,...,k−1)

Example:

P (w1, ..., wn) =P (the quick brown fox jumps over the lazy dog)
=P (the)·
P (quick|the)·
P (brown|the quick)·
...·
P (dog|the quick brown fox jumps over the lazy)

What are the problems with this model?
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Language Modeling
Language Model Estimation

We can reduce the length of the condition with a markov assumption: The language
model P (wn|w1, ..., wn−1) is a memoryless stochastic process, so the probability of
observing wn as the next word depends only on the current observed word wn−1:

P (wn|w1, ..., wn−1) ≈ P (wn|wn−1)

Chain rule applied to language under a markov assumption:

P (w1, ..., wn) = P (w1|<s>)P (w2|w1)P (w3|w2)...P (wn|wn−1) =
n∏
k=1

P (wk|wk−1)

Example:

P (w1, ..., wn) =P (the quick brown fox jumps over the lazy dog)
=P (the|<s>)·
P (quick|the)·
P (brown|quick)·
...·
P (dog|lazy)
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Remarks:

q The condition for Bayes’ theorem is that the predicted events are mutually exclusive. Hence,
we must assume that words in a sequence are independent, which is not true.

q The language model parameters can also be estimated through other methods, like Bayes’
rule, but MLE is the most common.

q The </s> token is neccessary to estimate one distribution over all seqences as in the
definition. If </s> is left, the bigram model would estimate one distribution for all sequences
of the same length.

q The probabilities of long sequences become very small. This requires arbitrary floating-point
precision, which is often a computational problem. This can be avoided using log
probabilities, which turns the multiplication into a sum of logarithms:

n∏
k=1

P (wk|w1,...,k−1) = exp(
n∑

k=1

log(P (wk|w1,...,k−1)))

q If a sequence has a token that is not in the vocabulary of the LM, the model can not estimate
the sequences’ probability. This can be solved by reducing the vocuabulary while fitting the
model and replacing all out-of-vocabulary words with a special token <unk> .
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Language Modeling
Bigram Model

The language model under a first-order markov assumption is called a bigram
model. The paramete P (wn|wn−1) can be estimated via MLE:

P (wn|wn−1) =
C(wn−1wn)∑

wk∈V

C(wn−1wk)
=
C(wn−1wn)

C(wn−1)

q The first parameter P (w1) is not explained by this estimation.
q This is usually avoided by adding a token <s> to the beginning of the

sequence and estimating P (w1|<s>) as the first probability.
q A token </s> is added to the end of each sequence.
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Language Modeling
Bigram Model: Example

<s> I am Sam </s>
<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

P (I|<s>) = C(wn−1wn) = 2

C(wn−1)

P (Sam|am) =
P (do|I) =

<s> I am Sam do </s> ...

<s>
I
am
Sam
do
...
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Language Modeling
Bigram Model: Example

<s> I am Sam </s>
<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

P (I|<s>) = 2

C(wn−1) = 3
= 0.67

P (Sam|am) =
P (do|I) =

<s> I am Sam do </s> ...

<s> 0.67
I
am
Sam
do
...
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Language Modeling
Bigram Model: Example

<s> I am Sam </s>
<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

P (I|<s>) = 0.67

P (Sam|am) = 0.5

P (do|I) =

<s> I am Sam do </s> ...

<s> 0.67
I
am 0.5
Sam
do
...
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Language Modeling
Bigram Model: Example

<s> I am Sam </s>
<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

P (I|<s>) = 2/3 = 0.67

P (Sam|am) = 1/2 = 0.50

P (do|I) = 1/3 = 0.33

<s> I am Sam do </s> ...

<s> 0 0.67 0 0.34 0 0
I 0 0 0.67 0 0.34 0
am 0 0 0 0.5 0 0.5
Sam 0 0.5 0 0 0 0.5
do 0 1 0 0 0 0
...
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Language Modeling
The N-gram Model

The Bigram model can be generalized to arbitrary N-grams by relaxing the markov
assumption to higher orders.

