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Impurity Functions
Splitting

Let t be a leaf node of an incomplete decision tree, and let D(t) be the subset of the
example set D that is represented by t. [

::::::::::
illustration]

Possible criteria for a splitting of X(t) :

1. Size of D(t).
D(t) is not split if |D(t)| is below a threshold.

2. Purity of D(t).
D(t) is not split if all examples in D(t) are members of the same class.

3. Impurity reduction of D(t).
D(t) is not split if its impurity reduction, ∆ι, is below a threshold.
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Impurity Functions
Splitting

Let t be a leaf node of an incomplete decision tree, and let D(t) be the subset of the
example set D that is represented by t. [

::::::::::
illustration]

Possible criteria for a splitting of X(t) :

1. Size of D(t).
D(t) is not split if |D(t)| is below a threshold.

2. Purity of D(t).
D(t) is not split if all examples in D(t) are members of the same class.

3. Impurity reduction of D(t).
D(t) is not split if its impurity reduction, ∆ι, is below a threshold.
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Impurity Functions
Splitting (continued)

Let X be a multiset of feature vectors, D ⊆ X a multiset of examples, and
C = {c1, c2, c3, c4} a set of classes. Distribution of D for two splittings of X :

c1

c2

c3

c4

(a) (b)
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Impurity Functions
Splitting (continued)

Let X be a multiset of feature vectors, D ⊆ X a multiset of examples, and
C = {c1, c2, c3, c4} a set of classes. Distribution of D for two splittings of X :

c1

c2

c3

c4

(a) (b)

q Splitting (a) minimizes the impurity of the subsets of D in the leaf nodes and
should be preferred over splitting (b). This argument presumes that the
misclassification costs are independent of the classes.

q The impurity is a function defined on P(D), the set of all subsets of an
example set D.
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Impurity Functions

Definition 4 (Impurity Function ι)

Let k ∈ N. An impurity function ι : [0; 1]k → R is a function defined on the standard
k−1-simplex, denoted ∆k−1, for which the following properties hold:

(a) ι() becomes minimum at points (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1).

(b) ι() is symmetric with regard to its arguments, p1, . . . , pk.

(c) ι() becomes maximum at point (1/k, . . . , 1/k).
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Impurity Functions

Definition 5 (Impurity of an Example Set ι(D))

Let X be a multiset of feature vectors, C = {c1, . . . , ck} a set of classes and
D ⊆ X × C a multiset of examples. Moreover, let ι : [0; 1]k → R be an impurity
function. Then, the impurity of D, denoted as ι(D), is defined as follows:

ι(D) = ι

(
|{(x, c1) ∈ D}|

|D|
, . . . ,

|{(x, ck) ∈ D}|
|D|

)
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Impurity Functions

Definition 5 (Impurity of an Example Set ι(D))

Let X be a multiset of feature vectors, C = {c1, . . . , ck} a set of classes and
D ⊆ X × C a multiset of examples. Moreover, let ι : [0; 1]k → R be an impurity
function. Then, the impurity of D, denoted as ι(D), is defined as follows:

ι(D) = ι

(
|{(x, c1) ∈ D}|

|D|
, . . . ,

|{(x, ck) ∈ D}|
|D|

)

Definition 6 (Impurity Reduction ∆ι)

Let D1, . . . , Dm be a splitting of an example set D, which is induced by a splitting
of X. Then, the resulting impurity reduction, denoted as ∆ι(D, {D1, . . . , Dm}), is
defined as follows:

∆ι
(
D, {D1, . . . , Dm}

)
= ι(D)−

m∑
l=1

|Dl|
|D|
· ι(Dl)
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Remarks:

q
::::::::
Recap. The standard k−1-simplex, denoted as ∆k−1, contains all k-tuples with non-negative
elements that sum to 1:

∆k−1 =
{

(p1, . . . , pk) ∈ Rk :
∑k

i=1 pi = 1 and pi ≥ 0 for all i
}

q Observe the different domains of the impurity function ι in the definitions for ι and ι(D),
namely, [0; 1]k and D. The domains correspond to each other: the set of examples, D,
defines via its class ratios an element from [0; 1]k and vice versa.

