VI. Decision Trees

- Decision Trees Basics
- Impurity Functions
- Decision Tree Algorithms
- Decision Tree Pruning
Recall overfitting from section **Overfitting** in part Linear Models.
Recall overfitting from section **Overfitting** in part Linear Models.
Recall overfitting from section **Overfitting** in part Linear Models. The hypothesis $h \in H$ is considered to overfit D if an $h' \in H$ with the following property exists:

- $\text{Err}(h, D) < \text{Err}(h', D)$ and $\text{Err}^*(h) > \text{Err}^*(h')$ or, similarly:
- $\text{Acc}(h, D) > \text{Acc}(h', D)$ and $\text{Acc}^*(h) < \text{Acc}^*(h')$
Remarks:

- The accuracy, Acc, is the percentage of correctly classified examples, i.e., $Acc = 1 - Err$.
- The holdout error of a hypothesis h, $Err(h, D_{test})$, is used as a proxy for the true error $Err^*(h)$.
- The training error $Err_{tr}(T)$ of a decision tree T is a monotonically decreasing function in the size of T. See the following Lemma.
Lemma 10

Let t be a node in a decision tree T. Then, for each induced splitting $D(t_1), \ldots, D(t_m)$ of a set of examples $D(t)$ holds:

$$
\text{Err}(t, D(t)) \geq \sum_{i \in \{1,\ldots,m\}} \text{Err}(t_i, D(t_i))
$$

The equality is given in the case that all nodes t, t_1, \ldots, t_m represent the same class.
Proof (sketch)

$$\text{Err}(t, D(t)) = \min_{c' \in C} \sum_{c \in C} p(c \mid t) \cdot p(t) \cdot I \neq (c', c)$$

$$= \sum_{c \in C} p(c, t) \cdot I \neq (\text{label}(t), c)$$

$$= \sum_{c \in C} (p(c, t_1) + \ldots + p(c, t_{km})) \cdot I \neq (\text{label}(t), c)$$

$$= \sum_{i \in \{1, \ldots, km\}} \sum_{c \in C} (p(c, t_i) \cdot I \neq (\text{label}(t), c))$$

$$\text{Err}(t, D(t)) - \sum_{i \in \{1, \ldots, km\}} \text{Err}(t_i, D(t_i)) =$$

$$\sum_{i \in \{1, \ldots, km\}} \left(\sum_{c \in C} p(c, t_i) \cdot I \neq (\text{label}(t), c) - \min_{c' \in C} \sum_{c \in C} p(c, t_i) \cdot I \neq (c', c) \right)$$

Observe that the summands on the right equation side are greater than or equal to zero.
Remarks:

- The lemma does also hold if a function for *misclassification cost* is used to assess effectiveness.
- The algorithm template for the construction of decision trees, *DT-construct*, prefers larger trees, entailing a more fine-grained splitting of D. A consequence of this behavior is a tendency to overfitting.
- I_{\neq} is an indicator function that returns 1 if its arguments are *unequal* (and 0 if its arguments are equal).
Decision Tree Pruning

Overfitting (continued)

Approaches to counter overfitting:

(a) **Stopping** of the decision tree construction process *during training*.

(b) **Pruning** of a decision tree *after training*:
 - Splitting of D into three sets for training, validation, and test:
 - reduced error pruning
 - minimal cost complexity pruning
 - rule post pruning
 - statistical tests such as χ^2 to assess generalization capability
 - heuristic pruning
Decision Tree Pruning

(a) Stopping

Possible criteria for stopping [splitting criteria] :

1. Size of \(D(t)\).
 \(D(t)\) is not split if \(|D(t)|\) is below a threshold.

2. Purity of \(D(t)\).
 \(D(t)\) is not split if all examples in \(D(t)\) are members of the same class.

3. Impurity reduction of \(D(t)\).
 \(D(t)\) is not split if the resulting impurity reduction, \(\Delta \iota\), is below a threshold.