Generalized chain rule:

P (wn|w1, ..., wn−1) ≈ P (wn|wn−N+1, ..., wn−1)

=

n∏
k=1

P (wk|wk−N+1, ..., wk−1)

Generalized MSE:

P (wn|wn−N+1, ..., wn−1) =
C(wn−N+1, ..., wn−1, wn)

C(wn−N+1, ..., wn−1)

Bigram am I do Sam not
<s> 0 .67 0 .34 0
I .67 0 .34 0 0
am 0 0 0 .5 0
. . .

Trigram am I do Sam not
<s> I .5 0 .5 0 0
<s> Sam 0 1 0 0 0
I am 0 1 0 .5 0
. . .

4-gram am I do Sam not
<s> I am 0 0 0 1 0
<s> Sam I 1 0 0 0 0
<s> I do 0 0 0 0 1
. . .
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Language Modeling
Improving the N-gram Model: Smoothing

The introduced n-gram model has two central problems:

1. We can not compute the probability if the denominator is zero.

P (eggs|I like green) =
C(I like green eggs)
C(I like green)

2. The probability of the sequence is zero because the numerator is zero.

P (ham|I do not like green) =
C(I do not like green ham)

C(I do not like green)

These problems can be avoided by redistributing probability mass from observed to
unobserved events. This is called smoothing or discounting.
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Language Modeling
Denominator Smoothing: Stupid Backoff

Idea: Consult a less specific model.

P (wn|wn−k, ..., wn−1) ≈ · · · ≈ P (wn|wn−2, wn−1) ≈ P (wn|wn−1)

q Backoff progressively reduces the history, down to unigrams.

PBO(wn|wn−k, ..., wn−1) =

{
P (wn|wn−k, . . . , wn−1) if C(wn−k, . . . , wn−1) > λ

PBO(wn|wn−k+1, . . . , wn−1) otherwise

q The parameter λ is a lower bound to the frequency of the observation of the
more specific model. This can either be set or estimated through evaluation
(see Perplexity). Higher values require more support which can make the
model more robust.
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Language Modeling
Denominator Smoothing: Linear Interpolation

Idea: Use (n− 1)-gram probabilities to smooth n-gram probabilities

q Trigram combination of the sentence does not occur in the training corpus

– Exploiting the information about two-word form combination

q Bigram combination of the sentence does not occur in the training corpus

– Exploiting the information about the single word form

Implementation: Utilization of all three sources of information (tri-, bi- and
unigrams).

q But different weighting of the sources, as trigram is more informative than
bigram etc.
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Language Modeling
Denominator Smoothing: Linear Interpolation

Idea: Use (n− 1)-gram probabilities to smooth n-gram probabilities

Instead of:

P (wn|w1, w2, . . . , wn−1) ≈
C(wn−2, wn−1, wn)

C(wn−2, wn−1)

we set:

P (wn|w1, w2, . . . , wn−1) ≈ λ1
C(wn−2, wn−1, wn)

C(wn−2, wn−1)
+ λ2

C(wn−1, wn)

C(wn−1)
+ λ3

C(wn)∑N
k=1C(wk)

with λ ≤ λi ≤ 1 and
∑

i λi = 1.

q λ can be set manually
q Additionally, automatic methods include Expectation Maximization (EM)

algorithms, e.g. Hidden Markov Models
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Language Modeling
Numerator Smoothing: Add-one (Laplace) smoothing

Example: Imagine the following text as as training input for a n-gram language
model. Additionally image a situation where you want to obtain the probability of a
sentence including the words w1, w2, w3, w4.

How much wood would a woodchuck chuck if a woodchuck could chuck wood?