q Within the
:::::::::::::::::
DT -construct algorithm usually a greedy strategy (local optimization) is employed

to minimize the overall impurity characteristics of a decision tree T .
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Impurity Functions
(1) Impurity Functions Based on the

:::::::::::::::::::::::::
Misclassification

::::::::
Rate

Definition for two classes [impurity function] :

ιmisclass(p1, p2) = 1−max{p1, p2} =

{
p1 if 0 ≤ p1 ≤ 0.5

1− p1 otherwise
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Impurity Functions
(1) Impurity Functions Based on the

:::::::::::::::::::::::::
Misclassification

::::::::
Rate

Definition for two classes [impurity function] :

ιmisclass(p1, p2) = 1−max{p1, p2} =

{
p1 if 0 ≤ p1 ≤ 0.5

1− p1 otherwise

ιmisclass(D) = 1−max

{
|{(x, c1) ∈ D}|

|D|
,
|{(x, c2) ∈ D}|

|D|

}
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Impurity Functions
(1) Impurity Functions Based on the

:::::::::::::::::::::::::
Misclassification

::::::::
Rate

Definition for two classes [impurity function] :

ιmisclass(p1, p2) = 1−max{p1, p2} =

{
p1 if 0 ≤ p1 ≤ 0.5

1− p1 otherwise

ιmisclass(D) = 1−max

{
|{(x, c1) ∈ D}|

|D|
,
|{(x, c2) ∈ D}|

|D|

}

Graph of the function ιmisclass(p1, 1− p1), i.e., for two classes:

10 0.5

ι

p1
p2

0.5

[Graphs: misclassification, entropy, Gini]
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Impurity Functions
(1) Impurity Functions Based on the Misclassification Rate (continued)

Definition for k classes:

ιmisclass(p1, . . . , pk) = 1− max
i=1,...,k

pi

ιmisclass(D) = 1−max
c∈C

|{(x, c) ∈ D}|
|D|
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Impurity Functions
(1) Impurity Functions Based on the Misclassification Rate (continued)

Problems:

q ∆ιmisclass = 0 may hold for all possible splittings.

q The impurity function that is induced by the misclassification rate
underestimates pure nodes.

c1

c2

(a) (b)
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Impurity Functions
(1) Impurity Functions Based on the Misclassification Rate (continued)

Problems:

q ∆ιmisclass = 0 may hold for all possible splittings.

q The impurity function that is induced by the misclassification rate
underestimates pure nodes.

c1

c2

(a) (b)

∆ιmisclass = ιmisclass(D)−
(
|D1|
|D| · ιmisclass(D1) + |D2|

|D| · ιmisclass(D2)
)

left splitting: ∆ιmisclass = 1
4 − (1

2 ·
3
10 + 1

2 ·
2
10) = 0

right splitting: ∆ιmisclass = 1
4 − (1

2 ·
1
2 + 1

2 · 0) = 0
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Impurity Functions
(1) Impurity Functions Based on the Misclassification Rate (continued)

Problems:

q ∆ιmisclass = 0 may hold for all possible splittings.

q The impurity function that is induced by the misclassification rate
underestimates pure nodes.

c1

c2

(a) (b)

∆ιmisclass = ιmisclass(D)−
(
|D1|
|D| · ιmisclass(D1) + |D2|

|D| · ιmisclass(D2)
)

left splitting: ∆ιmisclass = 1
2 − (1

2 ·
1
4 + 1

2 ·
1
4) = 1

4

right splitting: ∆ιmisclass = 1
2 − (3

4 ·
1
3 + 1

4 · 0) = 1
4
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Impurity Functions

Definition 7 (Strict Impurity Function)

Let ι : [0; 1]k → R be an impurity function and let p, p′ ∈ ∆k−1. Then ι is called strict,
if it is strictly concave:

(c) → (c’) ι
(
λ·p + (1−λ)·p′

)
> λ·ι(p) + (1−λ)·ι(p′), 0 < λ < 1, p 6= p′
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Impurity Functions

Definition 7 (Strict Impurity Function)