Problems:

ad 1) A threshold that is too small results in oversized decision trees.

ad 1) A threshold that is too large omits useful splittings.

ad 2) Perfect purity cannot be expected with noisy data.

ad 3) \(\Delta \iota\) cannot be extrapolated with regard to the tree height.
Decision Tree Pruning

(b) Pruning

The pruning principle:

1. Construct a sufficiently large decision tree T_{max}.

2. Prune T_{max}, starting from the leaf nodes upwards to the tree root.

Each leaf node t of T_{max} fulfills one or more of the following conditions:

- $D(t)$ is sufficiently small. Typically, $|D(t)| \leq 5$.
- $D(t)$ is pure.
- $D(t)$ is comprised of examples with identical feature vectors.
Definition 11 (Decision Tree Pruning)

Given a decision tree T and an inner (non-root, non-leaf) node t. Then pruning of T with regard to t is the deletion of all successor nodes of t in T. The pruned tree is denoted as $T \setminus T_t$. The node t becomes a leaf node in $T \setminus T_t$.

Illustration:
Definition 12 (Pruning-Induced Ordering)

Let T' and T be two decision trees. Then $T' \leq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \leq forms a partial ordering on the set of all trees.
Decision Tree Pruning
(b) Pruning (continued)

Definition 12 (Pruning-Induced Ordering)

Let T' and T be two decision trees. Then $T' \preceq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \preceq forms a partial ordering on the set of all trees.

Problems when assessing pruning candidates:

- Pruned decision trees may not stand in the \preceq-relation.
- Locally optimum pruning decisions may not result in the best candidates.
- Its monotonicity disqualifies $Err_{tr}(T')$ as an estimator for $Err^*(T)$. [Lemma]
Decision Tree Pruning

(b) Pruning (continued)

Definition 12 (Pruning-Induced Ordering)

Let \(T' \) and \(T \) be two decision trees. Then \(T' \preceq T \) denotes the fact that \(T' \) is the result of a (possibly repeated) pruning applied to \(T \). The relation \(\preceq \) forms a partial ordering on the set of all trees.

Problems when assessing pruning candidates:

- Pruned decision trees may not stand in the \(\preceq \)-relation.
- Locally optimum pruning decisions may not result in the best candidates.
- Its monotonicity disqualifies \(Err_{tr}(T) \) as an estimator for \(Err^*(T) \). [Lemma]

Control pruning with a validation set \(D_{val} \):

1. \(D_{test} \subset D \), test set for decision tree assessment after pruning.
2. \(D_{val} \subset (D \setminus D_{test}) \), validation set for overfitting analysis during pruning.
3. \(D_{tr} = D \setminus (D_{test} \cup D_{val}) \), training set for decision tree construction.
Decision Tree Pruning
(b) Pruning: Reduced Error Pruning

Steps of reduced error pruning :

1. \(T = T_{\text{max}} \)
2. Choose an inner node \(t \) in \(T \).
3. Perform a tentative pruning of \(T \) with regard to \(t \) : \(T' = T \setminus T_t \).
 Based on \(D(t) \) assign class to \(t \). [\text{DT-construct}]
4. If \(\text{Err}(T', D_{\text{val}}) \leq \text{Err}(T, D_{\text{val}}) \) then accept pruning: \(T = T' \).
5. Continue with Step 2 until all inner nodes of \(T \) are tested.
Decision Tree Pruning
(b) Pruning: Reduced Error Pruning (continued)

Steps of reduced error pruning:

1. $T = T_{\text{max}}$

2. Choose an inner node t in T.

3. Perform a tentative pruning of T with regard to t: $T' = T \setminus T_t$.
 Based on $D(t)$ assign class to t. \([\text{DT-construct}]\)

4. If $\text{Err}(T', D_{\text{val}}) \leq \text{Err}(T, D_{\text{val}})$ then accept pruning: $T = T'$.

5. Continue with Step 2 until all inner nodes of T are tested.

Problem:

If D is small, its partitioning into three sets for training, validation, and test will discard valuable information for decision tree construction.

Improvement: rule post pruning
(b) Pruning: Reduced Error Pruning (continued)

Accuracy on D_{val} (during pruning)

Accuracy on D_{tr}

Accuracy on D_{test}

T_{max}
Remarks (pruning extensions):
- pruning considering misclassification cost
- weakest link pruning

Remarks (splitting extensions):
- splitting considering misclassification cost
- “surrogate splittings” for insufficiently covered feature domains
- splittings based on (linear) combinations of features

Remarks (generic extensions):
- discrete features with many values
- features of different importance
- features with missing values
- regression trees