He would chuck, he would, as much as he could, and chuck as much wood As

a woodchuck would if a woodchuck could chuck wood
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q We normally get the
probability of a word like:

P (W = wi) =
C(wi)∑m
j=1C(wj)

q In this model we assign 0
probability to w1, w2, w3, w4.
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Language Modeling
Numerator Smoothing: Add-one (Laplace) smoothing

Example: Imagine the following text as as training input for a n-gram language
model. Additionally image a situation where you want to obtain the probability of a
sentence including the words w1, w2, w3, w4.

How much wood would a woodchuck chuck if a woodchuck could chuck wood?

He would chuck, he would, as much as he could, and chuck as much wood As

a woodchuck would if a woodchuck could chuck wood
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q We can add 1 to each count:

Padd-1(W = wi) =
C(wi) + 1∑m

j=1C(wj) + V

q In this model we assign some
probability to w1, w2, w3, w4.
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Language Modeling
Numerator Smoothing: Add-one (Laplace) smoothing

In general we could define the calculation of the probabilities of the n-grams as:

Padd-1(W = wi) =
C(wi) + 1∑m
j=1C(wj) + V

Padd-1(wn|wn−2, wn−1) =
C(wn−2, wn−1, wn) + 1

C(wn−2, wn−1) + V

We introduce pseudo counts like:

C(wi)
∗ = (C(wi) + 1) +

∑m
j=1C(wj)∑m

j=1C(wj) + V

where V is the total number of possible (N-1)-grams (i.e. the vocabulary size for a
bigram model)
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Language Modeling
Numerator Smoothing: Good-Turing smoothing

q In Add-one too much probability mass is moved! (In fact, we only use it for
Naive Bayes with few unknown events)

q Basic idea: Use total frequency of events that occur only once to estimate
how much mass to shift to unseen events.

q Let Nk be the number of N-grams that occur k times.

– For bigrams, N0 is the number of bigrams of count 0, N1 is the number of
bigrams with count 1, etc.

|w|>1

|w|=1

|w|>1

|w|=1

|w|=0

We revisit all counts by:

|w|∗k−1 =
|w| ·Nk

Nk−1

All unseen words get the probability:

P (|w|0) =
N1∑
∀kNk
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Language Modeling
Numerator Smoothing: Kneser-Ney Smoothing

Observation: "Mercedes Benz" is frequent, but "Benz" only occurs after
"Mercedes"

q Shannon game: I want to drive my Mercedes to|Benz ...

q to is much more common than Mercedes

q The unigram is useful exactly when we haven’t seen this bigram!

q We do not use "How likely is w?"

q We introduce Pcont(w): "How likely is w to appear as a novel continuation?"

– For each word, count the number of bigram types it completes

– Every bigram type was a novel continuation the first time it was seen

Idea: The unigram probability P (w) should not depend on the frequency of w, but
on the number of contexts in which w appears.

NLP:IV-24 Text Models © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2024



Language Modeling
Numerator Smoothing: Kneser-Ney Smoothing

We calculate how many times w appears as a novel continuation:

Pcont(w)|{∀wn−1 : |wn−1, wn| > 0}|

and normalize by the total number of word bigram types:

Pcont(w) =
|{∀wi−1 : |wi−1, w| > 0}|
|{∀wj−1, wj : |wj−1, wj| > 0}|
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Language Modeling
Numerator Smoothing: Kneser-Ney Smoothing

The Kneser-Ney Smoothing PKN is then:

PKN(wi|wi−1) =
max(|wn−1, wn| − d, 0)

|wn−1|
+ λ(wi−1) · Pcont(wn)

λ is a normalizing constant for the probability mass which is discounted. Note,
|{∀wn : |wn−1, wn| > 0}| is the the number of word types that can follow wn−1

λ(wi−1) =
d

|wn−1|
|{∀wn : |wn−1, wn| > 0}|

q The parameter d is a constant which denotes the discount value subtracted
from the count of each n-gram, usually between 0 and 1.

q There is a recursion as a generalization for higher order ngrams see Jurafsky
Book
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Language Modeling
Evaluation: Perplexity