Let ι : [0; 1]k → R be an impurity function and let p, p′ ∈ ∆k−1. Then ι is called strict,
if it is strictly concave:

(c) → (c’) ι
(
λ·p + (1−λ)·p′

)
> λ·ι(p) + (1−λ)·ι(p′), 0 < λ < 1, p 6= p′

Lemma 8

Let ι be a strict impurity function and let D1, . . . , Dm be a splitting of an example
set D, which is induced by a splitting of X. Then the following inequality holds:

∆ι(D, {D1, . . . , Dm}) ≥ 0

The equality is given iff for all i ∈ {1, . . . , k} and l ∈ {1, . . . ,m} holds:

|{(x, ci) ∈ D}|
|D|

=
|{(x, ci) ∈ Dl}|

|Dl|
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Remarks:

q The equality means that the splitting of D resembles exactly the class distribution of D.

q Strict concavity entails Property (c) of the impurity function definition.

q For two classes, strict concavity means ι(p1, 1− p1) > 0, where 0 < p1 < 1.

q If ι is a twice differentiable function, strict concavity is equivalent with a negative definite
Hessian of ι.

q With properly chosen coefficients, polynomials of second degree fulfill the Properties (a)
and (b) of the impurity function definition as well as strict concavity. See impurity functions
based on the Gini index in this regard.

q The proof of Lemma 8 exploits the strict concavity property of ι.
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Remarks: (continued)

q The impurity function induced by the error rate is concave, but not strictly concave, so that the
weighted average of a splitting can be a point on the curve and equal the parent’s impurity:

10 0.5

�

p1p2

0.5

10 0.5

�

p1p2

0.25

�(D)

�(D1)

�(D2)

�(D1)

�(D2)
�(D)

Impurity reduction

— ⋅�(D1) + — ⋅�(D2)|D1|
|D|

|D2|
|D|

— ⋅�(D1) + — ⋅�(D2)|D1|
|D|

|D2|
|D|
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Impurity Functions
(2) Impurity Functions Based on Entropy

Definition 9 (Entropy)

Let A denote an event and let P (A) denote the occurrence probability of A. Then
the entropy (self-information, information content) of A is defined as −log 2(P (A)).

Let A be an experiment with the exclusive outcomes (events) A1, . . . , Ak. Then the
mean information content of A, denoted as H(A), is called Shannon entropy or
entropy of experiment A and is defined as follows:

H(A) = −
k∑
i=1

P (Ai) · log 2(P (Ai))
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Remarks:

q The smaller the occurrence probability of an event, the larger is its entropy. An event that is
certain has zero entropy.

q The Shannon entropy combines the entropies of all outcomes of an experiment, using the
outcome probabilities as weights.

q In the entropy definition we stipulate the identity 0 · log 2(0) = 0.

q Related. Entropy encoding methods such as Huffman coding. [Wikipedia]

q Related. The perplexity of a discrete probability distribution p is defined as 2H(p). [Wikipedia]
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Impurity Functions
(2) Impurity Functions Based on Entropy (continued)

Definition 10 (Conditional Entropy, Information Gain)

Let A be an experiment with the exclusive outcomes (events) A1, . . . , Ak, and let B
be another experiment with the exclusive outcomes (events) B1, . . . , Bm. Then the
conditional entropy of the conditional experiment A | B, i.e., “the entropy of A if the
outcome of B is known”, is defined as follows:

H(A | B) =

m∑
l=1

P (Bl) ·H(A | Bl),

where H(A | Bl) = −
k∑
i=1

P (Ai | Bl) · log 2(P (Ai | Bl))

The information gain owed to experiment B is defined as follows:

H(A)−H(A | B) = H(A)−
m∑
l=1

P (Bl) ·H(A | Bl)
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Impurity Functions
(2) Impurity Functions Based on Entropy (continued)

Definition 10 (Conditional Entropy, Information Gain)

Let A be an experiment with the exclusive outcomes (events) A1, . . . , Ak, and let B
be another experiment with the exclusive outcomes (events) B1, . . . , Bm. Then the
conditional entropy of the conditional experiment A | B, i.e., “the entropy of A if the
outcome of B is known”, is defined as follows:

