VI. Decision Trees

- Decision Trees Basics
- Impurity Functions
- Decision Tree Algorithms
- Decision Tree Pruning
Recall overfitting from section **Overfitting** in part Linear Models.
Recall overfitting from section Overfitting in part Linear Models.
Recall overfitting from section Overfitting in part Linear Models. The hypothesis \(h \in H \) is considered to overfit \(D \) if an \(h' \in H \) with the following property exists:

- \(\text{Err}(h, D) < \text{Err}(h', D) \) and \(\text{Err}^*(h) > \text{Err}^*(h') \) or, similarly:
- \(\text{Acc}(h, D) > \text{Acc}(h', D) \) and \(\text{Acc}^*(h) < \text{Acc}^*(h') \)
Remarks:

- The accuracy, \(Acc \), is the percentage of correctly classified examples, i.e., \(Acc = 1 - Err \).
- The **holdout error** of a hypothesis \(h \), \(Err(h, D_{test}) \), is used as a proxy for the true error \(Err^*(h) \).
- The **training error** \(Err_{tr}(T) \) of a decision tree \(T \) is a monotonically decreasing function in the size of \(T \). See the following [Lemma](#).
Lemma 10

Let t be a node in a decision tree T. Then, for each induced splitting $D(t_1), \ldots, D(t_m)$ of a set of examples $D(t)$ holds:

$$\text{Err}(t, D(t)) \geq \sum_{i \in \{1, \ldots, m\}} \text{Err}(t_i, D(t_i))$$

The equality is given in the case that all nodes t, t_1, \ldots, t_m represent the same class.
Decision Tree Pruning

Overfitting (continued)

Proof (sketch)

\[\text{Err}(t, D(t)) = \min_{c' \in C} \sum_{c \in C} p(c \mid t) \cdot p(t) \cdot I_\neq(c', c) \]

\[= \sum_{c \in C} p(c, t) \cdot I_\neq(\text{label}(t), c) \]

\[= \sum_{c \in C} (p(c, t_1) + \ldots + p(c, t_{k_m})) \cdot I_\neq(\text{label}(t), c) \]

\[= \sum_{i \in \{1, \ldots, k_m\}} \sum_{c \in C} (p(c, t_i) \cdot I_\neq(\text{label}(t), c)) \]

\[\text{Err}(t, D(t)) - \sum_{i \in \{1, \ldots, k_m\}} \text{Err}(t_i, D(t_i)) = \]

\[\sum_{i \in \{1, \ldots, k_m\}} \left(\sum_{c \in C} p(c, t_i) \cdot I_\neq(\text{label}(t), c) - \min_{c' \in C} \sum_{c \in C} p(c, t_i) \cdot I_\neq(c', c) \right) \]

Observe that the summands on the right equation side are greater than or equal to zero.
Remarks:

- The lemma does also hold if a function for misclassification cost is used to assess effectiveness.

- The algorithm template for the construction of decision trees, DT-construct, prefers larger trees, entailing a more fine-grained splitting of D. A consequence of this behavior is a tendency to overfitting.

- $I \neq$ is an indicator function that returns 1 if its arguments are unequal (and 0 if its arguments are equal).
Decision Tree Pruning

Overfitting (continued)

Approaches to counter overfitting:

(a) **Stopping** of the decision tree construction process during training.

(b) **Pruning** of a decision tree after training:

 Splitting of D into three sets for training, validation, and test:

 - reduced error pruning

 - minimal cost complexity pruning

 - rule post pruning

 statistical tests such as χ^2 to assess generalization capability

 heuristic pruning
Decision Tree Pruning

(a) Stopping

Possible criteria for stopping:

1. Size of $D(t)$.
 $D(t)$ is not split if $|D(t)|$ is below a threshold.

2. Purity of $D(t)$.
 $D(t)$ is not split if all examples in $D(t)$ are members of the same class.

3. Impurity reduction of $D(t)$.
 $D(t)$ is not split if the resulting impurity reduction, $\Delta \iota$, is below a threshold.