We can evaluate how good a language model is by how perplex (confused) it is
about the test data.

q Perplexity is the inverse probability of the test data, normalized by the number
of words:

perplexity(W ) = P (w1, . . . , wN)
− 1

N

q Example for trigrams:

perplexity(W ) = N

√√√√ N∏
n=1

1

P (wn|wi−2, wi−1)

q A low perplexity is desirable and means the model expected the sequences in
the test data.
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Remarks:

q Minimizing perplexity is the same as maximizing probability
q Perplexity usually goes down from unigram to trigram models.
q Smoothing, interpolation etc. raises probability (and so lowers the perplexity) of the model.
q The trigram formula directly follows from Bayes rule and the chain rule of probability (cf.

NLP:III-157). The dividend and N -root follows from the inverse normalization.
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Language Modeling
Neural Language Models

Intuition:

q Encode the history w1, ..., wn−1 into a latent representation.
q Predict wn from this representation.

the quick brown<s>

Encoder

Representation
of w1, ..., wn-1

Pr(wn | w1, ..., wn-1)

aardvark
a

zebra

fox

Li
ne

ar

So
ftm

ax

wn-1w1 Embedding 
Layer e
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Language Modeling
Neural Language Models: Feed Forward

q The encoder can be a feed forward neural network.
q Due to the fixed input size, chose the latest k tokens for prediction.

the quick brown<s>

representation
of wn-1-k, ..., wn-1

y = Pr(wn | wn-1-k, ..., wn-1)

aardvark
a

zebra

fox
Li

ne
ar

 U

So
ftm

ax
Linear W

wn-1wn-2wn-3

h

z

Forward computation:

e = [wn−1−k; ...;wn−1]

h = σ(We + b)

y = softmax(Uh)
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Language Modeling
Neural Language Models: RNN

q The encoder can be a recurrent neural network.
q RNNs take sequences of arbitrary length as input and aggregate the history

in a shared hidden layer h.
q For text generation, the output yt can be used as input wt+1.

the quick brown<s>

y4 = Pr(wn | w1, ..., wn-1)

aardvark
a

zebra

w1

fox

Li
ne
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 V

y1

So
ftm

ax

w2 w3 w4

h1 U h2 U h3 U h4

V V V

y2 y3

W W W W

Forward computation:

ht = σ(Uht−1 +Wwt)

yt = softmax(Vht)
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Remarks:

q RNN Notation: t incidates the timestep. W and U are the same at every t.
q Convolutional neural networks also work. However, many stacks are neccessary for long

contexts and many stacks require residual and highway connections to train the CNN
effectively.

q Due to the frequent multiplication of h and U, RNNs face the vanishing gradient problem
when training: the training signal becomes very small quickly and only signals at the end of
the sequence have a meaningful impact.

q Long Short-Term Memory Networks (LSTMs) and Gated Recurrent Units (GRUs) can lessen
the vanishing gradient by providing relevance, update, and forget gates in each cell. This
greatly improves language modeling performance.
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Language Modeling
Conditional Language Modeling

Definition 3 (Conditional Language Model)

A conditional language model is a probability distribution P (w1, ..., wn|x) over all
sequences of tokens 〈w1, ..., wn〉 ∈ V ∗ supported by a fixed-size vocabulary V, given
a source x as condition.

q In contrast, language models estimate the unconditional probability
P (w1, ..., wn)

q The condition x can be a (distribution over) sequences but also other data like
images, sound waves, or stock prices.

Common applications conditional language modeling are:

q Machine translation
q Summarization
q Paraphrasing
q Caption generation
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Remarks:

q Conditional language models are the basis for large language models (LLMs).
q All architectures can be used for CLM. The usually best way are encoder-decoder models

(originally from machine translation). The encoder ‘encodes’ the condition (prompt, sentence
in source language, ...) and passes the encoding to the decoder as input. The decoder is
then trained like an autoregressive language model, but with the additional encoding as input.
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