H(A | B) =

m∑
l=1

P (Bl) ·H(A | Bl),

where H(A | Bl) = −
k∑
i=1

P (Ai | Bl) · log 2(P (Ai | Bl))

The information gain owed to experiment B is defined as follows:

H(A)−H(A | B) = H(A)−
m∑
l=1

P (Bl) ·H(A | Bl)
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Impurity Functions
(2) Impurity Functions Based on Entropy (continued)

Definition 10 (Conditional Entropy, Information Gain)

Let A be an experiment with the exclusive outcomes (events) A1, . . . , Ak, and let B
be another experiment with the exclusive outcomes (events) B1, . . . , Bm. Then the
conditional entropy of the conditional experiment A | B, i.e., “the entropy of A if the
outcome of B is known”, is defined as follows:

H(A | B) =

m∑
l=1

P (Bl) ·H(A | Bl),

where H(A | Bl) = −
k∑
i=1

P (Ai | Bl) · log 2(P (Ai | Bl))

The information gain owed to experiment B is defined as follows:

H(A)−H(A | B) = H(A)−
m∑
l=1

P (Bl) ·H(A | Bl)
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Remarks: [
::::::::
concept

::::::::::::::::
“EnjoySurfing”] [

::::::
Bayes

::::
for

::::::::::::::
classification]

q Information gain is defined as reduction in entropy.

q In the context of decision trees, experiment A corresponds to classifying feature vector x with
regard to the target concept. A question, whose answer will inform us about which of the
events in A ∈ A occurred, is the following:

– “Does x belong to class c?” or
– “C=c?” (random variable C has realization c)

Likewise, experiment B corresponds to evaluating feature j of feature vector x. A question,
whose answer will inform us about which of the events in B ∈ B occurred, is the following:

– “Does x have value a for feature j ?” or
– “Xj=a?” (random variable Xj has realization a)

q Rationale: Typically, the events “x belongs to class c” and “x has value a for feature j” are
statistically dependent. Hence, the entropy of the event “x belongs to class c” will become
smaller if we learn about the value of feature j of x (recall that the class of x is unknown).

We experience an information gain with regard to the outcome of experiment A, which is
rooted in our information about the outcome of experiment B. Under no circumstances the
information gain will be negative; the information gain is zero if the involved events are
conditionally independent:

P (Ai) = P (Ai | Bl), i ∈ {1, . . . , k}, l ∈ {1, . . . ,m},

which leads to a split as specified as the special case in Lemma 8.
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Remarks: (continued)

q The expanded form of H(A | B) reads as follows:

H(A | B) = −
m∑
l=1

P (Bl) ·
k∑

i=1

P (Ai | Bl) · log 2(P (Ai | Bl))

q Since H(A) is constant, the feature that provides the maximum information gain
(= the maximally informative feature) is given by the minimization of H(A | B).
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Impurity Functions
(2) Impurity Functions Based on Entropy (continued)

Definition for two classes [impurity function] :

ιentropy(p1, p2) = −(p1 · log 2(p1) + p2 · log 2(p2))

ML:VI-70 Decision Trees © STEIN/LETTMANN 2024



Impurity Functions
(2) Impurity Functions Based on Entropy (continued)

Definition for two classes [impurity function] :

ιentropy(p1, p2) = −(p1 · log 2(p1) + p2 · log 2(p2))

ιentropy(D) = −
(
|{(x, c1) ∈ D}|

|D|
· log 2

|{(x, c1) ∈ D}|
|D|

+
|{(x, c2) ∈ D}|

|D|
· log 2

|{(x, c2) ∈ D}|
|D|

)
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Impurity Functions
(2) Impurity Functions Based on Entropy (continued)

Definition for two classes [impurity function] :

ιentropy(p1, p2) = −(p1 · log 2(p1) + p2 · log 2(p2))

ιentropy(D) = −
(
|{(x, c1) ∈ D}|

|D|
· log 2

|{(x, c1) ∈ D}|
|D|

+
|{(x, c2) ∈ D}|

|D|
· log 2

|{(x, c2) ∈ D}|
|D|

)