Problems:

ad 1) A threshold that is too small results in oversized decision trees.

ad 1) A threshold that is too large omits useful splittings.

ad 2) Perfect purity cannot be expected with noisy data.

ad 3) $\Delta \iota$ cannot be extrapolated with regard to the tree height.
Decision Tree Pruning

(b) Pruning

The pruning principle:

1. Construct a sufficiently large decision tree T_{max}.

2. Prune T_{max}, starting from the leaf nodes upwards to the tree root.

Each leaf node t of T_{max} fulfills one or more of the following conditions:

- $D(t)$ is sufficiently small. Typically, $|D(t)| \leq 5$.
- $D(t)$ is pure.
- $D(t)$ is comprised of examples with identical feature vectors.
Definition 11 (Decision Tree Pruning)

Given a decision tree T and an inner (non-root, non-leaf) node t. Then pruning of T with regard to t is the deletion of all successor nodes of t in T. The pruned tree is denoted as $T \setminus T_t$. The node t becomes a leaf node in $T \setminus T_t$.

Illustration:
Definition 12 (Pruning-Induced Ordering)

Let T' and T be two decision trees. Then $T' \preceq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \preceq forms a partial ordering on the set of all trees.
Decision Tree Pruning

(b) Pruning (continued)

Definition 12 (Pruning-Induced Ordering)

Let T' and T be two decision trees. Then $T' \preceq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \preceq forms a partial ordering on the set of all trees.

Problems when assessing pruning candidates:

- Pruned decision trees may not stand in the \preceq-relation.
- Locally optimum pruning decisions may not result in the best candidates.
- Its monotonicity disqualifies $Err_{tr}(T)$ as an estimator for $Err^*(T)$. [Lemma]
Definition 12 (Pruning-Induced Ordering)
Let T' and T be two decision trees. Then $T' \preceq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \preceq forms a partial ordering on the set of all trees.

Problems when assessing pruning candidates:

- Pruned decision trees may not stand in the \preceq-relation.
- Locally optimum pruning decisions may not result in the best candidates.
- Its monotonicity disqualifies $Err_{tr}(T)$ as an estimator for $Err^*(T)$. [Lemma]

Control pruning with a validation set D_{val}:

1. $D_{test} \subset D$, test set for decision tree assessment after pruning.
2. $D_{val} \subset (D \setminus D_{test})$, validation set for overfitting analysis during pruning.
3. $D_{tr} = D \setminus (D_{test} \cup D_{val})$, training set for decision tree construction.
Steps of reduced error pruning:

1. \(T = T_{\text{max}} \)

2. Choose an inner node \(t \) in \(T \).

3. Perform a tentative pruning of \(T \) with regard to \(t \) : \(T' = T \setminus T_t \).
 Based on \(D(t) \) assign class to \(t \). [DT-construct]

4. If \(\text{Err}(T', D_{\text{val}}) \leq \text{Err}(T, D_{\text{val}}) \) then accept pruning: \(T = T' \).

5. Continue with Step 2 until all inner nodes of \(T \) are tested.
Decision Tree Pruning
(b) Pruning: Reduced Error Pruning

Steps of reduced error pruning:

1. \(T = T_{\text{max}} \)

2. Choose an inner node \(t \) in \(T \).

3. Perform a tentative pruning of \(T \) with regard to \(t \): \(T' = T \setminus T_t \).

 Based on \(D(t) \) assign class to \(t \). [\(DT\)-construct]

4. If \(Err(T', D_{\text{val}}) \leq Err(T, D_{\text{val}}) \) then accept pruning: \(T = T' \).

5. Continue with Step 2 until all inner nodes of \(T \) are tested.

Problem:

If \(D \) is small, its partitioning into three sets for training, validation, and test will discard valuable information for decision tree construction.

Improvement: rule post pruning
Decision Tree Pruning

(b) Pruning: Reduced Error Pruning (continued)

![Graph showing accuracy vs. size of tree (number of nodes).](image)

- Accuracy on D_{val} (during pruning)
- Accuracy on D_{tr}
- Accuracy on D_{test}

T_{max}

[Mitchell 1997]
Remarks (pruning extensions):
- pruning considering misclassification cost
- weakest link pruning

Remarks (splitting extensions):
- splitting considering misclassification cost
- “surrogate splittings” for insufficiently covered feature domains
- splittings based on (linear) combinations of features

Remarks (generic extensions):
- discrete features with many values
- features of different importance
- features with missing values
- regression trees