Graph of the function ιentropy(p1, 1− p1), i.e., for two classes:

10 0.5

ι

p1
p2

1.0

[Graphs: misclassification, entropy, Gini]
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Impurity Functions
(2) Impurity Functions Based on Entropy (continued)

Graph of the function ιentropy(p1, p2, 1− p1 − p2), i.e., for three classes:

p2

p1

p1

p2
p3
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Impurity Functions
(2) Impurity Functions Based on Entropy (continued)

Definition for k classes:

ιentropy(p1, . . . , pk) = −
k∑
i=1

pi · log 2(pi)

ιentropy(D) = −
k∑
i=1

|{(x, ci) ∈ D}|
|D|

· log 2
|{(x, ci) ∈ D}|

|D|

ML:VI-74 Decision Trees © STEIN/LETTMANN 2024



Impurity Functions
(2) Impurity Functions Based on Entropy (continued)

∆ιentropy corresponds to the information gain H(A)−H(A | B) :

∆ιentropy = ιentropy(D)

︸ ︷︷ ︸
H(A)

−
m∑
l=1

|Dl|
|D|
· ιentropy(Dl)

︸ ︷︷ ︸
H(A |B)
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Impurity Functions
(2) Impurity Functions Based on Entropy (continued)

∆ιentropy corresponds to the information gain H(A)−H(A | B) :

∆ιentropy = ιentropy(D)

︸ ︷︷ ︸
H(A)

−
m∑
l=1

|Dl|
|D|
· ιentropy(Dl)

︸ ︷︷ ︸
H(A |B)

Mapping:

q Ai, i = 1, . . . , k, denotes the event that x ∈ X(t) belongs to class ci.
The experiment A corresponds to the classification c : X(t)→ C.

q Bl, l = 1, . . . ,m, denotes the event that x ∈ X(t) has value al for feature j.
The experiment B corresponds to evaluating feature j and entails the following splitting:

X(t) = X(t1) ∪ . . . ∪X(tm) = {x ∈ X(t) : x|j = a1} ∪ . . . ∪ {x ∈ X(t) : x|j = am}

q ιentropy(D) = ιentropy(P (A1), . . . , P (Ak)) = −
∑k

i=1 P (Ai) · log 2(P (Ai)) = H(A)

q
|Dl|
|D| · ιentropy(Dl) = P (Bl) · ιentropy(P (A1 | Bl), . . . , P (Ak | Bl)) = H(A | Bl), l = 1, . . . ,m

q P (Ai), P (Bl), P (Ai | Bl) are estimated as relative frequencies based on D.
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Impurity Functions
(3) Impurity Functions Based on the Gini Index

Definition for two classes [impurity function] :

ιGini(p1, p2) = 1− (p1
2 + p2

2) = 2 · p1 · p2
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Impurity Functions
(3) Impurity Functions Based on the Gini Index

Definition for two classes [impurity function] :

ιGini(p1, p2) = 1− (p1
2 + p2

2) = 2 · p1 · p2

ιGini(D) = 2 · |{(x, c1) ∈ D}|
|D|

· |{(x, c2) ∈ D}|
|D|
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Impurity Functions
(3) Impurity Functions Based on the Gini Index

Definition for two classes [impurity function] :

ιGini(p1, p2) = 1− (p1
2 + p2

2) = 2 · p1 · p2

ιGini(D) = 2 · |{(x, c1) ∈ D}|
|D|

· |{(x, c2) ∈ D}|
|D|

Graph of the function ιGini(p1, 1− p1), i.e., for two classes:

10 0.5

ι

p1
p2

0.25

[Graphs: misclassification, entropy, Gini]
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Impurity Functions
(3) Impurity Functions Based on the Gini Index (continued)

Definition for k classes:

ιGini(p1, . . . , pk) = 1−
k∑
i=1

(pi)
2

ιGini(D) =

(
k∑
i=1

|{(x, ci) ∈ D}|
|D|

)2

−
k∑
i=1

(
|{(x, ci) ∈ D}|

|D|

)2

= 1−
k∑
i=1

(
|{(x, ci) ∈ D}|

|D|

)2
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